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best shot is to point out that, despite its power, the
Chen-Stein method is not omnipotent. In fact, there
are simple problems where one mighg suspect that a
Poisson law lurks below the surface, yet the hooks
provided by the Chen-Stein method leave us without
a catch.

Consider a simple random walk S, = X; + X, +
-+« + X, in R? where the X; are iid. To make life as
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simple as possible, we further assume that the X; have
a density, and we take S, = 0 to have a clear conven-
tion. The convex hull H, of Sy, S,, - - -, S, is a natural
object that turns out to be intriguing both for its
probability theory and geometry. A priori one might
expect results on H, to be difficult and incomplete,
but—at least as far as first moments go—the theory
is surprisingly easy and precise.

The first contributions to the theory of H, are due
to Spitzer and Widom (1961). Their seminal obser-
vation was to show that an ancient result of Cauchy
could be combined with a purely combinatorial result
of Kac (1954) to obtain an exact formula for the
expectation of the length L, of the boundary of H,,:

EL,=2 Y E|S;|/k.
k=1

From this beautiful formula one can obtain consider-
able information about EL,, and, in particular,
one can use it to show that EL, ~ cvn pro-
vided EX? < » and EX; = 0. This observation does
not yet put us in the territory of the Poisson law—
that comes later—but it does give the first suggestion
of a counting law to be discovered.

The second paper to treat the geometry of H, is due
to Baxter (1961). This work shows, among other re-
sults, that the number N,, of sides of H, has a remark-
ably simple expectation. In fact, it is just twice the
nth harmonic number, i.e.,

Comment
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The Chen-Stein method has added a new dimension
to the techniques available for justifying Poisson ap-
proximations. In fields such a random graph theory
(Bollobas, 1985, Chapter 4), extreme value theory
(Smith, 1988; Holst and Janson, 1990) and spatial
statistics (Barbour and Eagleson, 1984), where Pois-
son approximation plays an important role, the Chen-
Stein method has already proved to be the best general
approach, and its potential has by no means been
exhausted. Its strengths are that it makes many sorts
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In Snyder and Steele (1990), a common generalization
of these results is given. If we let ¢;, i =1, 2, ---
denote the lengths of the faces of H, and if f is any
function, then provided both sides make sense we have
the identity

ESfe) =23 ; E(IS.D).

Naturally, this identity yields that of Spitzer and
Widom by taking f(x) = x, and we can also get
Baxter’s identity just by taking f (x) = 1.

Now, here is where it may pay to start looking for
a Poisson law. If we let f, denote the indicator of an
interval [a,, b.], then for any given distribution of the
X; it is not hard to determine a, and b, so that for
each n the sum G, = Y ; f (e;) satisfies EG, = A > 0. It
may be most natural to take a, = 0 in order to focus
on the small faces of H,. The variable G, is nothing
more than a sum of a random number of dependent
random variables, the f,(e;). Further, these variables
do not seem all that dependent. Thus, there is a serious
possibility of a Poisson approximation to the distri-
bution of G,,.

Still, in this problem the Poisson law seems a long
way away. The first moments were obtained through
somewhat slippery trickery, and second moments do
not seem to be open to more of the same. The Poisson
law is honestly in play, yet the Chen-Stein method
has far to come to meet the challenge. Can sufficient
information be found on the second moments of G, to
complete the Chen—Stein program?

of weak dependence easy to handle, it gives explicit
estimates of the accuracy of approximation, and it
continues to give good results even when the expec-
tation X is large. The preceding survey illustrates the
first two of these aspects admirably, but it gives rather
less weight to the third, to which the following com-
ments are addressed. For details and much more about

" the Chen-Stein method, see the forthcoming book of

Barbour, Holst and Janson (1991).

A remarkable feature of the Chen—Stein method is
the form of the estimate of Theorem 1. When ap-
plied in the simplest setting, that of Theorem O,
it gives an error estimate no greater than 2 min(l,
A1) Y&, p?.. Were only an estimate of the form ¢

%1 p?, required, for some real c, it could be obtained



