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Rejoinder

G. K. Robinson

INTRODUCTION

I would like to thank the discussants for their
remarks. I hope that readers will find that the
discussion helps to clarify the ideas that I tried to
present in my paper. Mostly, I have chosen not to
use this opportunity to restate my opinion on minor
points where I disagree with the discussants or
where I would give different emphasis.

In this introduction I will pass quickly over a
number of issues which can each be presented
briefly. Issues requiring longer discussion will be
laid out as separate sections.

C. R. Henderson died in March 1989. Searle
(1989) is an obituary.

Following comments by Harville and Speed, I
think that my presentation would have been easier
to understand if I had given greater emphasis to
the way the linear model (1.1) would be handled if
the random effects were not to be estimated. The
linear model could be rewritten as

y=X6+E’

where ¢ = Zu + e. Now Var(e) = (ZGZ” + R)o?
and it is convenient to denote ZGZT + R by V. The
generalized least-squares estimate

B=(XTVX) ' XTV ly

is the same as the BLUP estimate as explained in
Section 5.1.

As Harville and Thompson indicated, BLUP is

often explained using a predictive formulation.
Henderson frequently used such a formulation.
(e.g., Henderson, 1973). Goldberger (1962) also used
a predictive formulation. I find my presentation
simpler, but I recommend that readers consider the
alternative to see which they find easier to compre-
hend. .
" As pointed out by Spall, I did not clarify the
distinction between smoothers and filters in my
paper. His statement ‘““it is a Kalman smoother. . .
that produces the BLUP estimate of u based on
data y” might leave readers thinking that the
Kalman filter is not BLUP. In fact, the Kalman
filter is the BLUP estimate of « based on the data
up to time ¢, y,. '

NOMENCLATURE

One of the major barriers to discussion in this
area is the variety of nomenclature.

o I have used the term BLUP where many other
people would use the term parametric empiri-
cal Bayes.

o I refer to random effects within mixed models
whereas Steffey and Kass refer to unit-specific
parameters within conditionally independent
hierarchical models.

e Much terminology is application specific.

I do not wholeheartedly support the term BLUP
because it includes the idea of predicting, and I do
not believe that estimates of random effects are
predictors for any greater fraction of their usage
than estimates of fixed effects are predictors.

In ore reserve estimation I find it silly to speak of
predicting something that happened millions of
years ago. In time series, it is common to differenti-
ate between smoothing, filtering and prediction.
BLUP can be used for all three—which suggests
that it is not merely prediction.

In the absence of general agreement about termi-
nology, I would appeal for greater tolerance of other
people’s terminology.

COMPUTATIONAL ISSUES

As Speed hinted at in his discussion, when I first
started working on the paper I was involved in the
task of designing a computating strategy for esti-
mating the genetic merits of dairy cattle using
BLUP. (My first draft of the paper was dated
February 22, 1982.)

Up to that time, BLUP for large numbers of sires
had been done using several different models, but
BLUP for models requiring the solution of sets of

- simultaneous equations with equations correspond-

ing to both male and female animals (often referred
to as animal models) had only been used for small
number of animals. Henderson (1975b) had pro-
posed the model for use within single herds. The
Australian Dairy Herd Improvement Scheme ac-
cepted my opinion that an animal model was com-
putationally practical for large numbers of animals
and has been using it for several years. Details of
the computing strategy are given in Robinson
(1986). See also Jones and Goddard (1990). A
nonessential development was a method for solving
the sets of up to one million simultaneous linear
equations which is described in Robinson (1988).
Many other genetic evaluation schemes with large
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data sets now also use animal models rather than
sire-only models.

ILL-POSED INVERSE PROBLEMS

I agree with most of Campbell’s remarks about
BLUP and ill-posed inverse problems. In thinking
about the distinction between uncertainty (which
she refers to as the epistemological or Bayesian
interpretation of probability) and variation (which
she refers to as the ontological or classical interpre-
tation of probability), I would include as variation
the variation between the true images that have
been or are likely to be looked at and the variation
between patterns of grade in mineral deposits. The
characteristic that I look for in deciding whether
probability is being used to describe uncertainty or
variation is that when probability is used to de-
scribe variation it should be possible to estimate
the probability distribution or to test hypotheses
about the probability distribution using available
data.

ILL-POSED THEORY

While thinking about things that are ill posed, I
would like to take this opportunity to indicate my
disrespect for a type of theoretical work that is
seldom helpful for solving real problems. The
Cramér-Lévy theorem, referred to by Spall, states
that X + Y can only be precisely normally dis-
tributed if both X and Y are precisely normally
distributed. I regard the Cramér-Lévy theorem as
an example of ill-posed theory because, although its
conclusion does follow from its premises, a small
departure from its premises allows a large depar-
ture from its conclusions. More specifically, it is not
true that X + Y can only be approximately nor-
mally distributed if both X and Y are approxi-
mately normally distributed, as is easy to see for
the case of X and Y having smooth, unimodal
distributions of opposite skewness.

Spall obviously realizes that it is desirable to
supplement the Cramér-Lévy theorem’s conclu-
sions. Regrettably, he only quotes the statistical
significance of the departure from normality of the
Kalman filter errors for his simulation experi-
ments, not the extent of the departure.

MOST LIKELY UNOBSERVABLES

Thompson asked whether the method of most
likely unobservables can be used to construct confi-
dence intervals for estimates of random effects.
Assuming a multivariate normal distribution as in
Section 4.1, the ratio of the density of the unobserv-
ables u and e for arbitrary 8 and u to the density

given 8 = B and u = 2 is exp{ — Q/(202)}, where Q
is the quadratic form

(y— Xg— Zu)T(o ?e)_l(y—XZ— Zu)

_ i T( G0 )‘1 2
y-XB-2a) \o R y-XB-2Za)
Using equation (1.2), this can be shown to be equal
to

A\ T "
(B——B) (XTR—IX XTR-1Z )(B—B)

u-o) \ZTR"'X Z"RZ+G! '
Hence using the method of most likely unobserv-
ables to construct confidence intervals is equivalent
to assuming that the estimation errors have a mul-
tivariate normal distribution with the usual vari-
ance-covariance matrix which was given just below
equation (1.2).

The meaning of Thompson’s last question is not

completely clear to me. There appear to be two
likelihoods for 3.

1. For the linear model y = X8 + ¢ the vari-
ance-covariance matrix of estimation errors is

E[(8-8)"(B-8)] = (X7v"1x) 0"

~

u-—u

and the likelihood is a mult’i\variate normal
distribution with mean B8 = 8 and this vari-
ance-covariance matrix.

2. The method of most likely unobservables gives
a likelihood for B and u that is a multivariate
normal distribution with mean of 8 = 5, u=1i
and variance

XTR'X  XTRZ | .
ZTR'X ZTR'Z+ G! '

These two likelihoods give the same conclusions
about fixed effects, so choosing between them is not
an issue. To see that they give the same conclu-
sions, remember that the likelihood arising from
the method of most likely unobservables is
exp{ — Q/(20?)} times the maximum at 8 = 3, u =
ii. The derivative of the quadratic form with re-
spect to u is

2ZTR-'X(B - B) + 2(Z"R'Z + G *)(u - @).
The minimum of @ over u is at
(u-8)=-(2"R"'Z+ G 1) ' ZTR'X(8 - §)

and is

(8- B)"X7(2Gz" + R} " X(B - B).
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Thus the maximum over u of the likelihood of the
unobservables differs only by a constant factor from
the likelihood for the linear model y = X8 + .

In answer to Speed’s question in his Section 8, I
believe that the coverage of the confidence inter-
vals is the usual sort, provided that they are inter-
preted highlighfing the probability distribution of
the random effects that might have occurred.

PRIOR INFORMATION AND
ANIMAL BREEDING

Section 3 of the discussion by Steffey and Kass
seems to me to require some specific comments.

I agree that considerable knowledge about herd
and sire effects is available. However, as I stated in
Section 7.3 of my paper, I would prefer to treat
herd-year-season effects as fixed rather than ran-
dom (or, from a Bayesian perspective, to put uni-
form priors on them) because I am worried about
the potential biases in the information contained in
between herd-year-season comparisons.

The prior information, which Gianola and Fer-
nando (1986) say should be used to preclude ridicu-
lous estimates of heritability and other anomalies,
can be put into the form of restrictions on the
parameter spaces. Readers might be misled if they
thought that this was a type of information that
non-Bayesian statisticians would be unwilling to
use.

The third paragraph is inaccurate. In Section 4.2
of my paper I find that BLUP estimates are exactly
(not approximately) Bayes estimates with uniform
improper prior on 8 and a point distribution (not a
uniform distribution) on §. Example 2 from Kass
and Steffey (1989) illustrates that using flat or
informative priors on the random effect (z in my
notation) can make a substantial difference. I agree
with this, but I do not agree with the implication
that users of BLUP should be concerned about
having implicitly used a uniform prior for 8.

CLOSURE

Before receiving copies of the discussion, I had
wondered whether some discussion might be as
intemperate as the comments by O. Kempthorne on
a paper by D. V. Lindley at the Waterloo Sympo-
sium. The comments reported in Godambe and
Sprott (1971, page 452) included the following:

...a former colleague, D. L. Harris, pre-
pared a manuscript entitled “Estimation of
Random Variables” in 1963. The title “bugged”
some people, and the manuscript was rejected
by Biometrics in all its wisdom. The argumen-
tation - was Bayesian, of course. Perhaps a

manuscript with such a title will receive a
slightly more open reception nowadays.

Kempthorne could surely not object to the open-
ness of my paper’s reception. Having met Dewey
Harris and seen the revised version of his paper
(“Estimation of normally distributed random ele-
ments of certain statistical models,” Journal Paper
No. J-4576, Iowa Agricultural and Home Eco-
nomics Experiment Station, Ames, Project No.
1505, supported by National Science Foundation
Grant G-18093), I see no evidence of lack of open-
ness in 1963 either.

In fact, the complimentary and constructive tone
of the discussion concerns me because readers might
get the impression that there was general agree-
ment with the ideas expressed in my paper. I
doubt that this is the case. Two things which I
believe readers should regard as controversial but
which have not been raised in discussion are the
following:

o In Section 5.8 I imply that much work on
ranking and selection has been misguided.

® In Section 5.4 I ignore most of the methods
used for estimating variance parameters.
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