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Comment

Duane Steffey and RBbert E. Kass

Dr. Robinson’s well-written article provides a va-
riety of perspectives on the general linear model
and its applications. Particularly welcome are the
examples of Section 6 illustrating the widespread
utility of these models. We limit discussion here to
three main points. First, further details are pro-
vided on approximate Bayesian methods for infer-
ence about unit-specific parameters (“random” ef-
fects). Next, we amplify Dr. Robinson’s comment
on the often close agreement between Bayesian and
frequentist inferences. Specifically, we give an ap-
proximation to the variance of the marginal poste-
rior distribution of a unit-specific parameter and
conjecture that the expression may also be justified
on frequentist grounds as an approximation to the
sampling variance of the BLUP estimator. Finally,
we discuss the desirability of using all relevant
information and mention some possible mecha-
nisms for incorporating prior knowledge about ani-
mal breeding into the general linear model.

1. APPROXIMATE BAYESIAN INFERENCE

We here consider the marginal posterior distribu-
tion of a unit-specific parameter and provide a
rather general variance approximation that satis-
fies the often-identified need (e.g., noted by Robin-
son in Section 5.6) to account for the uncertainty in
estimating the common dispersion parameters. We
begin by rewriting Robinson’s model (1.1). Switch-
ing to a formulation similar to that of Laird and
Ware (1982), we consider the general linear model
in which there are k experimental units and, for
the ith unit,

Yi = Xlﬁ + Ziui + ei.

Here, Y; is an n; X 1 vector of responses, 8 is a
p X 1 vector of unknown population parameters
and X, is a known n; X p matrix linking g to Y;.

In addition, u; is a g X 1 vector of unknown indi-
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vidual effects, Z; is a known n; X ¢ matrix linking
u;to Y; and e; is an n; X 1 vector of random errors.
The vectors e;, i = 1,..., k are assumed to be inde-
pendent and normally distributed with E(e;) = 0
and VAR(e;) = R,(0). The vectors u; are taken to
be independent (of each other and of the e;) and
normally distributed with E(u;) = 0 and VAR(u;)
= G(9). (We suppress the vector # in the subse-
quent discussion.) That is, the model has the struc-
ture

) Y,|8,u;,0 ~ Normal( X;8 + Z;u,, R;)
u;|6 ~ Normal(0, G),

so that given 8 and 6 the vector pairs (Y, u;) are
conditionally independent for i=1,...,%k. Kass
and Steffey (1989) refer to models characterized by
this structure as conditionally independent hierar-
chical models (CIHMs).

For example, in the context of Robinson’s animal
breeding problem (Section 1), Y; is the vector of
first lactation yields for dairy cows from the ith
sire. In this case, k = 4, p = 3, and ¢ = 1. Letting
i = 4 identify Sire D, we have n, = 5 and

100 10 0 1 4w
100 01 0|/[h 1 €42
¥4=1100 =10 1 Of(Ba|+|1]|us+ |
100 1 0 0]\g, 1 €44
100 1 0 0 1 eqs)

If an improper uniform prior is specified for 8 and
integration with respect to B is performed, the
posterior distribution of u; given y; and 6 is Nor-
mal with

E(ui| yi’o) = GZiTPiyi
VAR(u;| y,,0) = (G~' + 278,2;) ",

where
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with V, = R, + Z,GZT. Approximations to the pos-
terior mean and variance of u; given y =
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(¥1,..., ;) are obtained by applying the results of
Kass and Steffey (1989):

(2) E(u;| ) éE(ui|yi,‘9~)

(8) VAR(u;|y) = VAR(u,|y;,0) + ¥ 6,5.5,,
where §;, is the (j, k)-component of

$ = [-D*log L(8)7(6) loq] "

and
-~ d
B.i = %E(U,J yiao) |0=o"-

J

Here, L(0) denotes the likelihood function, =(8)
denotes the prior for 9, and D? denotes second-order
partial differentiation with respect to the elements
of 6. (For specific formulas, see Kass and Steffey,
1989; Harville, 1977.) Note the convenient inter-
pretation of (3): the first term is the conditional
posterior variance with 6 set equal to 6, and the
second term accounts for the additional uncertainty
in estimating 6.

2. APPROXIMATE VERSUS EMPIRICAL BAYES

The approximations (2) and (3) have an alterna-
tive frequentist interpretation. The approximate
posterior mean (2) is commonly recognized as the
parametric empirical Bayes (PEB) estimator. In
addition, we believe that under appropriate regu-
larity conditions, the approximate posterior vari-
ance (3) may also be justified fairly generally as a
frequentist approximation to the sampling variance
of the PEB estimator. In the context of the general
linear model (1), when w(6) = 1 the expression (3)
is very similar to Kackar and Harville’s (1984)
approximation to the mean squared error of the
PEB estimator, differing only in that Kackar and
Harville use estimated expected information rather
than observed information. Specifically, with
G(y;,0) = E(u;| y;,0), we conjecture that under
suitable conditions

VAR|[G(Y;, §)]
= V{1 + 0,(n;V2)}{1 + O,(k~2)},

where 6§ is the MLE of 0, V is the approximate
posterior variance given in (3) and our O, state-
ments refer to the two-stage model—i.e., the joint
distribution of (Y, u,),...,(Y,, u,) for some fixed
0eo.

To indicate heuristically why we make this con-
jecture, we write V1 = VAR[E(G(Y,, §)| Y; = y)]

and V2 = E[VAR(G(Y,, 0)| Y; = ¥;)], and use the
conditional variance formula

VAR[G(Y;,0)] = V1 + V2.

That the second term of (3) estimates V2 can be
readily seen by carrying out a Taylor series expan-
sion and standard delta method arguments. The
conditional posterior variance VAR(u;|y;, 6) can
then be shown to estimate V1 by linking three
steps: (i) VAR(u;| y;,0) is approximately equal to
the variance of #; conditional on u,, while (ii) the
latter is approximately equal to the variance of the
conditional posterior expectation VAR[G(Y,, 9)]; fi-
nally, (iii) this quantity VAR[G(Y;, 6)] can be shown
to estimate V'1. Substituting § for 6 then yields the
desired result. These arguments are most easily
made by taking advantage of the asymptotic inde-
pendence of Y, and § as k— . In words, the
influence of any single observation on the estima-
tion of 6 becomes negligible as the number of ex-
perimental units increases.

Note that the conjecture (4) applies to all CIHMs,
of which the linear model (1) is a special case.
Hence, the approximation (3) with a vague prior
such as 7(0) = 1 may find usage among frequentist
statisticians as a means of overcoming the mathe-
matical complications typically encountered in esti-
mating the precision of BLUP estimators and, more
generally, of PEB estimators in hierarchical mod-
els. For related recent work on PEB inference, see
Laird and Louis (1987), Carlin and Gelfand (1990),
and Hill (1990).

»

3. PRIOR INFORMATION AND ANIMAL
BREEDING

We have undertaken only a cursory review of the
animal breeding literature, but we suspect that,
after generations of animal breeding experiments,
considerable knowledge has been accumulated
about the distributions of herd and sire effects.
Does the author concur in this view?

Statistical models that incorporate available prior
information will typically yield inferences about
quantities of interest that are more accurate than
those obtained from models that ignore relevant
information. Gianola and Fernando (1986) discuss
Bayesian methods for estimating breeding value
(the u vector) and genetic parameters (the 6 vec-
tor). They note that prior information is often
available and that its use can preclude anomalies
such as nonpositive definite estimated covariance
matrices and “ridiculous estimates of heritability”
(page 219). Also, they explain how the Bayesian
approach provides a logical framework for handling
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problems such as those involving sequential experi-
ments and those in which only indirect data (from
relatives) are available in predicting an individual’s
breeding value.

Robinson notes (Section 4.2) that the BLUP esti-
mates may be viewed as approximate Bayes esti-
mates with improper uniform priors on 8 and 6.
However, the results using proper prior distribu-
tions (even only mildly informative ones) that re-
flect pre-experiment knowledge can be substan-
tially different from those obtained using flat pri-
ors; for instance, see Example 2 in Kass and Steffey
(1989). For further details of Bayesian analyses
with informative priors for 8 and 6 in the linear
model (1), see Gianola and Fernando (1986),
Broemeling (1985) and the references contained
therein.

The difficulty in finding ways to incorporate prior
information has led many applied statisticians to
question the practical value of Bayesian methods.
Establishing sensible methodologies has been a goal
of continuing research by statistical scientists, cog-
nitive psychologists and econometricians. While
translating uncertainty into probability distribu-
tions can be challenging, the potential scientific
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Dr. Robinson’s paper is valuable as it shows the
links of BLUP, suggested for animal breeding ap-
plications, with methods used in other areas. An
alternative way of thinking about the models used
is in terms of an expectation and a variance for y
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rewards for doing so can be substantial. Some au-
thors have advocated generating probability distri-
butions from statements made by substantive ex-
perts as a mechanism for incorporating prior infor-
mation. For example, Kadane, Dickey, Winkler,
Smith and Peters (1980) present a method for speci-
fying a conjugate prior for (8, ¢2) in the normal
linear regression model. That procedure is based on
collecting responses from substantive experts (non-
statisticians) to questions about the predictive dis-
tribution of the response vector given values of the
predictor variables. Such a procedure may be
adaptable to the mixed effects models considered
here.

Along with Kadane (1990) we would emphasize
the need for more work on elicitation and would
add that the need is especially great when elicita-
tion is taken, in its broadest sense, to refer to the
general process of constructing probability distribu-
tions from available background information.

We look forward to future modeling efforts that
tap all sources of relevant information in order to
improve inferences in the statistical problems en-
countered in animal breeding and many other fields
of science.

that leads to a natural interpretation for prediction
in terms of regressing future observations on pre-
sent observations. I wonder why Dr. Robinson did
not use such a formulation. With regard to making

_inferences on random estimates, can Dr. Robinson

say if it is sensible to use the suggestion of most
likely unobservables to construct confidence inter-
vals for random estimates? I would also like to
know which likelihood to use when testing fixed
effects.



