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becomes a key tool for connecting information theory
and statistics.

Linear Programming Problem

It is interesting that the dual geometry is useful for
some other problems. When a convex function ¥ () is
defined, we have a Legendre transformation from 6 to
n with a dual convex function ®(5). We can introduce
a dually flat geometry when it is equipped with a pair
of convex functions. In the case of statistics, ® is the
negative of the entropy function and ¥ is the cumulant
generating function. We have natural convex func-
tions derived from linear and non-linear programming
problems.

It is interesting to point out that a continuous
version of the Karmarkar inner method is just to
proceed along an m-geodesic in the space thus
equipped with the dual connections. This method can
easily be generalized to a nonlinear programming
problem. This shows a wide applicability and univer-
sality of dual geometry.
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impression of the important and extensive work of
S.-1. Amari and his collaborators.

As will be indicated, the statistical problems have
led to various developments and questions of a purely
mathematical nature, and there are also interesting
relations to theoretical physics.

INDEX NOTATION

The index notation of classical differential geometry
and certain extensions thereof have turned out to be
highly useful for many calculations in statistics, in-
cluding some that are not of differential geometric
nature (cf. McCullagh, 1987; Barndorff-Nielsen and
Blaesild, 1988b; Barndorff-Nielsen and Cox, 1989,
Chapter 5). The index notation makes many multi-
variate calculations just as easy as the corresponding

®
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one-dimensional ones, and often throws light on the
nature of the latter. The few simple rules of this type
of notation can be quickly assimilated without study-
ing differential geometry.

To illustrate this, and for use in the sequel, we let

r,s, t,---anda,b,c, --- denote indices, each varying
over 1, 2, --- , d, and we introduce the notation
(1) 2 F(Rnly M) Rm/)-

R, /v

Here v and n are fixed natural numbers with » < n,
R,=r, --- r, is a fixed set of indices, and (1) in-
dicates the sum over all partitions of R,,, into » blocks
R.., ---, R,,, of the values of a numerical function F
defined on such partitions.

Now, let w = (0!, -+, w¥) and ¢y = (Y1, - -+, ¢%) be
alternative sets of coordinates on a d-dimensional
differentiable manifold M. Then o', «°, w’, --- and

¥4, ¥b, ¢¢, - .. indicate generic coordinates. Applying
(1), let
) wig = X @, @

A,/m

a sum of products of first- or higher-order derivatives
of the coordinates w” with respect to the coordinates
¥°. Generally we use / to indicate differentiation. Thus
if f is a real function on M its first- and higher-order
derivatives are denoted by f,,, f/r, f/rst» - - - . In partic-
ular, wj,, = 0"w’/da; --- da,. Note that as a special
case of (2) we have

R
(3) Wi = ‘*’;Zl Tt ‘-"75"'

Now suppose that g is a real-valued function on M
and f is a real-valued function on R; denote the vth
order derivative of f by f*’ and write y = g(w). Then
the formulas for the first- and higher-order derivatives
of the composite function f ° g in terms of those of f
and g may be expressed compactly as

n

4) (fo@)r(w=XFf" X gr, (@) - &r,(w).

v=1 R, /v

This is a multivariate version of Faa di Bruno’s
formula.

The formulas for expressing multivariate moments
in terms of multivariate cumulants and vice versa
follow immediately as special cases, by taking f(y)
equal to exp y or log ¥ and, correspondingly, g equal
to the cumulant generating function or the moment
generating function. For details, see Barndorff-
Nielsen and Cox (1989), Chapter 5.

YOKES

Let Q denote the domain of variation of w, which
may be thought of as a representation of the dif-
ferentiable manifold M, and let Q' be a copy of Q.

We shall consider functions g defined on @ X @/,
and we let g (w; w’) = Ig(w; w')/Ow", 8 (w; w’) =
0g(w, w’)/0w’" and generally

9 9 9
(5) ERuiS, dw™ dw’™m dw’
Sy g(w; w’).

Furthermore, we use the notation

(6) é}?m;s,l = ng;Sn(w; (0),

i.e., a slash across a function on Q X Q’ indicates the
restriction of that function to the diagonal of Q X Q’.

A yoke is a function g(w; w’), where w € Q, 0’ € @',
having the properties that for all w

(i) gww)=0 r=1---,difo=0o’,
(ii) the matrix [g,(w; w)] is nonsingular.

In the context of parametric statistics, the two most
important yokes are the observed likelihood yoke

@) glw;, ') = lw; w’,a) — l(w; w’, a)
and the expected likelihood yoke
(8) g(w; w’) = E, {l(w) — l(w’)}.

The first of these is the normed log likelihood 7, except
that we have substituted the free variable w’ for w, a
being an ancillary statistic (for more explanation, see
Barndorff-Nielsen, 1986a or 1988) and the latter is
equal to —I(w’, w) where I indicates the Kullback-
Leibler information.

Using the convention (6) we may reexpress (i) as
the identity

9) =0

which on repeated differentiation yields the sequence
of relations

(10) g+ 4,=0,

(11) G + Broe + brvs + 41 = 0,

and so on, the general form being

(12) Er,+ Y £r,r,=0,
R,/2

where we have used the convention (1) with » = 2.
Note in particular, from (10), that £,., is a symmetric
matrix although g(w; w’) is not assumed to be sym-
metric in w and w’.

It is also of interest to observe that on introducing
the normed yoke

(13) (w; 0') = glw; 0') — glw’; ©),
which is again a yoke, and defining h(w; »’) by
(14) h(w; w') = g(v’; w)
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we have that h is also a yoke, constituting a kind of
dual to g, and that

(15) }ir;s = ér;s-

Note that both of the likelihood yokes (7) and (8) are
normed. :

In the case of the expected likelihood yoke, the
relation (12) may be rewritten as

n

(16) Y X Elg, - k=0,

v=1 R, /v
which is the general form of the relations between
the joint moments of log likelihood derivatives first
indicated by Bartlett (1953). Incidentally, the joint
cumulants of these derivatives satisfy the exactly
analogous equations, i.e.,

n

(17) Z Z K{anp ) lR,l,,} = 0’

v=1 R, /v
as follows simply from an observation made by
Skovgaard (1986).

Any yoke g induces a collection of geometrical ob-
jects on @, including a Riemannian (pseudo-) metric
given by £,.. and a family of connections {I": « € R}
given by

1+«

(18) i-x‘rst ="

l1—«a
2 é"s;t + 2 ét;rs'

Among the further objects derived from g are the two
connection strings

(19) éi:tn = és;r tyeetsy T 1’ 29 B
and -
(20) é;rt,~~~t,, = ér;sgs;tl-nt,,’ n= 1’ 2’ ctty

where the Einstein summation convention is used.
These are special cases of the concept of derivative
strings discussed briefly below.

One of the applications of 4i.., and £7,..,, is to

the construction of tensors for use in asymptotic sta-
tistical analysis (cf. Barndorff-Nielsen, 1986b).

For further discussions of observed and expected
likelihood geometries and of yokes and their statistical
relevance, see Barndorff-Nielsen (1986a, 1987¢, 1988),
Bleesild (1987a, b, 1988), and below.

INVARIANT CALCULATIONS

It is generally desirable that the methods of para-
metric statistics should yield conclusions that are
independent of the parametrization adopted, and this
in itself makes differential geometry a natural tool for
statistics, in line with its relevance for physics. (For
some discussion of this point see Barndorff-Nielsen,
1988, Section 1.3.) While many statistical procedures
are parametrization invariant in this sense, the way

in which they are mathematically derived is very often
not, and there is a need for developing an invariant
calculus for statistical inference.

Such a calculus will, in particular, be helpful for the
interpretation of the terms occurring in asymptotic
expansions.

Most derivations in asymptotic statistical inference
involve the use of Taylor’s formula. However, Taylor’s
formula is not invariant under changes of coordinates,
in the sense that for any n the actual value of an nth
order Taylor approximation to a function f depends
on which coordinate system is used on the domain of
definition of f.

Let f be a scalar on M and, under the coordinate
system w, define the symmetric covariant derivatives
f/s, of f by the system of equations

(1) fir,= 2 fusTx.

v=1

which involves the Einstein summation convention
and where (cf. (20))

(22) %= % £, £,

R, /v
As another possibility, leading to a different kind of
symmetric covariant derivatives f,,s , we might take

(23) = T i, 4R,

n
R, /v

(cf. (19)). Then the multiarrays f/s, are tensors, i.e.,
they obey the transform law

(24) fiia, = firs, @7,

(cf. (3)).

An alternative method for deriving tensors from the
ordinary derivatives f,s_1is, of course, by means of
covariant differentiation usingaa connection, for in-
stance one of the connections I' defined above. How-
ever, the tensorial derivatives of f thus determined are
not symmetric, i.e., invariant under permutation of
the indices, and this appears unnatural in many, and
in particular in statistical, contexts.

It is, incidentally, possible to develop a theory of
generalized higher-order covariant differentiation that
includes both of the above types as well as mixed
forms of the two (Barndorff-Nielsen, Bleesild and
Mora, 1988, 1989; see also Blasild and Mora, 1988).

Note that

frir = 1for

while, if we indicate covzilriant differentiation with
respect to the connection I':, = g4, by ///,

f//rs =Tr//)s+
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Furthermore, the symmetric covariant derivatives
obey a Leibnitz type rule for scalars f and ¢:

(25) (f - ®)ym, = fyr, + RE/Z F11Ru®i1R, + S//Rn

Using the concept of a yoke, discussed in the pre-
vious section, it is now possible, in a convenient
manner, to define invariant Taylor-like expansions
(Barndorff-Nielsen, 1987b). Let g be a yoke and let f
be a function on the parameter space. Furthermore,
let f/,s, be the symmetric covariant derivative of f
relative g, as defined by (21) and (22), and let

(26) g =478
and
gR" = grl P g"n‘
Then f may be expanded around w € M as

1
(27) f(@) =f(w) + gl ;?f//R"(w)gR”(w; @).

The quantity g” behaves as a contravariant vector in
w and as a scalar in &, so that each of the terms

(28) l, Frel@)g™(w; &)

is invariant under changes of coordinates in M. The
approximation to f obtained by summing only up to
v = n in (27) will therefore be the same irrespective of
the coordinate system employed. Moreover, for each
v, (28) is of the same order of magnitude in & — w as
the corresponding term in the Taylor expansion of f
in w-coordinates, i.e.,

L (@@ - o).
V.

We now indicate two applications of this idea. In
both cases we use as yoke the observed likelihood
yoke (7).

A highly accurate approximation to the distribution
of the score vector [ = [ (w) = (I, - -
ally on the ancillary a, is given by the probability
density function :

29)  p*(,; wla) = clw, )| ] V?| L] e

(Barndorff-Nielson, 1988). For the purposes of gaining
geometric-statistical insight into the nature of this
approximation and of performing approximate inte-
grations of (29), it is of interest to expand p*(l,; w | a)
around w with, of course, a normal density as the
leading term.

To this end we rewrite (29) as

' . o 1/2
Pl 0] @) = 2m)2) ] | 6w, a){ﬁl%i—'} el

where ¢(w, a) = (27)¥%c(w, a). Next, we expand the

-, 1), condition-

two last factors invariantly, in the above-mentioned
fashion, i.e.,

(30) 1= ==, "l° + Yot UISU + - - -
and
. B 1/2
(31) {Illll :g |} =1- trstirslt + -
where £, is the observed skewness tensor given by
(32) trst = _(lrst + lrs;t[3])?

where [3] indicates a sum of 3 similar terms, corre-
sponding to suitable permutations of the indices.
On insertion in (29) this leads to the expansion

p*l; wla)

= 9ull,; 178w, )L + Yot h™ (% 77 + -,
where ¢, (-; =) denotes the d-dimensional normal den-
sity function with covariance matrix = and h™ is a
third order tensorial Hermite polynomial. Carrying
the calculation a step further one obtains the asymp-
totic formula
(34) p*l,;wla) ~ dall; 77O + Ay + Ay}

where the invariant correction terms A, and A, are of
orders O(n~?) and O(n™'), respectively, under ordi-
nary repeated sampling with sample size n, and

(35) Ay = Yot h™

(33)

while
A - 1/ trs uhrstu — 1/ trs- " 2hrstu + hrs'tu
3g) Az Vb 42 rs;tu( 7")
+ 1/7ztrsttuvwhrsmvw’

involving the contravariant tensorial Hermite poly-
nomials of orders 2, 3, 4 and 6, based on [, and j ™.
Furthermore, f.., t.. and £... are tensors, with 2,
defined by (32) and

(37) trstu = lrstu + lrs;tu[4] + 1/21rs;tu[6])
(38) trs;tu = lrs;tu + Irs;ulw;tuivw-

Letting, again, /// indicate covariant_(liifferentia-
tion, here with respect to the connection T' [, = £, we
have

(39) trst = irs///t
and
(40) trstu = 1/4trst///u[4]'

Thus £... and #.... may be interpreted in classical dif-
ferential geometric terms. However, the same appears
not to be the case for £, although the Riemannian
fourth-order curvature tensor can be expressed in
terms of £, (Mora, 1988; Bleesild, 1988).

As the second application, we briefly consider the
question of approximating a given model M by an
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exponential model, in the neighborhood of a fixed
parameter point . This, as has often been suggested,
can be done by writing, for w’ an arbitrary point in
the neighborhood,

(41) p(x; w’) = p(x; we'“ ™

and developing l(w’) — l(w) in a Taylor series up to
any desired order. This procedure is, however, not
parametrization invariant and instead one may pro-
ceed as above, using (27). If, for instance, we again
choose (7) and (21)-(22) for the construction and
develop to second order, we obtain the exponential
approximation

p(x; w’) = alw’; w)p(x; w)expi{fi(w’) - ti(x)

(42) + 0x(w’) - ta(x)}

where a(w’; ) is the norming constant and -

(3) 0@’ - ti(x) = 01(0’; w) - tix; )
=l (w; 0, )]l (w; @, a)

and
Ox(w”) - ta(x)

=0y(w’;w) - talx; w)
(44) L
= Yol (w; w’, @)l (w; w’, a)]" 7™

Nbu(w; @, @) — Lolw; 0, 0)7 "l (w; @, @)}

For alternative approaches to the question of invar-
iant approximating exponential models, see Amari
(1987a) and Barndorff-Nielsen and Jupp (1989).

STRINGS

The concept and theory of strings as developed in a
series of papers (Barndorff-Nielsen, 1986b; Barndorff-
Nielsen and Bleesild, 1987a, b, 1988a; Barndorff-
Nielsen, Bleesild and Mora, 1988, 1989; see also
Murray, 1988) arose out of a seminal idea in a paper
by McCullagh and Cox (1986). However, the core of
the concept had been independently proposed earlier
by Foster (1958, 1961); see also the illuminating article
Foster, (1986).

It should be noted that strings in the present sense
are quite different from a number of other concepts
termed strings, in particular the ‘superstrings’ of the-
oretical physics which are currently attracting such
excepticnal interest. To distinguish them, the present
type of strings are occasionally referred to as derivative
strings.

The motivation for studying strings is partly their
intrinsic mathematical interest and partly their actual
and potential usefulness in statistics and other areas
of applied mathematics. Some of their uses have been
indicated above.

A derivative string is a parametrization-dependent
multiarray H that obeys the following transformation

law under change of coordinates

m N
45)  Hyer = T T Hinwe by md b
Here we are again using the index notation discussed
at the outset. The transformation law (45) generalizes
those for tensors, for the Christoffel symbols of affine
connections and for ordinary derivatives of real func-
tions.

Derivative strings obey various useful rules of
operation, one of the most important being that of
intertwining, which produces tensors from pairs
of strings (see, in particular, Barndorff-Nielsen and
Bleaesild, 1987b).

In differential geometry, differentials are treated as
objects dual to derivatives. In close analogy hereto,
there is a concept of differential strings which is dual
to that of derivative strings. Differential strings may
be characterized by a transformation law somewhat
similar to (45) and there is a theory of differential
strings that parallels that of derivative strings (see
Bleaesild and Mora, 1988).

PHYLA

Derivative strings and differential strings are, in
consequence of the transformation laws that charac-
terize them, instances of a broader concept that is
presently being studied under the name of phyla. This
concept would seem to encompass also the idea of
“new tensors” indicated by Foster (1986, 1988). These
two papers introduce quantities that may be seen as
further instances of phyla. In Foster (1988), the quan-
tities concerned are essential elements of the author’s
quest towards a unified field theory of physics.
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Comment: On Multivariate Jeffreys’ Priors

José M. Bernardo

Kass presents a lucid, well written description of
the differential geometric foundations of such perva-
sive concepts in statistics as Fisher information, the
Kullback-Leibler metric and information numbers, or
the loglinear structure of exponential families. As the
author points out, these topics directly relate to the
role of reference priors in Bayesian Inference—an
issue he regards as of “ongoing vital importance”—
and one would expect a deeper understanding of such
an issue from his work. I will concentrate on this
point.

JEFFREYS’ PRIORS

Kass very clearly describes some of the more basic
aspects of Jeffreys’ priors. Specifically, I would like to
draw your attention to four of those:

(i) Jeffreys’ general rule is generated by the nat-
ural volume element of the information metric.
(ii) The main intuitive motivation for Jeffreys’
priors is not their invariance, which is certainly
a necessary, but in general far from sufficient,
condition to determine a sensible reference
prior; what makes Jeffreys’ priors unique is
that they are uniform measures in a particular

Professor José M. Bernardo’s mailing address is:

Presidencia de la Generalitat, Departamento de Esta-
distica, Palacio de Fuentehermosa, Caballeros 9,
E-46001, Valencia, Spain.

metric which may be defended as the “natural”
choice for statistical inference.

(iii) The existence of Jeffreys’ priors requires rather
strong, if fortunately frequent, regularity con-
ditions.

(iv) Multivariate Jeffreys’ priors are often inade-
quate to obtain marginal reference posterior
distributions for its elements—as Jeffreys him-
self realized—and there does not seem to be an
agreed systematic alternative; independent
treatment of orthogonal parameters, when ap-
plicable, is only an ad hoc partial solution. Key
references for the type of problems which may
be encountered from routine use of Jeffreys’
multivariate priors are Stein (1959) or Dawid,
Stone and Zidek (1973).

While (i) and (ii) are possibly sufficient to be sus-
picious about any method for generating reference
priors which does not reduce to Jeffreys’ in one-
dimensional regular problems, (iii) leaves room for
improvement and (iv) clearly requires new work.
When reading Kass’ paper, I was hoping for some new
hints about (iv) but I could not recognize any; I hope
to see some comments in the rejoinder.

REFERENCE PRIORS

In my development of reference priors (Bernardo,
1979)—which reduce to Jeffreys’ for one-dimensional
regular problems—I explicitly recognized the impor-
tance of identifying parameters of interest and



