352 LISP-STAT: BOOK REVIEWS

available, free-of-charge, to others. There is, in
essence, no support provided, other than an effort
by Tierney to fix bugs, and minimal on-line help.
This, of course, is a mixed blessing, but since the
quality of the software is very high, and since there
are few bugs, there seems to be little need for
support.

The book, of course, is not free, though it is
reasonably priced. I have already described all of
the chapters in the book, emphasizing that the
book is especially strong on dynamic graphics. The
book is useful as Lisp-Stat documentation, provid-
ing a tutorial and examples of using and extending
the system. The book is also a good introduction to
functional and object-oriented programming, as
used in statistics, and to Lisp.

10. CONCLUSION

Lisp-Stat is the most important, exciting and
promising development in computational and
graphical statistics in recent years. It provides a
foundation on which computational statisticians can
build a statistical system offering all types of statis-
tical and data analysis tools—from basic to ad-
vanced—to all types of users—from novices to so-
phisticates. As it stands, Lisp-Stat is not (and does
not claim to be) a statistical system that provides a
wide range of analysis tools for a wide range of
users. However, with the proper extensions, Lisp-
Stat could become the standard by which other
systems are judged. In sum, Lisp-Stat is the statis-
tical environment “for the best of us,” not “for the
rest of us”’—yet.

Comment: Two Functional Programming
Environments for Statistics — Lisp-Stat and S

David J. Lubinsky

1. GENEALOGY

There is a German saying, ‘“Tell me where you
come from and I will tell you who you are,” and
this is perhaps even more true for the two statisti-
cal environments that are the subject of this re-
view. They are both the products of many ancestors
and each reflects its heritage. Both Lisp-Stat (Lg;
the idea of this notation is that Lisp-Stat is a Lisp
system specialized for statistics) and S are descend-
ants in the line of interactive, interpretive systems,
starting with APL and Lisp; Lg also draws inspira-
tion from S, Smalltalk .and dynamic graphics
systems (Cleveland and McGill, 1988). The two
systems are both interpretive programming envi-
ronments using functional languages. They each
"have vectorized arithmetic operations and support
a wide set of statistical primitives. In addition each
has strong support for graphical display of data.

In the family of statistical and computing sys-
tems, Lg and S are very close, and as in all fami-
lies, there is a natural rivalry, but also a natural
affinity between them. S is the older brother, more
mature and more complete. Whereas Lg is faster,
incorporates many new ideas in graphics and ob-

David J.‘Lubinsky is a member of the technical staff
at AT&T Bell Laboratories, Room 25524, Craw-
fords Center Road, Holmdel, New Jersey 07733.

%Jgg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% 2

ject-oriented programming, but still has a long way
to go before it can compete with S in all areas.

They are both designed to be used for more than
canned analyses of data. Each allows users to com-
bine standard analyses in nonstandard and flexible
ways and, more importantly, to implement and
experiment on new techniques.

The rest of this section introduces each system
by presenting the same function coded in each
language and discusses the general areas of ap-
plication in which each system is stronger. The
following section is a more detailed comparison of
languages and primitives in each system. This is
followed by a comparison of performance of the
systems, and the last section discusses the their
documentation.

1.1 A Running Example

To help make the similarities and differences
more concrete, Figure 1 shows how one would im-
plement a running smoother using S and Lg. Each
function takes two required arguments, x and y,
and returns a set of smoothed values at equally
spaced points along the range of the x’s. They also
take two optional arguments, the function to be
used to find local values of the smooth, and the
number of points in the returned smooth. Two obvi-
ous examples of local smoothing functions would
be the mean (the default) and the median. These

ok

Statistical Science. IIK@IN ®

www.jstor.org

LISP-STAT: BOOK REVIEWS

353

running <- function(x,y,fun=mean,
npoints=50,fraction=0.1){
firstgte <- function(val,vec)
(1:length(vec))[vec>=val][1]

o <- order(x)
x <- x[o]

y <-ylo]

n <- length(x)
T <- range(x)

xps <- seq(r[1],r[2],length=npoints)
span <- round(fraction*npoints)
Ipx<-1

1px <- firstgte(xps[span],x)

s <- Xps

for(i in 1:npoints) {
s[i] <- fun(y[Ipx:(rpx-1)])
Ip <- max(1,i-span)
1p <- min(npoints,i+span)
Ipx <- firstgte(xps[lp],x)
1pX <- firstgte(xps[rp],x)

}

list(x=xps,y=s)

Declare the function, and its arguments.
Note that mean is a function.

Define a local function, firstgte to
find the position of the first element in
vec whichis 2 val.

Find the sort order for x, and sort x, and
reorder y. Use vectors in LS for quick
indexing.

Set n, to to the number of points.

In S, use the range function to
find the min and max, in LS use min
and max.

Let xps be a vector of npoints
evenly spaced values, along the range of
X.

Set the span based on the fraction
of the range. Let rpx, be the position of
the first x value greater than the xps at
span.

S will contain the smoothed values.
Loop over the npoints, with xps[i]
at the center of each interval. And calcu-
late the function value for the y’ s from
the left position 1px to the right posi-
tion rpx, and save in s.

Then update the pointers in the xps
vector, and find the corresponding left
and right positions in the x vector.
Return the xps and smoothed valued. In

(defun running(x y &key (fun #’mean)

(npoints 50) (fraction 0.1))

(flet ((firstgte (vec val pos)
(while (< (select vec pos) val)
 (setq pos (1+ pos)))
pos))
(let* ((o (order x))
(x (coerce (select x 0) ‘vector))
(y (coerce (select y 0) ‘vector))
(minx (min x))
(maxx (max x))
(xps (coerce (rseq minx maxx npoints)
‘vector))
(span (round (* fraction npoints)))
(Ipx 0)

(rpx (firstgte x (select xps (- span 1)) 0))

(s 0) Iprp)

(dotimes (i npoints)

(setf s (cons (apply fun
(select y (iseq Ipx (- 1px 1))) ()) 5))
(setf Ip (max O (- i span)))
(setf rp (min (- npoints 1) (+ i span)))
(setq Ipx (firstgte x (select xps Ip) Ipx))
(setq rpx (firstgte x (select xps rp) rpx))

)

(list xps (reverse s)))))

created.

LS, must first reverse the list, since we
added to the front of the list as it was

Fig. 1.

functions illustrate the general programming style
in each language and, more particularly, how func-
tions can be used as data, how local functions are
defined and how vectorized arithmetic and looping
are used. N

For those who are not familiar with Lisp, the
swarm of parentheses in the Lg version might be
dismaying, but once you get used to reading Lisp,
they are no barrier to understanding the code.
Also, many editing systems support the develop-
ment of Lisp code by automatic indenting and
parenthesis matching. Once you get past looking at
the parenthesis, you will notice that the algorithms
are represented in very similar ways.

The Lg program is longer, consisting of 710
keystrokes (only 134 of them are parentheses),
while the S version is 460 keystrokes. The fact that
there is less to read and type is not necessarily an
argument in favor of S; reading APL code confirms
this. However, many statisticians do say that they
find the S representation closer to their way of
thinking, since it is closer to standard algebraic
notation and similar (at least syntactically) to the
languages that most statisticians first learn, such
as Fortran and C.

In S, the idea was to build an interpreter for a
language specially defined for statistical computa-

Programs in S and Lg for computing running smooths.

tion. In Lg, the idea was to borrow strength from a
well-developed language and add the functions and
primitives needed for statistical and graphical com-
putation. This is the fundamental difference be-
tween the two approaches.

2. COMPARISON OF CAPABILITIES
2.1 What Is Each System Best For?

After using either system for a long time, the

. idioms suggested by the language will become the

mental constructs used for translating algorithmic
steps into computable steps. The idioms available
in each language are rich enough to allow compact
implementations of statistical ideas. But still, each
system has it strengths and weaknesses. To make
the distinctions more precise, we compare the two
systems on a number of dimensions that are impor-
tant for any system for data analysis and statistical
research.

2.2 Built-in Functions

Both environments include vectorized arithmetic,
linear algebra, distribution function primitives and
regression computations. But one of the biggest
differences between Lg and S is that S provides
many more data manipulation and statistical and

354 LISP-STAT: BOOK REVIEWS

graphical routines. These are both of the kind used
everyday, such as matching vectors, or drawing
barplots, and functions that are used less often
such as minimal spanning tree, and cluster analy-
sis.

There is no limit to the number of possible func-
tions that could be included in a statistical pro-
gramming environment, but the facilities provided
by Lg are still too sparse to allow it to be a con-
tender as a replacement for a more fully endowed
system such as S.

S has a much richer set of primitives of all kinds.
This leads to two improvements. First, the provided
primitives do not need to be rewritten and tested
from scratch, which makes it easier to program
many applications in S, and second, often the prim-
itives are implemented at the C level, so they run
faster than the equivalent code in S or Lisp. For
example, S has a function called match that returns
the position of each element of its first argument in
the second. It is easy to code match in Lg: (defun
match(x y) (mapcar # ’(lambda (v) (position v
y)) x)). But this function is comparatively slow.
Other functions which are not provided by L g would
be much more difficult to implement.

The notation and functions supplied with the
system are those that the authors thought neces-
sary for a high level statistical environment, and it
is these features that users will be most likely to
use. The notation provided in a particular language
becomes a tool for thought. After using a language
for long enough, people begin to use a subset the
primitives provided in the language in their own
thinking. So it is essential that features be pro-
vided from the start, rather than seen as possible
later additions.

In the beginning of the Lg book, there is an
acknowledgment that Lg has used many of the
ideas from S, and this is a good thing. Certainly
many of the forms, primitives and data structures
in S are generally useful in any statistical pro-
gramming environment. But, as a seasoned S pro-
grammer, I often find myself wishing that Ly was
‘even more like S.

2.2.1 Statistical Modeling. Both S and Lg pro-
vide functions for fitting regression and nonlinear
models and examining various types of diagnostic
information about the model. The 1991 version of S
also has functions for fitting many other kinds of
models (ANOVA, GLMs, generalized additive mod-
els, tree-based models and local regression models).
Lg is not as complete, but a GLM package is al-
ready available, and perhaps as the system attracts
a larger user base, more modeling routines will be
added.

Both systems return objects that describe the
model fit, rather than only printing out the results.
This is important both for implementing tech-
niques using model fitting as one stage, and for
examining the model.

2.2.2 Graphics. Lg’s unique capabilities are
most apparent in the fact that its uses a bitmapped
graphics model that supports dynamic graphics.
The graphics model requires an underlying window
system and creates a separate window for each
plot. These windows can be interacted with sepa-
rately and can be customized so that they execute
specified functions for each of a number of types of
interaction (including mouse and keyboard actions).
This allows plots to be easily linked in different
ways and dynamic displays to be programmed di-
rectly. Some of the most exciting material in the Lg
book is contained in the last chapter describing
dynamic graphics and animation applications.

In S, the graphics model is that output goes to a
plotter, a pen writing on paper. This means that S
is ideally suited for creating paper graphics and
provides many functions for creating standard and
customized plots. One measure of this is the num-
ber of conference and journal papers one sees in
which the graphics are clearly from S (they are
identified by the Helvetica font, which S uses as its
default for Postscript output). Figure 2 shows an
example of a customized plot produced with S. In
Lg, the only way to get a hard copy is a screen
dump of a window.

It would be most useful for users if these two
models could be neatly combined. One simple sug-
gestion would be for Lg to keep track of all the
commands used in creating a window’s image, and
then, when printing the window, instead of just

Simple }&)g Ralzfﬁ/L)
30,000 [) 0.8
l000 \ O S — 0.5
Sort
1000 | @&——0O 0.3
3,000 &——0 028
Boor.;o'm ______ o] 0.24
] 34
1000 34
3000 35
While loo%a&))
3000 1
10,000 31
While loom

10,000
Smooth (size)
100

Lk

IO
Do Dov= hisoy

1,000
10,000
Smooth (npoimﬁg

100
200

o0

025 05 1 2 5 10 20 50 100
Execution times in seconds

Fic. 2. Comparison of S and Lisp-Stat (L), on a number of
tasks. The dotted lines show cases where Lg is quicker and solid
lines where S is quicker. The X-axis is on a log scale, so differ-
ences are proportional to the logs of the ratios in execution speed.
The ratios of execution times are shown to the right.

LISP-STAT: BOOK REVIEWS 355

copying the bitmap, Postscript equivalents of the
graphics commands could be generated.

Another limitation of the Lg graphics is that
only one font is provided. This is surprising, given
the range of fonts supported in both the Macintosh
and X environments. Having only size of text lim-
its the amount and type of textual information that
can be displayed by Lg.

Since the chief advantage of Lg is that it uses a
pixmap rather than a plotter model, it is also sur-
prising that it lacks many basic primitives for han-
dling pixmaps. The only feature provided by Lg is
to copy a pixmap represented by an integer array of
0’s and 1’s, onto the screen. Some of the features
that are missing are: functions for copying pixmaps
in compressed format from memory onto the screen,
and from the screen to memory, moving regions of
the screen in primitive operations and dealing with
color pixmaps. Implementing any of these opera-
tions at the Lisp level would be prohibitively slow
(requiring nested loops, to loop over the values of
pixels), so this is a defect that would not be easy for
the user to remedy. Also, the X version of Ly does
not implement backing store for windows, so that,
when window are uncovered, they must be redrawn
which can be time consuming for complex images.

2.3 Data Manipulation

Data are the stuff of statistics and, to a large
extent, the ease with which data can be structured
and manipulated will determine the usefulness of a
statistical system. In the following sections, we
discuss a number of issues related to representation
and manipulation of data.

2.3.1 Vectors and Lists. Lg has two ways of
representing sequences of values, lists in which
each element points to the next one, so only sequen-
tial access is possible, and vectors, where elements
are adjacent and of constant size, so arbitrary ac-
cess is possible. It is much quicker to access ran-
dom elements of a vector than of a list, but it is not
clear which functions work only on lists and not on
vectors. I would have appreciated a bit more advice
on when to use which. Many of the built-in func-
tions demand list arguments and some can also
work on vectors, but, except for the functions ex-
plicitly for dealing with vectors, none of the func-
tions demand vectors. So, good advice would be:
Unless you are accessing elements randomly, use
lists. And when accessing list elements sequen-
tially use dolist or mapcar. It would be nice, though,
if all functions that use sequences could accept
vectors or lists.

S also has vectors and lists, but the meaning is
somewhat different. In S, vectors contain elements

of one of the basic data types, while lists are recur-
sive data structures that may have anything as
elements. In Lg, both lists and vectors can have
arbitrary valued elements.

2.3.2 Type Coercion. S has only three types for
representing data (other types represent functions,
expressions and so on), logical, numeric and char-
acter, and has automatic coercion among them
whenever it is sensible. This can be very useful,
and, since S does not do conversions that lose accu-
racy, one is usually not harmed by them. The
conversion of booleans to 0’s and 1’s is particularly
useful.

Lg has an extra data type, character (for single
characters) and it also distinguishes between
fixnums for integers and flonums for reals. Lg does
not specifically have a Boolean type, but in condi-
tionals, any value except NIL is treated as true.

Since Lg vectors and lists can have anything in
each element, there is not as much need for coer-
cion, as in S, where each element of a vector must
be of the same type.

2.3.3 Indexing. Indexing in S is much richer
than in Lg and gives programming in S a distinct
and pleasing flavor. Data objects acquire a plastic-
ity that allows them to be manipulated in surpris-
ing and elegant ways. S has four indexing modes.
A set of positive integers selects the indicated ele-
ments. A set of negative integers selects all but the
elements indicated by the absolute values of the
indices. A vector of logical values selects only those
elements corresponding to TRUE values in the
index vector, and a set of strings selects those
elements whose names correspond to the string
values. This last feature allows S arrays to have
the flavor of associative arrays.

In Lg, only the first indexing mode is provided.
Also, when indexing arrays in S, leaving out the
values for a dimension implies selecting all ele-
ments along that dimension. In Lg, all dimensions
must be specified.

2.4 Missing Values

In S, missing values are represented by a special
value and are propagated by arithmetic operations.
There is no mention at all of missing values in Lg.
The convention could be adopted by users, to repre-
sent missing values by say NIL, but applying the
arithmetic operators to any nonnumeric value
causes an error. So, except for rewriting all the
arithmetic functions, it is not possible to propagate
missing values in Lg.

A related issue is how the two systems deal with
arguments that are out of the domain of a function
(e.g., division by zero). In S this returns an NA

356 LISP-STAT: BOOK REVIEWS

(missing value), whereas in Lg it is an error. There
are arguments for both approaches, but the S ap-
proach is more flexible. In S, for example, it is
convenient that taking the mean of a zero length
vector returns NA. Whereas in Lg, this would re-
sult in an error, so taking a mean in a program
would have to be guarded by a conditional.

2.5 Pointers

Both S and Lg are functional programming envi-
ronments. Each system is deeply influenced by the
idea of computer programming as a set of func-
tional transformations of data. In fact, even though
Lg is based on Lisp, the grandfather of functional
programming languages, the designers of S have
taken the idea even further. Global assignments in
S are not encouraged, and thanks to its design not
really needed. And, more dramatically, S has no
pointers, so the only way an object can be modified
is when its name appears in a expression on the left
hand side of an assignment.

In Lisp, on the other hand, assignment only copies
a scalar or a pointer value. So it is possible (and
often the cause of hard-to-find bugs) to have two
names sharing the same structure, and by modify-
ing one value, the other is modified as well. This
allows for more efficient programming in many
cases, especially with deeply nested data struc-
tures, and structures which often change size. This
is also important for implementing object-oriented
models of low level objects such as screen windows
which need to be rapidly updated.

2.6 Delayed Execution,

To motivate this section we begin with two short
programs listed in Table 1. Each of these little
programs implements an increment operation, but
they do it in very different ways. In Lisp, incr is a
macro, which works by textual substitution, so a
call like (incr x) is identical to (setf x (1+x)).
But in S, incr(x) is an ordinary function call. Two
features of S allow this to work. First, S does not
evaluate the arguments of functions till they are
needed (this is known as lazy evaluation), and
the function substitute replaces each occurrence of
the argument with the expression in the call (note,

TaBLE 1
Increment operator program

iner < function (a)
eval(substitute(a < a + 1),
local = sys.parent())

(defmacro incr(a)
‘ (setf,a (1 +, a)))

the expression, not the value). Then eval evaluates
the new expression in the environment of the caller.
This is more complex than the Lisp version, but
also much more flexible. Lazy evaluation has many
applications, one which is to label plots with the
expressions used in creating them.

2.7 Data Structuring Facilities

The title of N. Wirth’s (1976) famous book is
Data Structures + Algorithms = Programs. In sta-
tistical computing, we too often forget the data
structures and think only about the algorithms.
This leads to opaque data representations, and pro-
grams that are hard to understand or modify and
re-use.

One contribution of both S and Lg is that they
provide us with much greater flexibility in building
data structures than is available in the more tradi-
tional numeric computing languages such as For-
tran and APL.

For example, a binary sort tree would be repre-
sented in Fortran as an array with one row for each
node, and three columns, the first containing the
value, and the second and third the row index of
the left and right children.

In Lg and S, you might represent the tree, by
creating an object which has three slots, value,
left and right. In Lg, this object might be an
object in the class system (or a simple list), in S,
you could also implement a class, but would be
more likely to use a list. Then, the value slot can
contain any value that can be ordered and is not
restricted to an integer. Also, the routines to insert
and delete nodes can be written much more clearly,
since they deal with node objects directly rather
than the matrix.

One disadvantage with S is that you have to
rebuild the whole tree every time you insert a node,
whereas in Lisp you can (for the sake of efficiency)
set the value of the appropriate leaf, without the

-added expense of recreating the tree. So, if you

wanted to create a tree containing many nodes you
would be forced to use the Fortran approach in S.
This comment does not negate in any way S’s
facility for representing data structures. Rather, it
is a warning that these facilities are only of use for
data structures that are not updated too often.

2.8 Object-Oriented Facilities

Lg and the 1991 release of S both include facili-
ties for object-oriented programming. In Lg, this is
at the very heart of the design. The subtitle of the
Lg book is “An Object-Oriented Environment for
Statistical Computing and Dynamic Graphics.” In
S, the object-oriented facilities have only been added
recently.

LISP-STAT: BOOK REVIEWS 357

In S, any object may be given a class attribute
that lists the set of classes, which the object inher-
its from. If, for example, an object named a has
class point, the function call describe(a) will be
translated into a call to the function describe.
point (a). The message dispatching facility is built
directly on S objects. In S, the class system is
currently used mainly in model objects.

The Lg object-oriented system is more formal, in
that new objects can only be created by sending a
:new message to an already existing object. Each
class is represented by a special object called a
prototype from which new objects of the class can
be created. Prototypes can inherit from other proto-
types and contain slots for values particular to the
class. The inheritance system of Lg is particularly
useful for the graphics prototypes, so that graphics
windows can inherit appropriate methods, for com-
mon functions. For example, all graphics windows
can inherit a close - window method from the basic
window - prototype.

The ability of object-oriented systems to encapsu-
late data and methods for classes of objects is only
now becoming a reality in statistical computing
systems but will be increasingly important, and
both systems allow researchers to experiment with
these important ideas.

3. PROGRAMMING ENVIRONMENT

The usefulness of a system is determined, not
only by the language and primitives it provides,
but also by the environment it provides for develop-
ing and testing programs. In the following sections,
we discuss some of the factors relating to this
environment.

3.1 Debugging

Debugging in S and Lg are similar. Since they
are both interpreters, the execution stack at the

time the error occurred is available to be examined.

In Lg, the execution is suspended, in the environ-
ment in which the error occurred. However, there
" is no way of examining the values of local variables
other than those in the function that contained the
error.

S allows any action to be defined at the time of
an error, and the default action is to dump a copy of
all of the frames (values of local variables) in the
stack at the time of the error, and this dump can be
examined using a special debugger function, that
allows any of the local variables to be examined.

The debugger in Lg is primitive compared to
what is available in more professional Lisps. If Lg
is moved to Common Lisp, one of the benefits will
be the improved debugging facilities in professional

Lisp systems. This is part of the tradeoff in decid-
ing to use a public domain Lisp system.

Also, both systems provide facilities for tracing
functions and for setting break-points at which
variable values can be examined.

3.2 Persistent Objects

Another difference in philosophy between S and
Lg is the approach to persistent objects. S shares
with APL the idea that objects assigned at the top
level become permanent and can be accessed dur-
ing later sessions. S extends APL’s single workspace
concept by allowing multiple directories in a search
path. This is a useful for organizing functions and
data objects by projects.

In Lg, plain text files describing the functions
and data in Lisp syntax are loaded at the beginning
of each session. This can be automated somewhat
by putting the names of the files to be loaded in a
file that is automatically loaded at the start of the
session. In fact, each time Lg starts, it loads a
number of files containing the functions that ex-
tend Lisp. Variables that are created during the
session can be explicitly saved in a text format and
loaded again at the next session.

The S approach takes less organization on the
part of the user and also prevents important values
from being lost by mistake, but it can waste space
by saving unneeded objects.

3.3 Interfaces

The UNIX operating system is designed to allow
complex manipulations to be constructed from sim-
ple tools, and it provides many such tools. So, it is
important that systems running under UNIX have
a smooth integration with the operating system
and are able to take advantage of these tools. With
S, it is easy to use the tools provided by the operat-
ing system and get their results. A similar though
somewhat less convenient facility is also provided
in Lg.

Also, since much statistical/numeric code al-
ready exists in Fortran and C, it is important to
be able to call new routines from within the sys-
tem. Lg and S share similar methods for loading
and calling compiled functions from within the
interpreter.

4. TIMING COMPARISONS

One of the keys to usefulness is execution speed,
and, as quicker computers become available, more
demanding applications are invented. We will al-
ways tax our computers to their fullest, and in any
comparison of systems it is the timing comparison

358 LISP-STAT: BOOK REVIEWS

that get most attention. The rest of this section is a
comparison of the execution speed of a number of
tasks, but it should be pointed out that the results
hold only for the programs discussed on a particu-
lar computer, with the particular versions of each
system.

4.1 Description of Tasks

Table 2 describes the code used in the timing
tests. We also used the running smooth code shown
in Figure 1 in two of the tests.

Figure 2 summarizes the results of the compari-
son. All reported times are the sum of the system
time and the user time reported by UNIX, on a
SparcStation 1+ with 16 M of memory. These
times were within one second of the elapsed time
for all comparisons shown although it is possible to
get both systems into states, where swapping domi-
nates the computation and the system times would
be much less than elapsed time. In all the compar-
isons, I used the December 1989 AT&T version of S
and version 2.1 of Lg.

In order to give the best comparison, I set the
alloc size for Lg to 20,000 (the size of allocated
blocks). Tuning the memory parameters of S did
not seem to affect performance much.

4.2 Evaluation of Results

For the simple, vector-oriented test, sort, S is
three to four times quicker. Executing an empty
loop over a vector, S is slightly faster. When the

vector has 100,000 elements, S is almost twice as
fast, since S vectors have much less overhead, and
hence require less swapping.

For applications involving any computations at
the interpreter level, the S interpreter is much
slower than the Lisp interpreter. For the simple
bootstrap example, Lg is more than 3 times faster.
The cost of executing the while loop grows linearly
for Lg, but S slows down, so it takes more than 30
times longer to perform 10,000 iterations. The sec-
ond while loop example gets much better perform-
ance since S cleans up storage at the end of loops,
so many, shorter loops are much quicker. This is a
strange quirk of the S garbage collection system,
but it emphasizes the point that, when using inter-
pretive systems, memory management is the key to
efficiency, and whatever systém one uses, one has
to be careful about how memory is used.

For the running smooth examples, the first ex-
ample shows how the performance changes as the
size of the vectors to be smoothed increases. S and
Lg approach parity for vectors of 10,000 elements.
In the second example, as we increase the number
of points at which the smooth is evaluated, the
advantage of Lg increases.

4.3 Why S Is Slower

Since S stores its functions in a pre-parsed form,
the greater syntactic complexity of the S language
is no hindrance. One reason that S is slower is that
its memory management is inefficient. Every time

TaABLE 2
Code used in the timing tests

Simple loop Do nothing in a loop that executes n times.
Lg (defun 1(n) (dotimes (i n)))
S 1 < function(n) for (iin 1:n) {}
Sort Create a vector of random uniforms of length n and sort it.
Lg (sort (uniform-rand m) #’ <)
S sort(runif(n))
Bootstrap Find the medians of n samples of 100 uniform numbers.
Lg . (defun f(n)
(mapscar #’(lambda (x) (median (uniform-rand 100)))
(iseq n)))
S f < function(n) {
a<+< ln
for(i in seq(a)) ali] < median(runif(100))
a
}
While loop Execute a while® loop with a simple addition, n times.
Lg . (defun m(n) ((i 0)) (while (< in) (setqi (1 + 1)))))
S a)m « function(n) {i < 1; while@ <=n)i<i+ 1}

b)m2 « function(n) {i < —1; while@ <= n/100) {m1();i < i+ 1}}
ml « function() {i < 1; while(i <= 100)i < i+ 1}

% While is not a part of the Lg syntax, but is defined by the following macro: (defmacro while(test &rest body) ¢ (do () ((not

,test)) ,@body)).

LISP-STAT: BOOK REVIEWS 359

an object is assigned, a new copy is created. Besides
the overhead in creating the new copy, this also
increases the amount of space S uses, and paging
activity soon follows. And heavy paging kills per-
formance. In contrast, everything in Lisp is either
an atom or a pointer, so all assignments are quick.
In S, even indexed assignment, which should not
demand that the entire object be copied, does cause
the size to grow as if a copy had been made.

The second, related, problem is that S does not
have an efficient garbage collection mechanism.
This also causes the S process to grow, sometimes
without bound. This is the reason that the ratios
for the While (@) and Smooth (npoints) examples
increase as the number of iterations increases.

Although S is generally slower, “slow” is only
relative to the application and for most applica-
tions; there is no difference between a response of a
third of a second and a second. S’s popularity is the
best proof that the speed that really matters is the
speed in which the overall problem gets done, not
compute speed per se. :

Execution speed is particularly important thoug
for dynamic graphics, where substantial amounts
of computing must be done within the integration
time of the eye (about 1/20 of a second) to create
the illusion of continuous motion. On current hard-
ware, S would not be fast enough to support such
computations, unless the primitives were written
in a compiled language.

Both S and Lg are interpreters, so they are fun-
damentally slower than compiled languages, but
the convenience is worth it in all but the most
demanding applications.

5. CUSTOMER PROGRAMS

Neither S nor Lg is yet at the stage where it can
be called “production software”’; both systems have
bugs of different types, and workarounds have to be
invented. But both systems are so powerful that
there is a strong temptation to use them to develop
programs to be used by others.

This is an increasingly important area since, as
computing facilities become more available and sta-
tistical expertise more needed, statisticians, will
write more and more programs to be used by
others.

5.1 Interaction with the User

An important part of any program written for
nonexpert user is the user interface. The emphasis
in S is on writing code to be used only by the
author, and only a primitive text menu facility is
provided. In Lg, there are a number of functions
that take advantage of the bit-mapped display and

mouse to allow a pleasant user interface to be
created using button, menus and dialog screens.

5.2 Error Trapping

Both systems provide error trapping facilities to
allow a function to continue running after an error
has occurred. But in both systems the facilities
provided are basic. There is no way to tell exactly
where the error occurred or what the error was. So
a user interrupt would be treated in the same way
as an execution error.

5.3 Reading in Data

One common step in a system designed for statis-
tical analysis is to read in data, usually stored in
text files, to be used in the analysis. Here, too, both
systems provide only basic support, with functions
for reading in data stored in columns. UNIX tools,
like AWK, can be used to supplement these facili-
ties, but if the data input has to be very robust, this
will involve writing a long AWK, program, and it
would be more pleasant if all of the programming
could be in a single language.

6. DOCUMENTATION

The final dimension on which I will compare the
two systems is the material provided for learning to
use them. Each system is documented by a book
that serves both as introduction and reference. This
documentation is augmented by online help de-
scribing the provided functions. This help informa-
tion is also given in printed form as the second half
of the S book (Becker, Chambers and Wilks, 1988).
Having it there is useful, both since a book is more
portable than a computer and because books are
still easier to read. The Lg online descriptions of
the functions are too terse and do not contain any
examples or references to related functions.

Both S and Lg suffer from requiring the user to

_ invest a lot of time and effort before reaching a

level of competence adequate even for simple data
analysis. One of the biggest problems is that each
of them have so many different functions, some
with similar purposes, and it is often not obvious
which of the choices is the best. The help* and
apropos functions in Lg and the help function and
the summary section at the end of the S book are
useful, but still one of the most frequently asked
questions to a local S expert is “I think there is a
function to ..., but I can’t find it in the manual.”
There are 836 different functions and keywords
that have help information in Lg. In S there are
546 help files in the main help directory, and about
as many in the statistics library. In both systems,
these functions are all in a single, flat namespace.

360 LISP-STAT: BOOK REVIEWS

The usefulness of the Lg book would be greatly
increased by including more complete descriptions
of each function, organized either alphabetically as
in the S book or by topic as is done in the descrip-
tion of the Common Lisp language (Steele, 1984).

I end with some minor criticisms of the Lg book.

First, there is disconcerting ambiguity through-
out the book about which version of Lisp underlies
Lg. It would have been better to commit to present-
ing Lg as it is implemented in XLISP, and then
if/when it is released for Common Lisp, this could
be accompanied by a document describing the dif-
ferences. It is confusing that some ideas are pre-
sented generally when only one case applies to the
current implementation of Lg. Examples of this are
the discussion of lexical and dynamic scoping, and
tail recursion, neither of which are relevant to Lg.

Second, the coverage of Lisp is varied. For exam-
ple, though macros are mentioned obliquely in the
text, their use is never discussed. This might be
have been a concious choice since Abelson and
Sussman (1985) deprecate the use of macros in
their description of Lisp. But macros play an impor-
tant part in Lisp programming and should not have
been ignored.

Third, the index is not complete (for example, no
entry on eval), but this applies to both books.

Fourth, there is too much Lisp code. I am some-
one who has a high tolerance for reading code and

Rejoindér

Luke Tierney

I would like to thank the reviewers for their
comments and for their efforts in working through
*the book and the software, and I would like thank
the editor for this opportunity to comment briefly
on a few of the issues raised in the reviews.

FUNCTIONALITY AND EXTENSIBILITY

Several of the reviews point out that the basic
Lisp-Stat system does not .include a wide range of

Luke Tierney is Professor, School of Statistics, Uni-
versity of Minnesota, Minneapolis, Minnesota 55455.

loves nothing better than wallowing around in piles
of parentheses, but the density of Lisp code was too
much even for me in some of the sections. Much
better to my mind would have been to supply all of
the Lisp code with the Lg system, and refer to
relevant new ideas as they are introduced. This is
worst in the last chapter, discussing dynamic
graphics examples. But also in some of the earlier
chapters, there is too much reliance on presenting
code. Sometimes an entire function is presented
many times as its evolution is discussed. Again, it
would have been better just to present the relevant
changes to the function in each new version.

7. CONCLUSION

By providing a broad range of statistical and
mathematical primitives and an interpretive lan-
guage, combined with good graphical facilities, to-
gether, these two systems define the state of the art
in computing environments for statisticians. Each
system is better suited to certain applications, and
for data analysis and research, statisticians can
only benefit by acquainting themselves with both.

ACKNOWLEDGMENTS

Thanks are due to John Chambers, Rick Becker,
Allan Wilks and Luke Tierney who all provided me
with valuable comments on this review.

specialized analyses. This is quite deliberate. A
major advantage of an extensible system is that it
allows experts in using and developing a particular
methodology to provide tools for implementing the
methodology. If the Lisp-Stat system is found to be
useful then, over time, this should lead to a wider
set of better tools than can be provided by a single
implementor or small group of implementors.

A comparison with the evolution of the S system
may be helpful. The basic S system as described in
Becker, Chambers and Wilks (1988) also does not
directly support a side range of different analyses.
But few sites now provide only the basic S system.
Most augment it with the facilities of S-Plus, a
variety of locally written code, selections of code

