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Probabilistic Analysis of Packing and Related

Partitioning Problems

E. G. Coffman, Jr., D. S. Johnson, G. S. Lueker and P. W. Shor

Abstract. In the last 10 years, there have been major advances in the
average-case analysis of bin packing, scheduling and similar partitioning
problems in one and two dimensions. These problems are drawn from
important applications throughout industry, often under the name of
stock cutting. This article briefly surveys many of the basic results, as
well as the probabilistic methods used to obtain them. The impact of the
research discussed here has been twofold. First, analysis has shown that
heuristic solutions often perform extremely well on average and hence
can be recommended in practice, even though worst-case behavior can
be quite poor. Second, the techniques of applied probability that have
developed for the analysis of bin packing have found application in
completely different arenas, such as statistics and stochastic models.
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1. INTRODUCTION

1.1 Problems

The problems studied here all involve the parti-
tioning of a set of positive numbers into a collection
of subsets satisfying a sum constraint. The following
two problems are among the most fundamental. They
have wide-ranging applications throughout computer
science and operations research (Coffman, Garey and
Johnson, 1984; Coffman and Lueker, 1991; and Dyck-
hoff, 1990).

Bin Packing (BP). Given ¢>0 and a set S=
{X1,...,X,} with 0<X; <e¢, 1 <i < n, partition S
into a minimum number of subsets such that the sum
of the X/s in each subset is no more than c.

The X;’s are usually called items or pieces and are
thought of as being packed into bins B;, By, . . ., each
with capacity c; the items packed in a bin constitute
one of the subsets in a solution to the optimization
problem.

Multiprocessor Scheduling (MS). Given an integer
m =1 and a set S ={X,, ..., X}, partition S into
m subsets such that among all such partitions, the
maximum subset sum is minimized.
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Note that the MS problem is complementary to the
BP problem in that the objective function and the
given parameter are interchanged. The items are now
called tasks or jobs, with running times or durations
instead of sizes. The bins become processors Py, . . .,
P, and the partition becomes a schedule of S on m
processors that minimizes the makespan c, that is, the
completion time of a latest finishing task. Because of
the sequential nature of most heuristics, it is conve-
nient to assume that the set to be partitioned is given
as alist L, = (X3, . .., X,) from which items are packed
or scheduled one by one. If H denotes an MS heuristic,
then H(L,, m) denotes the makespan of the m-processor
schedule generated by H for the tasks in L,. In the BP
problem the bin capacity is only a scale factor, so we
take ¢ = 1 without loss of generality. Thus, if H de-
notes a BP heuristic, then H(L,) denotes the number
of unit capacity bins in which H packs the items of L.

Merely deciding whether a list of numbers can be
partitioned into two subsets with equal sums is NP-
complete, so, as one would expect, both the BP and the
MS problems are NP-complete. Thus, one is unlikely to
find an algorithm that will solve these problems exactly
and efficiently [see Garey and Johnson (1983) for a
comprehensive treatment of NP-completeness and its
implications]. For this reason, a large literature has
built up over the past 20 years on the design and
analysis of heuristic or approximation algorithms.
Such algorithms are designed to generate optimal or
nearly optimal solutions for most problem instances.
Quantifying this last statement is the goal of analysis.
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1.2 Analysis

Early research on BP, MS and related problems con-
centrated on combinatorial, worst-case results, as re-
flected in the survey by Coffman, Garey and Johnson,
(1984). For example, a scheduling heuristic H would be
assessed by determining for each m aleast upper bound
over all L, and n on the ratio H(L,, m)/OPT(L,, m),
where OPT stands for an optimal algorithm; that is,
OPT(L,, m) denotes the makespan of a solution to the
MS problem for the problem instance (L,, m). Similarly,
the ratios H(L,)/OPT(L,) were bounded for BP heuris-
tics H. Such results are inherently pessimistic, so prob-
ability models were introduced in order to learn more
about the probable or average-case behavior of heuris-
tics.

Probabilistic analysis began about 10 years ago and
gained considerable momentum when some striking
new results were developed a few years later. In the
standard probability model, the X;’s are taken as inde-
pendent samples of a random variable X with a given
distribution F(x). The goal is then an estimate of distri-
butions such as P[H(L,) < x], or what is sometimes
easier to obtain, expected values such as E[H(L,, m)],
where the expectations are over all n-item samples
L,=(X,..., X

Typically, exact analysis of probability models is
quite difficult, especially for the more efficient algo-
rithms, so asymptotic techniques have been used.
These techniques estimate behavior for large problem
instances, that is, for large n. Also, the estimates often
take the form of expressions with terms that are precise
only within unspecified multiplicative constants. For
example, let F(x) be the uniform distribution on [0, 1].
Then as illustrated later, there are BP heuristics H for
which it has been proved that E[H(L,)] = n/2 +
©O(«/n). Here, the O(-) notation is simply a relaxation of
the concept “is proportional to.” Precisely, f(r)=
©®(g(n)) means that there exist constants a, >0 such
that for all n large enough,

ag(n) < fn) < Bgln).

If we only know the existence of 8> 0 such that the
right-hand inequality is satisfied for all n large enough,
then we write the familiar f(n) = O(g(n)). A similar
restriction to o and the left-hand inequality is denoted
fin) = Q(g(n)).

We emphasize that usually very little is known about
the multiplicative constants hidden in the ©(-) terms.
One can almost always find some bounds for these
constants, but in most cases there is reason to believe
that the bounds are very crude.

In the remainder of this section, we present a number
of fundamental algorithms together with a sampling
of results that measure the quality of the packings or
schedules produced.

1.3 BP Algorithms

We begin by describing three algorithms that pack
the items in the sequence Xi, . .., X,. An item is
packed when it is encountered; once packed, it is not
moved thereafter. The algorithms are said to be on-line
because, for each i, 1 < i < n, the rule that decides
where X; is packed is independent of the number and
sizes of the remaining items X4, . . ., X,. All three
algorithms begin by packing X; into B;.

The simplest of the three algorithms is next fit (NF).
In packing X;, i = 2, NF first checks the highest in-
dexed, nonempty bin, say Bj, j = 1. X; is packed in B;
if it fits, that is, if X; plus the sum of the items already
packed in B; is at most 1. Otherwise, X; is packed into
Bj.1, which then becomes the new highest-indexed,
nonempty bin. _

The two algorithms, first fit (FF) and best fit (BF),
improve on NF by checking all nonempty bins before
starting a new bin; that is, FF and BF pack an item
X; into an empty bin if and only if X; does not fit into
any nonempty bin. FF packs X;, i = 2 into the lowest
indexed nonempty bin, if any, in which X; fits, and BF
packs X; into a nonempty bin, if any, in which X; fits
best, that is, with the least unused capacity left over.
Ties are resolved by BF in favor of lower indexed bins.

Improved, off-line versions of these algorithms are
obtained by first sorting the X;’s into decreasing order;
the corresponding next fit decreasing (NFD), first fit
decreasing (FFD) and best fit decreasing (BFD) algo-
rithms are simply NF, FF and BF applied to the list
(Xw, . .., Xq), where X, denotes the ith smallest item
in Ly,.

Table 1 summarizes a number of the basic results
that have been derived for the above algorithms under
the assumption X ~ U(0, 1); that is, F(x) is the uniform
distribution on [0, 1]. The performance metric shown is
the expected wasted space,

E[WH(L,)] = E[H(L,) — a(L,)]
(1) n
= E[H(L,)] — >

where o(L,) denotes the sum of the item sizes in L,.

TaBLE 1
Analyses of bin packing algorithms

Assumption: X ~ U(0,1)
Next fit (NF): E[W™F(L,)] ~n/6, Coffman et al. (1980)
First fit (FF): E[W'F(L,)] = ®(n*?), Shor (1986) and Coffman et al.
(1991)
Best fit (BF): E[W?F(L,)] = @(Jn log¥‘n), Shor (1986)
Next fit decreasing (NFD): E{W"FO(L,)] = (.145 - - -)n, Hofri and
Kambhi (1986) and Csirik et al. (1986)
First fit decreasing (FFD), best fit decreasing (BFD), and optimal
(OPT): E[WH(L,)] = ©(<n); for H = FFD (Bentley et al., 1984),
BFD, or OPT (Leuker, 1982)
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Note that FF and BF and their counterparts FFD and
BFD are all asymptotically optimal in the sense that
the ratio of expected wasted space E[WZ] to the ex-
pected occupied space Elo(L,)] = n/2 tends to 0 as
n —~oo, This is in sharp contrast to worst-case bounds,
which show that, for infinitely many n >0, WH(L,)/
o(L,) can be as large as 7/10 for H = FF or BF and as
large as 2/9 for H = FFD or BFD (Johnson et al,
1974).

The shortcomings of the ®(-) results are apparent,
because the average-case results do not distinguish
between FFD, BFD and OPT. On the other hand, the
average-case results do show that for all n sufficiently
large, E[FF(L,)] > E[BF(L,)]; a comparable distinction
does not appear in the worst-case results.

1.4 MS Algorithms

We describe three algorithms. The simplest is the
on-line list scheduling (LS) algorithm, which schedules
the tasks in the given sequence X, . . ., X, on the
processors Py, . . ., P,, with X; starting on P;. LS
schedules X;,i = 2, on that processor having the small-
est workload in the schedule for X, . .., X;—;, with
ties broken in favor of lower indexed processors. By
the workload of a processor, we mean the total duration
of the tasks already scheduled on that processor. As
before, LS can be improved by first sorting L, into
decreasing order. LS along with the initial sorting is
called the largest processing time (LPT) algorithm.

The third MS heuristic was originally proposed for
a somewhat different optimization problem: with the
instances (L., m) the same as in the MS problem, the
objective of the set-partitioning (SP) problem is to
find a schedule that minimizes the difference in the
maximum and minimum processor workloads. Clearly,
one expects a good heuristic for SP to be a good
heuristic for MS; indeed, the two problems are obvi-
ously identical for m = 2. The heuristic described be-
low is a set-differencing method (Karmarkar and Karp,
1982). It can be extended to all m = 2, but we confine
ourselves to the case m = 2, because it is easier to
describe and analyze. )

" Two tasks X and Y in list L are said to be differenced
in L when a new list L’ is formed from L by replacing
X and Y with a task having duration |X — Y|. The
largest first differencing (LFD) heuristic applied to
L, =LY for m = 2 begins by differencing the largest
two tasks in LY to form L{?. Then the largest two
tasks are differenced in L{? to form L. This procedure
continues until a list LY of one task remains. LFD
defines a schedule for L, by requiring that the tasks
differenced in L¥, 0 <i <n — 1, be scheduled on
different processors and by requiring that the final
processor workloads differ by the duration of the task
in L%, This schedule is easily developed by working
backward through the sequence of differencing opera-
tions. First, the task in LY is put on one or the other

of the two processors. Suppose the schedule for L,
2 < i < n, has been formed, and let X and Y be the
tasks differenced in L{~. Then the schedule for L~V
is formed from the schedule for LY by removing a task
of duration |X — Y| and then scheduling X and Y on
different processors so as to preserve the processor
workload difference, that is, the duration of the task
in L,

In analogy with (1), typical illustrations of probabilis-
tic results can be found in the analysis of the processor
idle time averaged over the m processors,

nm m .

We assume m = 2, so that A#(L,, 2) is simply half the
difference between the two processor finishing times in
the schedule produced by H. A satisfactory analysis
of LFD remains an open problem, but Karmarkar and
Karp (1982) have studied a randomized, more easily
analyzed modification of LFD that we denote LFD*.
Results for LS, LPT and LFD* with X ~ U(0,1) are
shown in Table 2. In the order given, the algorithms
are increasingly more complicated and increasingly
more difficult to analyze, but they yield schedules that
are increasingly more efficient for large n.

2. ANALYTICAL TECHNIQUES

We describe and illustrate below a number of the
more important techniques that have been successfully
applied to the analysis of BP and MS problems. A more
extensive discussion appears in Coffman and Lueker
(1991).

2.1 Markov Chains

For the simpler BP and MS heuristics, it is some-
times possible to formulate a tractable Markov chain
that represents the element-by-element development of
partitions. A state of the Markov chain must represent
block sums in a suitable way; given the state space,

" the transition function is defined by the heuristic. Re-

sults for general n are obtained by a transient analysis,
whereas asymptotics for large n are obtained by a
steady state analysis.

To illustrate ideas, consider the average-case analy-
sis of LS on m = 2 processors, and assume that F(x)
is the uniform distribution on [0, 1]. Define V; as the
(positive) difference between the processor finishing

TABLE 2
Analysis of makespan scheduling algorithms

List scheduling: E[AS(L,,2)] = 1/6, Feller (1971)
Largest processing time: E[AL*"(L,,2)] < e/(2(n+1)), Coffman,
Frederickson and Lueker (1984)
Modified largest difference first: There exists a c> 0 such that, with
a probability that tends to 1 as n = oo, ALFP*(L,,2) = O(n—°"e"),
Karmarkar and Karp (1982)
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times after the first i tasks have been scheduled. The
following recurrence is easily verified:

_JIViai—Xi|, 1=<i=n,
V’_{O, i=0.

Since the X; are ii.d. random variables, {Vi};i»o is a
Markov chain. A routine analysis shows that the den-
sity for V; is given by fix) = 2(1 — x), for all i >2
(Feller, 1971). Then we obtain the result cited in Sec-
tion 1, namely, E[AS(L,,2)] = E[V,)/2 = 1/6. Since
OPT(L,, 2) = 6(L,)/2 and LS(L,, 2) = [V, + o(L,))/2, we
also have the relative performance bound

E[LSL,,2)] _ EVal _ .2
E[OPT(L,,2)] ~ = Elo(Lx)] 3n’

As another example, {NF(L,),l,}.-1 is a bivariate Mar-
kov chain, where [, is the level, that is, sum of item
sizes, in the last bin of an NF packing of L,. An
analysis of this chain for X ~ U(0,1) shows that
E[WNE(L,)] = n/6 + Y5, n = 2 (Hofri, 1984), thus refin-
ing the asymptotic result cited in Section 1. Indeed,
an explicit expression for the distribution of NF(L,)
has been derived in Hofri (1984).

Unfortunately, Markov chain approaches seem to
be limited to the relatively simplistic, less efficient
heuristics; the state spaces of Markov chains for other
heuristics like FF and BF simply become too large and
unwieldy.

2.2 Bounds

The immediate advantage of bounds is that they
lead to a tractable analysis. The obvious sacrifice is
that they provide only partial information. However,
this information is often sufficient to choose between
alternative heuristics. For example, the results cited
in Section 1 for FF, BF, FFD and BFD were all ob-
tained by bounding techniques, yet they show that for
all n sufficiently large, we have E[FF(L,)] > E[BF(L,)] >
E[H(L,)], where H stands for either FFD or BFD. As
illustrated below, bounding techniques have appeared
in two basic forms.

Bounding the Objective Function. In analyzing the
BP heuristic H, it may be possible to find a function
g(L,) such that g(L,) = H(L,) for all L, and such that
E[g(L,)] is easily calculated. Then we have the average-
case bound E[H(L,)] < E[g(L,)]. A similar approach
applies to the analysis of MS heuristics.

As a concrete example, we consider the LPT heuristic
and its average idle time, as defined by (2). We have
(Frenk and Rinnooy Kan, 1987; Loulou, 1984)

ALPI(I, m) < LPT(L,,m) — a(L,)/m
®) < max < X — L 2 X«k)}-
l<i<n mp—1

To see the latter inequality, let i be the largest index
such that X, runs until the end of the schedule. Then

just after X; is scheduled, the average processor idle
time up to the end of the schedule is at most (m — 1)X/
m < X. Each task X scheduled after X reduces
the average idle time by X)/m; (3) follows easily.

To illustrate the use of the bound (3), we show that
(Frenk and Rinnooy Kan, 1987)

(4) AP, . m)—~0(a.s.) asn—> oo,

when E[X] < o and F(x) is strictly increasing in (0, )
for some J > 0. Bounding the right-hand side of (3) by

1 Len ]
X(enp + max < 0, X, — - 2 X(k)},

k=1

(5)
0<FYg)<5,

we observe that the first term in (5) converges (a.s.) to
F~Y¢) as n > o and that it can be made arbitrarily
small by an appropriate choice of €. Also, since E[X] <
0, Xu/in =0 (a.s.). Moreover, Z,fflj Xw/n converges
(a.s.) to a positive constant as n > o for every ¢ > 0.
Thus, the second term within the maximization in (5)
tends to — o (a.s.). We conclude that (4) holds.

In some cases, the requirement that a bound hold
deterministically for all L, is too stringent to yield
good results. In addition to a bound H(L,) < g(L,) that
always holds, there may exist a sharper bound g'(L,)
such that H(L,) < g(L,) except on a set having a small
probability q.. If g,—>0 sufficiently rapidly that
q-Elg(L,)] = o(E[g(L,)]) as n = o, then we have

EH(L,)] = (1 — gn)E[g(La)] + grE[g(La)]
~ Elg'L,)).

Dominating Algorithms. A common way to upper-
bound H(L,) is to introduce a simpler, more easily
analyzed algorithm H’ for which it can be proved that
H'(L,) = H(L,) for all L,. In this case, H' is said to
dominate H. A similar approach applies to lower
bounds. For example, the MATCH heuristic described
below is dominated by both FFD and BFD.

The MATCH packing heuristic iterates the following
procedure until all items are packed. Let S denote the
set of items that remain to be packed. MATCH first
finds a largest item in S, say X. If |S| =1 or if no
remaining item fits with X, that is, Y + X > 1 for all
Y € S — {X}, then MATCH puts X into a bin alone.
Otherwise, MATCH puts items X and X’ into a bin
alone, where X’ is a largest remaining item other than
X such that X + X’ < 1.

It can be proved without much difficulty that
FFD(L,) = MATCH(L,) and BFD(L,) = MATCH(L,)
for all L, (Lueker, 1982). Moreover, MATCH has the
following simple analysis when X ~ U(0, 1). First, we
have that MATCH(L,) < (n + b)/2, where b is the num-
ber of singleton bins in the MATCH packing. The
number of singletons with an item no larger than 1/2
is at most one, so MATCH(L,) < (n + b’ + 1)/2, where
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b’ is the number of singletons with an item larger than
1/2. But an inspection of MATCH shows that &'is equal
in distribution to max; -;<.{&;}, where ¢&; is a symmetric,
n-step random walk starting at the origin. Standard
results then yield E[MATCH(L,)] = n/2 + @(+/n), and
hence E[H(L,)] = n/2 + Q(«v/n), where H stands for ei-
ther FFD or BFD.

2.3 Stochastic Planar Matching

Matching problems in one or more dimensions have
arisen in the analysis of several packing heuristics. An
example in one dimension was given in Section 2.2.
Here, we first define a generalization of this matching
problem to two dimensions and then illustrate how it
occurs in the analysis of algorithms.

Let n plus points and » minus points be chosen
independently and uniformly at random in the unit
square. Let M, denote a maximum up-right matching
of plus points to minus points such that if a plus at
(x,y) is matched to a minus at (x’,y’), then x < x’
and y < y'. Let U, denote the number of points left
unmatched by M,. The problem of determining the
distribution of U, is called the up-right matching prob-
lem. Asymptotic bounds on the expected value are
given by (Leighton and Shor, 1986; Rhee and Tala-
grand 1988; and Shor, 1986)

(6) E[U,] = 6(Jnlog® n).

To illustrate the applications of (6), we consider the
upper-bound analysis of the BF heuristic in Shor
(1986), assuming that X ~ U(0, 1). Define the modified
best fit (MBF) heuristic to be the same as BF except
that MBF closes a bin to any further items whenever
the bin receives an item no larger than 1/2. Clearly,
bins in an MBF packing have at most two items. It is
not difficult to prove that MBF dominates BF, so that
E[BF(L,)] = E[MBF(L,)].

Next, we describe MBF as a matching procedure.
Plot the items of L, as points in the left half of the
unit square so that X; has a y coordinate 1 — i/n and
an x coordinate X; if X; < 1/2,and 1 — X; if 1/2< X; <
1. X; is plotted as a plus point if X; < 1/2 and as a
, minus point if 1/2 < X; < 1. Now match a plus point
with a minus point if the corresponding items are placed
in the same bin by MBF. By definition of MBF, the
minus point must be above the plus point, because the
item corresponding to the minus point had to be scanned
first. Also, the minus point must be to the right of the
plus point, because the two items fit into a single bin.
An MBF matching is a maximum up-right matching, as
is easily verified. However, the model differs from the
original one in two respects. First, points are samples in
the left half of the unit square, and second, the x coordi-
nate has been discretized so that x € {0, 1/n,...,(n — 1)/
n}. But it is easy to prove that (6) still holds; the effects
of both differences are limited to changes in the hidden
multiplicative constant. '

Finally, we observe that MBF(L,) is the sum of the
occupied space o(L,) and the unoccupied space, the latter
quantity being bounded by U,. Thus, E[MBF(L,)] =
n/2 + O(vn log®* n), and hence

E[BF(L,)] = % + O(Jnlog ¥ n).

2.4 Linear Programming

If the item sizes in L, make up a discrete set, then
BP is easily formulated as an integer program. Let s,
., sy be the different item sizes in L, and let m;,
1 < j < N, be the number of items with size s;. Define
the ith possible configuration as a sequence of integers
C; = 0,1 <j < N, such that 3%, Cys; < 1, that is, a
set of items with Cj; of size s;, 1 < j < N, can be packed
into a single bin. If M denotes the number of possible
configurations, then OPT(L,) = 3Mt*, where {t¥}
solves the integer program: minimize S12.t; subject to
t>0,1<i<M, and Xt,C;=m;,1 <j=<N.
Relaxations of such integer programs lead to useful
bounds for the analysis of optimum solutions. For
example, suppose we relax the integer program for L,
so that the ¢; can be arbitrary nonnegative reals. Then
it is readily shown that

(7) LIN(L,) = OPT(L,) = LIN(L,) + N,

where LIN(L,) denotes a solution to the relaxed problem.

To illustrate the bound, consider the packing con-

stant

¢ := lim E[OPT(L,))/n.
We will show that for general F(x), E[OPT(L,)] —
nc = O(v/n) (Rhee and Talagrand, 1989b). This will also
give us one of the many applications of Kolmogorov-
Smirnov statistics to the analysis of BP and MS.

To begin, for some integer N = 1 to be chosen later,
transform the given distribution F to a distribution
G consisting of N atoms, each of weight 1/N, at
s;=F7YjIN), 1 = j =< N. If cy denotes the packing
constant under G, then it is not hard to see that cy —
1/N < ¢ < cy. Note that generating n items X; ac-
cording to G can be achieved by taking n uniform
samples U; from [0, 1] and setting X; = F~Y([NU}]/N),
l<i=<n.

To investigate cy, consider the one-sided Kolmo-
gorov-Smirnov statistic D;, where

nD; = max {nz — |{i: U; = 2}|}
0=z=<1

=max {|{i: U; >z} — (1 — 2)n}.
0=<z=<l
If we remove from L, the items generated by the
largest nD; of the U; and pack them one per bin, we
are left with a list L of items X! with sizes in {sj}1<j=<n
such that

[{i: X!>s}| = n(1 —jIN),1<j=<N.
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We have OPT(L,) < OPT(LZ), where L! contains ex-
actly [n/N] items of each size s;. Finally, let LIN(L%)
denote the solution value of the LP relaxation for L/
in which we pack exactly n/N (rather than [n/N])
of each item size. By (7), we have OPT(L)) <
LIN(L;) + N, and by the law of large numbers, we
have LIN(L,) =Ncy. Hence we obtain the bound

OPT(L,) = nD; + N + ncy < nD;; + N + n(c + 1/N).

The standard bound, E[nD;] = O(Jn), along with the
choice N = vn then yields E[OPT(L,)] — nc = O(«/n),
where the hidden constant is independent of the distri-
bution.

Duality theory has played a role in studies of the
perfect packing problem: for which distributions F do
we have the packing constant c¢(F) = E[X], so that
E[OPT(L,))/E[o(L,)] = 1 as n = o? The dual of the inte-
ger program for BP is: find a set of nonnegative weights
u; such that >, mju; is maximized subject to
SXi uCij=<1, 1 =<i=< M. Note that the constraint
simply requires that for any set of items fitting into
a bin, the corresponding sum of weights must be at
most 1.

The perfect packing problem was first studied within
the class of uniform distributions Ula, b),0 <= a < b <
1. Motivated by the dual problem above, a weighting
function approach was adopted in Lueker (1983). We
say that u : [0, 1] = [0, 1] is a weighting function if for
all finite sequences x;, . . . , x; of positive reals,
Zf:l x<1= Zf=1 u(x;) < 1. It is easy to see that if
u is a weighting function, then c¢(F) = E[u(X)]. Using
this relation and a computer program to help in the
search, Lueker (1983) found weighting functions clas-
sifying the distributions Ula, b) such that c¢(Ula, b)) =
E[X] = (a + b)/2. For the general problem, Rhee and
Talagrand (1989a, b) proved strong results drawing on
ideas from functional analysis and topology. Cour-
coubetis and Weber (1986) studied the same problem
within the class of on-line algorithms.

3. RELATED TOPICS

This section describes some of the more important
questions that have grown out of the initial probabilis-
tic studies of BP and MS.

3.1 Variants

The following problem has the same instance L, as
BP.

Bin Covering. Partition L, into a maximum number
of subsets (bins) such that each subset sums to at
least 1.

The NF algorithm can be adapted to this problem in
an obvious way. Applying standard results in renewal
theory to the case X ~ U(0,1), Csirik et al. (1991)
analyzed this variant of NF bin packing to obtain

precise estimates of the expected number of bins cov-
ered.

The next problem has the same instance (L,, m) as
MS.

Dual Bin Packing. Find a subset L, < L, of maxi-
mum cardinality C(L,, m) such that L, can be parti-
tioned into m subsets with each subset summing to
no more than 1.

Asymptotics for E[C(L,, m)] have been studied in
Bruno and Downey (1985).

3.2 Higher Dimensions

Extensions of BP to two and three dimensions have
strong practical motivations, especially in stock-cutting
applications. In the two-dimensional strip packing
problem, the rectangles of a list L, = (R4, . . ., R,) are
to be packed into a unit-width, semi-infinite strip; the
heights and widths of all rectangles are at most 1. The
packing is to have these properties: (1) the rectangles
do not overlap each other or the edges of the strip, (2)
rectangles are placed with their sides parallel to the
edges of the strip (90° rotations are disallowed) and
(8) the packing height is minimized, where the packing
height is the maximum height reached by the tops of
the rectangles in a vertically oriented strip.

In the variant, two-dimensional bin packing, hori-
zontal boundaries are also placed at the integer heights
of the vertical strip. Each rectangle must now be
wholly contained within a unit square, or “bin,” between
some pair of consecutive integer heights. The objective
is now to minimize the number of bins used in the
packing.

The probabilistic analysis of two-dimensional pack-
ing has recently been surveyed in Coffman and Shor
(1990). In the most common probability model, all
rectangle heights and widths are taken to be indepen-
dent samples from U(0, 1). The heuristics studied have,
for the most part, been straightforward extensions of
one-dimensional algorithms. For example, any one-

. dimensional heuristic can be adapted to level packings

of the strip, in which rectangles are placed along levels
or horizontal baselines. The first level is the bottom of
the strip. Each higher level passes through the top of
a highest rectangle in the preceding level. Thus, the
space between adjacent levels corresponds to a one-
dimensional bin. Skelf packings (Bartholdi, Vande Vate
and Zhang, 1989) are similar except that levels are
preset at heights determined by the distribution of
rectangle heights, which is assumed to be given in
advance. In general, the probabilistic analysis of level
and shelf algorithms extends in natural ways the analy-
sis of one-dimensional bin packing.

The two-dimensional bin-packing algorithm in Karp,
Luby and Marchetti-Spaccamela (1984) is a less obvi-
ous generalization of one-dimensional matching; its
analysis reduces to that of up-right matching.
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3.3 General Bounds

Lower bounds for BP have been useful in estimating
the cost of certain restrictions to the design of algo-
rithms. For example, assume X ~ U(0, 1). Shor (1986)
proved, as a result in stochastic planar matching, that

E[WH(L,)] = Q(vJnlogn)

for any on-line algorithm. [More recently, Shor (1991)
devised an on-line algorithm that achieves this lower
bound without knowing n in advance.] It is interesting
to note, however, that if we augment the class of on-line
algorithms by those that can make use of the number
n of items to be packed, then this bound no longer
applies; Shor (1986) devised an algorithm of this type
that wastes ©(v/n) space on average.

In another example, again under U{(0, 1), algorithms
have been classified by the number of active bins
needed during the packing process. Here, an active bin
is simply a nonempty bin that has yet to be closed to
further items. It has been shown (Coffman and Shor,
1993) that if an algorithm H never has more than r bins
active at any time, then E[W#(L,)] = n/(16(r + 1)). Note
that » = 1 for NF. This result also applies to all other
on-line, linear-time algorithms studied in the literature
(e.g., Ramanan and Tsuga, 1989; Lee and Lee, 1987);
that is, all of these algorithms limit the number of
active bins and produce a wasted space whose expected
value grows linearly in n.

3.4 Distributions

In studies of BP the emphasis has been on the
uniform distribution U(0, 1), because it leads to a trac-
table analysis. Models of MS have concentrated on
U(0, 1) and exponential distributions for the same rea-
son. However, there have been many useful results
dealing with more general distributions, as illustrated
in Sections 2.2 and 2.4. For example, the lower bound
on E[OPT(L,)] under U(0,1) is easily shown to apply
to any symmetric distribution on [0, 1]. These results
have also been proved for distributions with decreasing
densities, by a technique of decomposing such distribu-
tions into a series of symmetric distributions.

In addition to the perfect packing results alluded to
in Section 2.4, there have been several cases where the
uniform distributions U(0, b) have been successfully
handled. Among these are Karmarkar’s (1982) analysis
of NF and the analysis by Bentley et al. (1984) of
FFD. The analysis has often led to anomalous and
unexpected results. For example, the analysis of FFD
revealed discontinuities at b = 1/2 and b = 1, as shown
by the fact that E[WF(L,)] is O(1) if 0 < b < 1/2,
©(n'®)if 1/2 < b < 1, and as noted earlier, ®(vn) if b = 1.

Quite recently, discrete uniform distributions have
been studied in depth (Coffman et al., 1991). The results
have shown that many aspects of average-case behav-
ior are lost in the passage to continuous approxima-

tions Ula, b). To illustrate, let U{j,k} denote the
uniform distribution on the set {i/kh<i<j, 1 <j < k.
Results for the continuous case do not suggest the
following strong result: for any U{j, k} withj < & — 2,
there is an on-line algorithm A such that E[A(L,) —
a(L,)] = O(1). The behavior of classical packing rules
has also been shown to be much more irregular in the
discrete cases. For example, expected wasted space
0(1) and ®(n) both occur under FFD for specific pairs j,
k with j/k < 1/2 and with j/k > 1/2. As another example,
there appear to be j, k, such that FF produces O(1)
expected wasted space, whereas FFD produces O(n)
expected wasted space.

4. DIRECTIONS FOR FURTHER STUDY

There are obvious open problems concerned with
more general distributions F(x) and more precise re-
sults, such as useful bounds on the multiplicative con-
stants hidden in the asymptotic notation. Here, we
note a few gaps in the asymptotic theory that have
yet to be resolved, even under the usual simplifying
assumptions. We begin with two conjectures.

Consecturk 1. For X ~ U(0, b), 0< b< 1, we have
E[WH(L,)] = O(n) for H = FF or BF.

A similar conjecture applies to discrete distributions
U{j,k} forj < k — 2.

The next conjecture refers to the expected processor
idle time defined in (2). We again assume X ~ U(0, 1).

ConJeEcTURE 2. There exists an a >0 such that
E[A%PT(L,, 2)] = Ole™™).

Strong results on the median of the distribution of
AO9PT(],. 2) are proved in Karmarkar et al. (1986). The
analysis applies the second moment method (Erdés
and Spencer, 1974).

The conjectures for one-dimensional packing have
their counterparts in higher dimensions. An interesting
open problem in two dimensions is the average-case
behavior of the FF and BF rules applied to the level
algorithms of strip packing.

Industrial applications of three-dimensional packing
abound, yet the design and probabilistic analysis of
algorithms remain at an early stage (Karp, Luby and
Marchetti-Spaccamela, 1984; Li and Cheng, 1990). For
example, the existence of on-line algorithms with sub-
linear expected wasted space remains an open question.
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