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approximation fails, we still have an approxima-
tion—compound Poisson approximation, provided
(1 A ATY)e* 3 aer Poka is small. A consequence of this
is that we can avoid declumping in applications, as we
shall see below.

Consider the example in Section 4.2.1 of Arratia,
Goldstein and Gordon with X, = C,Cpsq - -
Then the above dependence assumption is satisfied
withA,={1V(a—t+1), ---,a+2t—2}and B, =
{1V(e—2t+2), - .-, a+ 3t—3}. By (10), we obtain

° Ca+t—l .

| 2 U) - 2(2)|
< 4¢*(1 A ((p + ng)gp*) )n(5¢t — 4) p*,

where ¢ = 1 — p. Note that W = U. In order that the
distribution of Z be determined, we need to compute
\; for all i. It can be shown that

N=i"1 Y pPP(Vir+ Vineer =i—1)

a=1

where V, =0, V,, and V/, are geometric (p) truncated
at m, and V,_, and V.-, are independent. We can
either proceed to compute each XA; explicitly to deter-
mine .# (Z) or approximate . (Z) by #(Z*) to obtain
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At least one of us used to speak of the methods we
have presented here as the philosopher’s stone. None
of us make such extravagant claims any longer; the
discussants have put their collective fingers on a num-
ber of reasons why.

The method as we have presented it works best for
dealing with local dependence, corresponding to situ-
ations in which b, is small and b; = 0. In these
situations, b, is small and our approximations are
useful if and only if second moments are well behaved.
Steele gives an intriguing example having weak long-
range dependence that is much harder to deal with. In
Steele’s problem, even if second moments were well
controlled, there would still be difficulties due to the
nonlocal dependence captured by bs;. Here is another
such related example.

The question is inspired by the important problem
of analyzing the expected, as opposed to worst-case,
behavior of the simplex method. See Borgwardt (1987)
for an exposition. Specifically, one is led to study the
number of edges or vertices in the convex hull of n
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the following result:
| < U) — 2(Z*)]

1) < 4e*(1 A ((p + nq)gp*)")n(5t — 4) p*
+ 4(2n — t)p* + 4q7'p™?,

where Z* has the compound Poisson distribution
exp[A*(u* — 8,)] with \* = ngp* and u*({i}) = gp™™,
i=1,2, ... (“one plus a geometric (p)”). In approx-
imating .#(Z) by #(Z*) we need not calculate \;
explicitly. For bounded A*, the order of the error
bound in (11) is the same as that obtained by Arratia,
Goldstein and Gordon. Note that gA\* = A\, = A =<
np’ = ¢ '*A*. Hence the result (11) not only provides
an approximation for #(U) but also can be used
to obtain the asymptotic distribution of R,, the
length of the longest run of heads beginning in the
first n tosses of a coin, since {R, < t} = {U = 0} and
P(Z*=0)=e™.

In the same way, (11) can also be applied to the
biological example in Section 5 of the article by Ar-
ratia, Goldstein and Gordon to obtain an approxima-
tion result for # (Y .er I(S, = s)) and the asymptotic
distribution of M, (t,), the largest number of matches
witnessed by any comparison of length t, substrings
of two strands of DNA.

independent and identically distributed points in, say,
R2 For a line segment joining two of the observed
points to be an edge of the convex hull, all of the other
points must lie on one of the half-planes determined
by these points. The usual heuristic applies. There are
a large number of pairs of points to serve as a potential
edge, and the probability that a given pair is actually
an edge in the convex hull is small. Hence, the total
number of edges in the convex hull should be approx-
imately Poisson. As with Steele’s example, first mo-
ments are tractable. Unfortunately, second moments
and nonlocal dependence are again a problem. If an
edge is indeed in the convex hull, one of its endpoints
is also on a second edge of the convex hull, this is
reflected in the second moment and b,. There is also
some additional nonlocal dependenge which is part of
bs. This type of behavior reinforcess the issues raised
by Steele’s example.

In discussing Section 3.1, Barbour gives an example
involving a Bernoulli variable with p,, = %. This
example shows that no negative power of A can be
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brought into our Theorem 2, which compares the given
Bernoulli process with an equal intensity Poisson
process. In this example, the obstacle is the large atom
of mass Y, rather than the dependence structure.
Theorem 3 compares a given dependent Bernoulli
process to an independent Bernoulli process, so the
presence of atoms is no obstacle. To see that Theo-
rem 3, like Theorem 2, admits no improvement for
large A, consider the following example. There are
n independent sites, each either empty with proba-
bility 1 — p, or else occupied by a red or else a white
ball, with probability p/2 each. Taking the obvious
index size 2n and neighborhoods of size 2 we have
A= np, bl = npz, b2 = b3 = 0, 2 pﬁ = b1/2. For
the process of 2n locally dependent events X com-
pared with the corresponding process of 2n inde-
pendent events X’, Theorem 3 gives the upper bound
BlZX) — ZX)| = 2b, + I p%2 = %np:
Direct calculation yields 2| Z(X) — Z(X’)|| = P
(some site in X’ has both a red and a white ball) =
1— (1 - p?%4)" = 1 — exp(—np?/4). Taking np? fixed
and A = np — o shows that the bound from Theo-
rem 3 cannot be strengthened by any function of A
which approaches zero as A approaches infinity.

At the end of his discussion of cycles in random
permutations, Barbour gives a beautiful coupling proof
that a total variation distance is at most 4f(n)/n. We
observe that this result is stronger than anything
which could be proved using the Chen-Stein method.
The utility of the Chen-Stein method in this case was
to focus on the possibility of giving bounds on the
total variation distance from a complicated dependent
process to a simpler Poisson process.

Waterman is interested in best matching segments
from two long sequences, allowing mismatches, inser-
tions and deletions. The dependence structure is local:
an event involving two short segments is correlated
with another such event only if there is some overlap
in the segments. Hence when second moments from
this dependence are well behaved, the Chen-Stein
method yields distributional results almost as easily
as the much cruder method of first and second mo-
ments yields strong laws. However, it is so far impos-
sible to get useful estimates on second moments when
deletions are allowed, i.e., when § < %. Nevertheless,
the Chen-Stein method gives the useful insight that
perhaps the only missing ingredient to a distributional
theory for matching allowing deletions is an upper
bound on certain correlations.

Chen raises many interesting new ideas in Poisson
and Normal approximation. We comment briefly on
two. We are pleased to see that there has been so
much progress on large deviation estimates for Pois-
son approximation. In many cases, be it in the birth-
day problem or hypothesis testing, the results of
applying the method yields a small error bound and

an even smaller probability. In such a case, it is not
possible to know how different the true probability is
from zero. Hence, being able to deal with relative
errors and large deviations is a significant advantage.

Chen’s generalization of the Poisson difference
equation to compound distributions is extremely
clever. One would expect that dealing with the target
compounded distribution through its own character-
izing equation may give better estimates than what
we derive through our process theorem. This is so
because the process theorem may carry too much
information extraneous to the problem. In particular,
the process theorem contains information on the lo-
cation of clumps, not just their quantity and types. In
Section 4.2.1, in order to get our estimates of distance
of U to compound Poisson, we consider a functional
h on processes. As the theorem gives a like bound for
arbitrary functionals with || A|| < 1, the bound may
suffer in a specific case. That some intentional loss of
information may lead to better bounds was also noted
by Barbour in his comments.

We are grateful to the discussants for pointing out
the limitations of the method. The great variety of
concepts the discussants raise reinforces our belief
that the scope of ideas one is led to think about while
attempting Poisson approximation is broad.
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