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Pseudorandom Numbers

Jeffrey C. Lagarias

Abstract. This article surveys the problem of generating pseudorandom
numbers and lists many of the known constructions of pseudorandom
bits. It outlines the subject of computational information theory. In this
theory the fundamental object is a secure pseudorandom bit generator.
Such generators are not theoretically proved to exist, although functions
are known that appear to possess the required properties. In any case,
pseudorandom number generators are known that work reasonably well

in practice.
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1. INTRODUCTION

A basic ingredient needed in any algorithm using
randomization is a source of “random” bits. In practice,
in probabilistic algorithms or Monte Carlo simulations,
one uses instead “random-looking” bits. A pseudoran-
dom bit generator is a deterministic method to produce
from a small set of “random” bits called the seed a
larger set of random-looking bits called pseudorandom
bits.

There are several reasons for using pseudorandom
bits. First, truly random bits are hard to come by.
Physical sources of supposedly random bits, which
rely on chaotic, dissipative processes such as varactor
diodes, typically produce correlated bits rather than
independent sequences of bits. Such sources also pro-
duce bits rather slowly (Schuster, 1988). Hence one
would like to conserve the number of random bits
needed in a computation. Second, the deterministic
character of pseudorandom bit sequences permits the
easy reproducibility of computations. A third reason
arises from cryptography: the existence of secure pseu-
dorandom bit generators is essentially equivalent to
the existence of secure private-key cryptosystems.

For Monte Carlo simulations, one often wants pseu-
dorandom numbers, which are numbers simulating
either independent draws from a fixed probability dis-
tribution on the real line R or more generally numbers
simulating samples from a stationary random process.
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It is possible to simulate samples of any reasonable
distribution using as input a sequence of iid. 0-1
valued random variables (Devroye, 1986; and Knuth
and Yao, 1976). Hence the problem of constructing
pseudorandom numbers is in principle reducible to that
of constructing pseudorandom bits.

Section 2 describes explicitly some pseudorandom
bit generators, as well as some general principles for
constructing pseudorandom bit generators. Most of
these generators have underlying group-theoretic or
number-theoretic structure.

Section 3 describes the subject of computational
information theory and indicates its connection to cryp-
tography. The basic object in this theory is the concept
of a secure pseudorandom bit generator, which was
proposed by Blum and Micali (1984) and Yao (1982).
The basic properties characterizing a secure pseudoran-
dom bit generator are “randomness-increasing” and
“computationally unpredictable.” Recently obtained re-
sults are that if one of the following objects exists,
then they all exist:

1. a secure pseudorandom bit generator;
2. a one-way function; and
3. a secure (block-type) private-key cryptosystem.

The central unsolved question is whether any of these
objects exist. However, good candidates are known for
one-way functions. A major difficulty in settling the
existence problem for this theory is summarized in the
following heuristic.

UNPREDICTABILITY PaAraDOX. If a deterministic
function is unpredictable, then it is difficult to prove
anything about it; in particular, it is difficult to prove
that it is unpredictable.
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Section 4 surveys results on the statistical perfor-
mance of various known pseudorandom number gener-
ators. In particular, a pseudorandom bit generator
called the RSA generator produces secure pseudoran-
dom bits (in the sense of Section 2) if the problem of
factoring certain integers is computationally difficult.
A good general reference for pseudorandom number
generators is Knuth (1981, Chapter 3).

2. EXPLICIT CONSTRUCTIONS OF PSEUDORANDOM
BIT GENERATORS

Where might pseudorandom number generators
come from? There are several general principles useful
in constructing deterministic sequences exhibiting
quasi-random behavior: expansiveness, nonlinearity
and computational complexity.

Expansiveness is a concept arising from dynamical
systems. A flow f; on a metric space is expansive (or
hyperbolic) at a point x € M if nearby trajectories

diverge (locally) at an exponential rate from each other,

that is, |fi(x) — fdy)| = Af|]x — y|, where A > 1, provided
|x — y| <, and for 0 =< ¢ < £o. Such flows exhibit sensi-
tive dependence on initial conditions and are numeri-
cally unstable to compute. A discrete version of this
phenomenon for maps on the interval I =[0,1] is a
map T:I— I such that |T"(x)| > 1 for almost all x €
[0, 1]; for example, T(x) = 6x (mod 1), where § > 1. In
particular, it requires knowledge of at least the first
O(n) bits of T"(x) to determine if x € [0, 1/2) or x €
[1/2,1) as n = oo.

Nonlinearity provides a second source of determin-
istic randomness. Functional compositions of linear
maps are themselves linear, but nonlinear polynomial
maps, when composed, can yield exponentially growing
nonlinearity; for example, if f(x) = x? and f9(x)=
f(fY=U(x)), then f"(x) = x?". Even the simple nonlinear
map f(x) = ax(1l — x) for a € [0, 4], which maps [0, 1]
into [0, 1], exhibits extremely complicated dynamics
under iteration (Collet and Eckmann, 1980).

Computational complexity is a third source of de-
terministic randomness. Kolmogorov (1965), Chaitin
(1966) and Martin-Lof (1966) defined a finite string
A =a; - - a; of bits to be Kolmogorov-random if the
length of the shortest input to a fixed universal Turing
machine J that halts and outputs A is of length greater
than or equal to & — ¢, for a constant co. This notion of
randomness is that of computational incompressibility.
Unfortunately, it is an undecidable problem to tell
whether a given string A is Kolmogorov-random. How-
ever, one obtains weaker notions of computational
incompressibility by restricting the amount of compu-
tation allowed in attempting to compress the string
A. For example, given a nondecreasing time-counting
function T such as 7T(x)=5x% a string A is
T-incompressible if the shortest input to J that halts

in T(JA|) steps and outputs A has length greater than
|A|. This notion of incompressibility is effectively com-
putable. One can similarly define incompressibility of
ensembles of strings S with respect to time complexity
classes such as PTIME. In fact, the accepting function
for membership in a “hard” set in a time-complexity
class 3 behaves “randomly” when viewed as input to a
Turing machine that has a more restricted amount of
time available. This idea goes back at least to Meyer
and McCreight (1971).

The three principles all involve some notion of func-
tional composition or of iteration of a function. Indeed,
running a computation of a Turing machine can be
viewed as a kind of functional composition with feed-
back. The first two principles directly lead to can-
didates for number-theoretic pseudorandom number
generators (see below). The computational complexity
principle leads to pseudorandom number generators
having provably good properties with respect to some
level of computational resources, but most of these are
not of use in practice because one must use more than
the allowed bound on computation to find them in the
first place. Finally, we note that there are very close
relations between expansiveness properties of map-
pings and the Kolmogorov-complexity of descriptions
of their trajectories (Brudno, 1982).

A variety of functions have been proposed for use in
pseudorandom bit generators. We give several exam-
ples below. Most of these functions are number-theo-
retic, and nearly all of them have an underlying group
structure.

ExampLE 1 (Multiplicative congruential generator).
The generator is defined by

Xn+1 = ax, + b (mod M),

where 0 < x, < M — 1. Here (a, b, M) are the parame-
ters describing the generator, and x, is the seed. This
was one of the first proposed pseudorandom number
generators. Generators of this form are widely used in
practice in Monte Carlo methods, taking x/M to sim-
ulte uniform draws on [0, 1] (Knuth, 1981; Marsaglia,
1968; Rubinstein, 1982). More generally, one can con-
sider polynomial recurrences (mod M).

ExampLE 2 (Power generator). The generator is de-
fined by

Xn+1 = ()¢ (mod N).

Here (d, N) are parameters describing the generator,
and x, is the seed.

An important special case of the power generator
occurs when N = pip; is a product of two distinct odd
primes. The first case occurs when (d, ¢(N)) = 1, where

9(N) = #ZINZ)* = (p1 — 1)(p2— 1)

is Euler’s totient function that counts the number of
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multiplicatively invertible elements (mod N). Then the
map x —> x? (mod N) is one-to-one on (Z/NZ)*, and
this operation is the encryption operation of the RSA
public-key cryptosystem (Rivest, Shamir and Adle-
man, 1978), where (d, N) are publicly known. We call
this special case an RSA generator.

ExampLE 3 (Discrete exponential generator). The
generator is defined by

Xn+1 = g™ (mod N).

Here (g, N) are parameters describing the generator,
and x, is the seed.

A special case of importance occurs when N is an
odd prime p and g is a primitive root (mod p). Then
the problem of recovering x, given (x,+1, g, p) is the
discrete logarithm problem, an apparently hard num-
ber-theoretic problem (Odlyzko, 1985). The discrete ex-
ponentiation operation (mod p) was suggested for
cryptographic use in the key exchange scheme of Diffie
and Hellman (1976). A key exchange scheme is a
method for two parties to agree on a secret key using
an insecure channel. Blum and Micali (1984) gave a
method for generating a set of pseudorandom bits
whose security rests on the difficulty of solving the
discrete logarithm problem.

ExampLE 4 (Kneading map). Consider a bivariate
transformation

(xn+layn+l) = (ym Xn + f(yny zn))y

where f is a fixed bivariate function, usually taken to
be nonlinear. The function f(-,-) determines the genera-
tor, and (xo, yo) and the family {z,} constitute the seed.
One often takes z, := K for all integers n, for a fixed
K. This mapping has the feature that it is one-to-one,
with inverse

(xmyn) = (yn+1 - f(xn+1,2n), xn+1)-

One can generalize this construction to take x, y and
f(-,-) to be vector-valued. The data encryption standard
(DES) cryptosystem is composed of 16 iterations of
* (vector-valued) maps of this type, where (xo, yo) are the
data to be encrypted, all z; = K compose the key, and
f is a specific nonlinear function representable as a
polynomial in several variables.

Other examples include the 1/P-generator and the
square generator studied in Blum, Blum and Shub
(1986) and cellular automata generators proposed by
Wolfram (1986). '

In addition to these examples, more complicated
pseudorandom number generators can be built out of
them using the following two mixing constructions.

ConstrucTioN 1 (Hashing). If {x,} are binary strings
of & bits and H : {0,1}* — {0, 1}’ is a fixed function, called
in this context a hash function, then define {z,} by

2, = Hix,).

The traditional use of hash functions is for data
compression, in which case ! is taken much smaller
than k. Sets of good hash functions play an important
role in the theory of pseudorandom generators, where
they are used to convert highly nonuniform probability
distributions on % inputs into nearly uniform distribu-
tions on [/ inputs; see, for instance, Goldreich, Kraw-
czyk and Luby (1988).

A very special case of this construction is the trunca-
tion operator

T; dx) = [27/x] (mod 2)),

which extracts from a k-bit string x the substring of /
bits starting j bits from its right end. In its most
extreme form, T'(x) = x (mod 2) extracts the least sig-
nificant bit. The truncation operation was originally
suggested by Knuth to be applied to linear congru-
ential generators to cut off half their bits (saving the
high-order bits) as a way of increasing apparent ran-
domness. This idea was used in a number of schemes
for encrypting passwords to computer systems. How-
ever, it is insecure. Reeds (1979) successfully cryptana-
lyzed one such system.

ConstrucTION 2 (Composition). Let {x,} and {y.} be
sequences of k-bit strings, let % : {0,1}* X {0,1}* —
{0, 1}* be a binary operation, and set

Rn = Xn%* yn.

The simplest case occurs with 2 = 1, where % is the
XOR operation

2n 1= X, + yn (mod 2),

where z,, x,, and y, are viewed as k-dimensional vectors
over GF(2). More generally, whenever the operation
table of x on {0, 1}* X {0, 1}* forms a Latin square (but
is not necessarily either commutative or associative),
then the x operation has certain randomness-increasing
properties when the elements {x,} and {y.} are indepen-
dent draws from fixed distributions @ and @ on {0, 1}*
(Marsaglia, 1985).

There is a constant search for new and better prac-
tical pseudorandom number generators. Recently,
Marsaglia and Zaman (1991) proposed some simple
generators that have extremely long periods; whether
they have good statistical properties remains to be
determined.

3. COMPUTATIONAL INFORMATION THEORY
AND CRYPTOGRAPHY

In the last few years, there has been extensive develop-
ment of a theoretical basis of secure pseudorandom
number generators. This area is called computational
information theory.
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Computational information theory represents a
blending of information theory and computational
complexity theory (Yao, 1988). The basic notion taken
from information theory is entropy, a measure of infor-
mation. Here, “information” equals “randomness.” In-
formation theory was developed by Shannon in the
1940s, and a relationship between computational com-
plexity and information theory was first observed by
Kolmogorov. Both Shannon and Kolmogorov assumed
in defining “amount of information” that unbounded
computational resources were available to extract that
information from the data. In contrast, computational
information theory assumes that the amount of compu-
tational resources is bounded by a polynomial in the
size of the input data. ’

Here we indicate the ideas behind the theory, assum-
ing some familiarity with the basic concepts of com-
putational complexity theory for uniform models of
computation (Turing machines) and for nonuniform
models of computation (Boolean circuits). Turing ma-
chines and polynomial-time computability are dis-
cussed in Garey and Johnson (1979), and circuit
complexity is described in Savage (1976) and Karp and
Lipton (1982).

What is a pseudorandom number generator? The
basic idea of pseudorandomness is to take a small
amount of randomness described by a seed drawn from
a given source probability distribution and to produce
deterministically from the seed a larger number of
apparently random bits that simulate a sample drawn
from another target probability distribution on a range
space. That is, it is randomness-increasing.

The amount of randomness in a probability distribu-
tion is measured by its binary entropy (or information),
which for a discrete probability distribution P is

H(P) = — 3] p(x)log: p(x),

where x runs over the atoms of P. In particular,
H(U) = k;

that is, “¢ coin flips give & bits of information.” The
notion of randomness-increasing is impossible in classi-
cal information theory because any deterministic map-
ping G applied to a discrete probability distribution P
never increases entropy; that is,

H(G(P)) < H(P).

However, this may be possible when computing power
is limited. Indeed, what may happen is that G(P) may
approximate a target distribution @ having a much
higher entropy so well that, within the limits of com-
puting power available, one cannot tell the distribu-
tions G(P) and @ apart. If H(Q) is much larger than
H(P), then we can say that G is computationally
randomness-increasing.

The fundamental principle is that a definition of
pseudorandom numbers is always relative to the use
to which the pseudorandom numbers are to be put. This
use is to simulate the target probability distribution to
within a specified degree of approximation.

We measure the degree of approximation using sta-
tistical tests. Let P be the source probability distribu-
tion, G(P) the probability distribution generated by the
pseudorandom number generator G and @ the target
probability distribution to be approximated by G(P). A
statistic is any deterministic function a(x) of a sample x
drawn from a distribution, and a statistical test ¢ con-
sists of computation of a statistic ¢ drawn from G(P).
We say that distributions P; and P, on the same sample
space $ are ¢-indistinguishable using the statistic o
on $ provided that the expected values of g(x) drawn
from P; and P,, respectively, agree to within the toler-
ance level ¢; that is,

|E[o(x):x€ePi] —E|[olx):xeP:] | <e.

Given a collection 3 = {(o;, &)} of statistical tests a;
with corresponding tolerance levels ¢;, we say that G
is a 3-pseudorandom number generator from source P
to target @ provided that G(P) is ¢-indistinguishable
from @ for all the statistical tests o; drawn from J.

To make these ideas clearer, we allow as source distri-
bution the uniform distribution U, on the set {0, 1}* of
binary strings of length %, and for target distributions
we allow either U, for some ¢, or else U([0, 1F), which
is the distribution of ¢ independent draws from the
uniform distribution on [0, 1].

As an example, consider the linear congruential gen-
erator x,+1 = ax, + b (mod M) with M = 2* — 1, where
the seed x, is drawn from 0 < xo < 2* — 1 and is
viewed as an element of {0,1}* drawn with distribution
U,. We use this generator to produce a vector of ¢
iterates, G(xo) = (x1/M, x2/M, . . ., x/M) and view G(U3)
as approximating the distribution U{[0, 1}). Various
statistics that one might consider for y = (y;, ..., y)

. in the sample space 8 = [0, 1]’ are

1
oaly) = 7 D=1y

om(y) =max{y;:1 <i=<{}
or(y) = max{j: y; < yis1
< o« o o <yi+j
for some i}

1. Average:

2. Maximum:
3. Maximum run:

4. mth autocorrelation: on(y) = ﬁ =T YiYitm.
It is now a purely mathematical problem to decide
what &-tolerance level can be achieved for each of these
statistics, viewing G(U:) as approximating U([0, 1]°).
Various results for such statistics for linear congru-
ential generators can be found in Niederreiter (1978).
The statistical tests applied to pseudorandom num-
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ber generators for use in Monte Carlo simulations are
generally simple; for cryptographic applications,
psuedorandom number generators must pass a far
more stringent battery of statistical tests.

Now we are ready to give a precise definition of a
secure pseudorandom bit generator. To achieve insensi-
tivity to the computational model, this definition, due
to Yao (1982), is an asymptotic one. Instead of a single
generator G of fixed size, we consider an ensemble
G = {G+ : k = 1} of generators with

Gy : {0, 1}:—{0, 1)/®

that have the property of being polynomial length-
increasing; that is

E+1<f)<k"+m

for some fixed integer m = 1. We say that G is a
nonuniform secure pseudorandom bit generator (N-
PRQG) if:

1. there is a (deterministic) polynomial-time algo-
rithm that computes all G.(x), given (k, x) as input
with x € {0, 1}%, and

2. for any PSIZE family § of Boolean circuit statis-
tical tests, Gi(U}) is polynomially indistinguish-
able by § from Uyy); that is, for all m = 1, the
distribution Gx(U,) is ¢ ~™indistinguishable by ¥
from Uyy, for all sufficiently large k.

Condition 1 says that G is easy to compute. Condition
2 requires more explanation. A Boolean circuit C, is
made of and, or and not gates having ¢ inputs and
computes a Boolean function C;: {0, 1} = {0, 1}. A fami-
ly § = {C: : k = 1} of Boolean circuits is of polynomial
size (abbreviated § € PSIZE) if there is some fixed m
such that the number of gates in C; is < k™ + m, for
all m. The Boolean function Ci(x) computed by C; with
¢ = f(k) provides a statistical test for comparing G(Uz)
and U, Then Condition 2 asserts that

E[Cix): x € Gr(Up)] — E[Cr(x): x €e Ugp)] | <E7™™,

for all £ > co(F, m).

The PSIZE measure of computational complexity is
nonuniform in that no relation between the circuits Cp
for different % is required. In particular, the family &
might be noncomputable (nonrecursive). Condition 2
may be colloquially rephrased as, “G passes all polyno-
mial size statistical tests.”

This definition implies that N-PRGs must have a one-
way property: Given the output y = Gi(x) e {0, 1},
one cannot recover the string x € {0, 1}* using a PSIZE
family of circuits for a fraction of the inputs exceeding
1/(™ + m) for any fixed m. Otherwise, it would fail the
statistical test, “Is there a seed x such that Gi(x) = y?”

We also consider the weaker notion of uniform secure

pseudorandom bit generator (U-PRG) in which PSIZE
in Condition 2 is replaced by PTIME, where a family
& = {Ci} of circuits is in PTIME if there is a polyno-
mial-time algorithm for computing C;, given 1* as in-
put. This condition may be rephrased as, “G passes all
polynomial time statistical tests.” Since PTIME <
PSIZE, an N-PRG is always a U-PRG.

These definitions of N-PRG and U-PRG form the
basis of a nice theory, whose purpose is to reduce
the existence question for apparently very complicated
objects (N-PRGs) to the existence question for simpler,
more plausible objects. As an example, we have:

THEOREM 1. If there exists an N-PRG with f(x) =
k + 1, then there exists an N-PRG with f(k) = k™ + m
for each m = 2. (Similarly for U-PRGs.)

That is, if there is an PRG that can inflate £ random
bits to £ + 1 pseudorandom bits, this is already suffi-
cient to construct a PRG that inflates £ random bits
to any polynomial number of pseudorandom bits. A
proof appears in Boppana and Hirschfeld (1989).

One disadvantage of these definitions (N-PRG, etc.)
at present is that no such generators have been proved
to exist. In fact, proving that they exist is at least as
hard a problem as settling the famous P # NP ques-
tion of theoretical computer science. On the positive
side, however, Theorem 4 below suggests that the RSA
generator may well be a U-PRG.

Yao (1982) provided the basic insight that the nature
of secure pseudorandomness (N-PRG) is the computa-
tional unpredictability of successive bits produced by
a pseudorandom bit generator. The notion of computa-
tional unpredictability is captured by the concept of a
nonuniform next-bit test, as follows. Let G = {G:} be a
collection of mappings G : {0, 1}* = {0, 1}®), where f(k)
is polynomial in k. A predicting collection is a doubly
indexed family of Boolean circuits € = {C;z:1 < i <
f(k) — 1,k = 1} computing functions C;x : {0,1} —
{0, 1}, where the circuit C;; is viewed as predicting the

(i + 1)st bit of a sequence in {0, 1}'* given the first i

bits. The predicting collection is polynomial size if
there is some m = 2 such that each C;; has at most
k™ + m gates. Let p$: denote the probability that the
output of C;; applied to a bit sequence (xi, . . . , x;)
drawn from G(U;) is x;+1. We say that G passes the
nonuniform next-bit test if for each polynomial-size
predicting collection € and each m = 2, for all suffi-
ciently large %,

1 1
Cc = <
Pk 2\ "+ m

holds for 1 < i < f(k) — 1. This test says that x;:,
cannot be accurately guessed using PSIZE circuit fami-
lies with x,, . . ., x; as input.

TuEOREM 2 (Yao, 1982). The following are equivalent:
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1. A collection G = {G+} passes the nonuniform
next-bit test.

2. A collection G = {G:} passes all polynomial-size
statistical tests.

In this theorem, there is no restriction on the sizes
of circuits needed to compute the functions Gy; for
example, they could be of exponential size in k. The
direction (2) = (1) is fairly easy to prove because the
next-bit test is essentially a family of PSIZE statistical
tests. The direction (1) = (2) is harder. A proof of this
result is given in Boppana and Hirschfeld (1989).

CoroLLARY 1. A polynomial-time computable collec-
tion G = {Gs} that passes the nonuniform next-bit test
is an N-PRG.

Pseudorandom bit generators must have a very
strong one-way property: from the output of such a
generator, it must be computationally infeasible to
extract any information at all about its input, for
essentially all inputs. One-way functions are required
only to satisfy a weaker one-way property: they are
easy to compute but difficult to invert on a nonnegligi-
ble fraction of their instances.

A formal definition of one-way function is as follows:
a nonuniform one-way collection {f,} consists of a family
of functions f; : {0,1}* = {0,1}"®, where & < p(k) <
k™ + m for some fixed m, such that:

1. the ensemble {f;} is uniformly polynomial-time
computable, and

9. for each PSIZE circuit family {C:} with C, :
{0,1}?® — {0, 1}*, the functions {fi} are hard to
invert on a nonnegligible fraction 1/(k° + ¢) of
their inputs, where c is a fixed positive constant
depending on {C:}. That is, for x drawn from the
uniform distribution on {0, 1}%,

Pl = £ (Ci(fix)) ]

is at most 1 — (k¢ + ¢)~! for all large enough %
(depending on {C}).

, The one-way property embodied in this definition is
weaker than that required of an N-PRG in several
ways: a function f; can have an extremely nonuniform
probability distribution on its range {0, 1}*¥, it is re-
quired to be hard to invert only on a possibly small
fraction 1/(k¢ + ¢) of its inputs, and even on those
inputs where it is hard to invert, some partial informa-
tion about its inverse may be easy to obtain.

Impagliazzo, Levin and Luby (1989) showed that one
can bootstrap a nonuniform one-way collection into an
N-PRG.

TueoreM 3. The following are equivalent:

1. There exists a nonuniform polynomial pseudoran-
dom bit generator (N-PRG).

2. There exists a nonuniform one-way collection {fi}
of functions.

The implication (1) = (2) is easy, because an
N-PRG G = {G4} is a one-way collection. To prove (2) =
(1), it suffices by Theorem 1 to enlarge a set of frandom
bits to obtain £+ 1 pseudorandom bits, for an infinite
set of /. We may reduce to the case that the function
fr is length-preserving by padding its input bits if
necessary. The first key idea, due to Goldreich and
Levin (1989), is that the Boolean inner product

k
B(x,r) = D>, x;r; (mod 2)
i=1

is a hard-core predicate for all length-preserving one-
way families f: {0, 1}* = {0, 1}*. That is, the probability
distribution of the (2& + 1)-bit strings (f(x), r, B(x,r))
for (x, 1) drawn uniformly from {0, 1}?* is polynomially
indistinguishable from (f(x),r, 8), where B is a truly
random bit drawn independent of x and r. We are now
done if f is a permutation, because then (f(x),r,B)
would be uniformly distributed on 2k + 1 bits. The
difficult case occurs when f is not one-to-one, in which
case the set S; = {y : fly) = f(x)} may be large. In
this case, f(x) contains only about & — log;|S;| bits of
information, and so the entropy of (f(x),r, 8) may be
smaller than 2%, and we gain no computational entropy.
The key idea of Impagliazzo, Levin and Luby (1989)
is to add in log:|S,| extra bits of information from x
by hashing x with a random hash function 4 : {0, 1}* =
{0, 1}5<. If one can do this, then the distribution of (f(x),
1, h, h(x), B(x, r)) will be polynomially indistinguishable
from (f(x),r,h, h(x), 8), and one extra pseudorandom
bit will have been created. The nonuniform model of
computation is used in determining the number logz|Sx|
of bits to hash in the hash function for x.

Hastad (1990) proved that a uniform version of Theo-
rem 3 holds; that is, one may replace “nonuniform” by
“uniform” in (1) and (2).

Finally, secure PRGs can be used to construct secure

" private-key cryptosystems and vice versa. A private-

key cryptosystem uses a (private) key exchanged by
some secure means between two users, the possession
of which enables them both to encrypt and decrypt
messages sent between them. Encrypted messages
should be unreadable to anyone else. They should ap-
pear random to any unauthorized receiver, and ideally
no statistical information at all should be extractable
from the encrypted message. This is seldom achieved
in actual cryptosystems, and statistical methods are
one of the staples of cryptanalysis. Absolute security
can always be achieved by using a key of the same
length as the totality of encrypted messages to be
exchanged (the “one-time pad’). How much security
is possible when the key is to be shorter than the
messages to be encrypted? An analogy between
pseudorandom number generation and private-key
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cryptosystems is apparent: the key supplies absolutely
random bits from which pseudorandom bits (the en-
crypted message) are created. This analogy can be
made precise. For a statement of the result, see Laga-
rias (1990, Section 6); some related results appear in
Impagliazzo and Luby (1989).

Rompel (1990) showed how to construct a secure
authentication scheme based on a one-way function.

Finally, we note that probabilistic algorithms play
a fundamental role in the theoretical foundations of
modern cryptography, as indicated in Goldwasser and
Micali (1984).

4. PERFORMANCE OF CERTAIN PSEUDORANDOM
BIT GENERATORS

We now turn to results on the performance of various
generators; see Knuth (1981) for general background.

Linear congruential pseudorandom number genera-
tors have been extensively studied, and many of their
statistical properties carefully analyzed. With proper
choice of parameters, they can produce sequences {x:}
such that {x,(mod M):1 < k = n}is close to uniformly
distributed on [1, M]. Marsaglia (1968) was the first to
notice that these generators have certain undesirable
correlation properties among several consecutive iter-
ates (xn, X,+1, . - . , Xn+t). Extensive analysis is given in
Niederreiter (1978). These generators are apparently
unsuitable for cryptographic use (Frieze et al., 1988).

The group-theoretic structure of certain other gen-
erators can be used to prove “almost-everywhere
hardness” results for such generators, including the
following one.

RSA Bir GENERATOR. Givenk = 2and m = 1, select
odd primes p; and p; uniformly from the range 2* <
pi < 2¥*1 and form N = p;p,. Select e uniformly from
[1, N] subject to (e, p(N)) = 1. Set

Xn+1 = (x,)° (mod N),
and let the bit z,+1 be given by
Zp41 = Xn41 (mod 2).

"Then {z,: 1 < n < k™ + m} are the pseudorandom bits
generated from the seed x, of length 2% bits.

We consider the problem of predicting the next bit
Z.+1 of the RSA generator, given {zy, . . ., z,}. Alexi et
al. (1988) showed that getting any information at all
about z,+; is as hard as the (apparently difficult) prob-
lem of factoring N. Their argument shows how an
oracle that guesses the next bit with a probability
slightly greater than 1/2 can be used in an explicit
fashion to construct an inversion algorithm.

TueoreM 4. Let (e, N) be a fixed pair, where
(e, (N)) =1 and N = pip2 is odd, with the associated
power generator

E(y) = y°:= x (mod N).

Suppose one is given a 0 — l-valued oracle function
O(x) for which

O(x) = y (mod 2)

holds for (3 + 1/(™ + m)) N of all inputs x € [0, N — 1],
where k = log; N. Then there is a probabilistic polyno-
mial time algorithm that makes O(k™) oracle calls,
uses O(k™) “random” bits, halts in O(k°™) steps and
for any x finds y with probability = 1 — 1/N, where
the probability is taken over all sequences of “random”
bits.

This algorithm involves several clever ideas. The
first of these is due to Ben-Or, Chor and Shamir (1983),
using the fact that the encryption function E(:) re-
spects the group law on (Z/NZ)¥; that is,

Elay) = E(0)Ely).

They suppose that one is given an oracle O; that
perfectly recognizes membership in an interval I =
[— ON/2, 6N/2] for fixed positive § < 1/2; that is,

1, ifyel,
Ofmy=4 7€
0, ifyel

Define [x]y to be the least nonnegative residue (mod
N), and define absy(x) to be the distance of the least
(positive or negative) residue from 0 so that

[x]v, 0 < x<N/2,
absnyl(x) =
N —[x]n, N/2<x<N.

Let parn(x) be the parity of absy(x). The clever idea is
to generate “random” a, b and attempt to compute the
ged of [ay]ly and [by]ly using a modified binary ged
algorithm due to Brent and Kung (1983) and Purdy
(1983). This algorithm computes the greatest common
divisor (r, s) by noting that it is equal to 2 (r/2, s/2) if
r, s are both even, to (r/2, s) or (r, s/2) if one is even and
to Ya(r + s), Ya(r — s) otherwise. It is easy to check that
max(|r|, |s|) is nonincreasing at each iteration and that
it decreases by at least a factor of 3/4 every two
iterations, so this algorithm halts in at most 2 logys N
iterations. The Ben-Or, Chor and Shamir algorithm
draws pairs (a, b) of “random” numbers uniformly on
[0, N]. Such a pair will be called “good” (for the unknown
y) if [ay]ly and [by]y both fall in I. For a good pair the
oracle O; can be used to determine correctly the parity
of [ayly and [by]y, even though y is unknown. We use
the fact that if w € I is even, then w/2 € I, whereas if
it is odd, then w/2 € [N/2 — |I|/2,N/2 + |I|/2]. Hence
for a good pair, one has (a/2)y € I if [ay]v is even and
(a/2)y ¢ I if [ayly is odd. This holds similarly for [by]x.
Thus using the group law
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pary(layly) =1 — OI<E[<%>yD

=1-ofef

is calculable. Consequently, one can compute one step
of the modified binary ged algorithm to ([aylw, [bylv)
and obtain new values ([a'yly, [0’ylv), with (), ')
known. Now (a/, ') is still a good pair, so we can
continue to follow the modified binary gcd algorithm
perfectly and eventually determine [lyly = ged ([ayln,
[6ylv), where [ is known. We say that the algorithm
succeeds if [ly]ly = 1, because in that case y = I~ (mod
N) is found. We verify success in this case by checking
that E[l"!] = x. In all other cases, when (a, b) is not
good or when it is good and the ged is not 1, we carry
out the above procedure for 2 logys N iterations and
check the final iterate I to see whether E[I"!] = x.

This procedure is a probabilistic polynomial-time al-
gorithm. The pair (a, b) is good with probability at least
6%, Also, because the distributions of [ay]y, [by]v are
uniform on [— dN/2, 6N/2], and because the probability
that ged(r,s) = 1 for such draws approaches 7%6 as
|I| = oo, it exceeds a positive constant a for all values
of {|I|}. Thus the success probability for any draw (a, b)
is = é%a, and the expected time until the algorithm
succeeds is polynomial in log N.

One immediately sees that this algorithm still works
if the oracle O; is not perfect but is accurate with
probability of error less than (4 logys N)™1.

Subsequent work of several authors showed how an
oracle having a 1/2 + 1/(log N)* advantage in guessing
parity of the smallest RSA bit can be used to simulate
a much more accurate oracle and then to simulate an
oracle such as O; above with sufficient accuracy to
obtain Theorem 4 (Alexi et al., 1988).

Theorem 4 shows that if the factoring problem is

difficult, then recovering any information at all about
Z,+1 given {2y, . . ., 2,} is hard. In particular, the bits
{zz} would then be computationally indistinguishable
from i.i.d. coin flips.
* One can extract several pseudorandom bits from
each of the iterates x, of the RSA generator. The
strongest result to date on this problem can be found
in Schrift and Shamir (1990).

The use of the group structure on (Z/NZ)* to “ran-
domize” is an example of the concept of an instance-
hiding scheme discussed by Feigenbaum in this issue.
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