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1. GENERAL COMMENTS

We would like to thank the authors for a useful and
‘informative article on the state of the art in nonpara-
metric regression. Especially enjoyable were the novel
and imaginative graphical methods that were devel-
oped to illustrate the points being made. These reveal
more intuition behind the theoretical results of Stone
(1977, 1982) and Fan (1992, 1993). It contains a nice
summary of many points which have already been
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made and justified (theoretically and intuitively) by
the recent papers of Chu and Marron (1991) and the
discussions therein and of Fan (1992, 1993).

The main contribution of the paper is a very accessi-
ble introduction to a point which is becoming quite clear
to insiders in the field of nonparametric regression:
local (i.e., moving window) polynomial regression esti-
mators have a number of compelling advantages over
the more widely used and studied kernel estimators.

In view of the very large literature on kernel regres-
sion estimators, an interesting issue is why it took so
long for the smoothing community at large to under-
stand fully the benefits of local polynomials. We specu-
late that this was because of “equivalence results,” the
best known being Miiller (1987) but see also Lejeune
(1985), whose main intuitive message was for equally
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1.1: 2nd order kernel vs 4th kernels at x = 0.5

- {,7. vyt ‘w+/,J \

o |
~ =+ zero noise data
+\ A 2ndorder kemel +
0 'y O  4th order kemel / N
” +/ +
tahalatg: L
2 4 ..a-~‘*'\*'°"¢;'ﬁ""". """Q';e'o-ﬂ St
e v 22 S -
> -t + ﬂ o ++
" o £,
0 [ 4 A H
S ] K 4 ) +
/+ ,R' -Eﬂ \
+* o ‘w, *
o e, - e
c AR TSy reee
i
3
Ll T T L} 1]
0.0 0.2 04 0.6 08 1.0
X
1.3: Local linear vs Local Cubic at x = 0.5
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1.2: 2nd order kernel vs 4th kernels at x = 0.85
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1.4: Local linear vs Local Cubic at x = 0.85
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Fic. 1. Comparison of high- and low-degree methods. Equally spaced design, with regression curve demonstrating failure of higher-order
methods. Effective weights shown at the bottom of each, for estimation at x = 0.5 in figures 1.1 and 1.3 and at x = 0.85 in Figures

1.2 and 1.4.

spaced xj, when studying behavior away from the
boundaries, there is essentially no difference between
local polynomial and traditional kernel estimators
(with a nice correspondence between degree of polyno-
mial and kernel order). Since many people’s intuition
seemed to indicate that there were only “technical”
differences between the lessons learned there and the
more general case, local polynomials did not receive
the widespread attention they deserved. A key to the
recent renaissance was the observation by Fan (1993)
that in the random design case neither the Nadaraya-
Watson (NW) nor the Gasser-Miiller (GM) could attain
the minimax lower bound but that the local linear could
(with the correct choice of kernel function).

2. BIAS ADJUSTMENTS

About higher-order kernels, considerably more is
known than is indicated in this paper. In particular
Marron and Wand (1992) have shown, in the closely

related density estimation setting, that higher-order
kernels are rarely worth the loss in interpretability
inherent to a local average which uses negative weights.
The reasons behind this are made clear in a visual
sense in Marron (1992). The main idea is indicated in
Figure 1. Figures 1.1 and 1.2 show NW estimators, using
the normal kernel ¢(x) with a bandwidth A, = 0.1 and
the fourth-order kernel (3 — x?)¢p(x)/2 with a bandwidth
hs = \2h,, together with effective weight functions.
Figures 1.1 and 1.3 demonstrate effective weights for
estimation at the interior point x = 0.5. Figure 1.1
shows clearly why the second-order kernel estimate is
biased for estimation at x = 0.5: data points roughly
in the intervals [0.3, 0.4] and [0.6, 0.7] are significantly
too low. The higher-order kernel attempts to adjust for
this by adding more observations to the local average,
whose means are even lower, but applying negative
weights to cancel the bias effect. If the underlying
regression had “constant curvature” including the areas
where the higher-order kernel puts negative weight,
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then there would be a big reduction in the bias. But
in this case, the curvature is not constant where the
weights are negative, and the sharp peaks in that area
actually make the bias slightly worse.

Figures 1.3 and 1.4 show local linear and cubic fits
and effective weights, using the normal kernel and the
bandwidths %, for the linear and A, for the cubic. It is
evident that in this case the gain of the higher-order
fit is again very limited, for the same reason. The lessons
of the usual asymptotic theory of bias gains for higher-
order methods are not effective in this situation. The
reason is that the underlying regression does not have
constant curvature on large enough neighborhoods.
Figures 1.2 and 1.4 show a similar effect at the bound-
ary x = 0.85, except that the local cubic fit has a
smaller bias because of the very sharp decrease of the
second derivative of the true regression function. The
benefit of the local cubic is less when the data are
noisy —the local cubic will have a big increase in the-
variance.

While we heartily endorse the statement in the last
paragraph of Section 2 that local polynomials provide
an attractively simple and intuitive way to correct
biases, we find the remarks in the previous paragraph
to be less on target. In particular, we do not feel it is
useful to view choice of order of the polynomial (and
the same applies for choice of kernel order) as simply a
bias-variance trade-off. This is because that viewpoint
holds up only when the bandwidth is held fixed, which
is inappropriate when one uses a method with, for
example, less bias and more variance. When comparing
across orders, effective performance (measured either
intuitively or else asymptotically) depends on using a
sensible (and hence different) bandwidth for each order.

Choice of order is an interesting open problem, of
deep interest from both practical and theoretical view-
points. While higher orders offer advantages in terms of
bias reduction, there is a price to be paid in terms of
increase of variance [see Fan and Gijbels (1992b) for
quantification of this], computational speed, ease of im-
plementation, and interpretability (analogous, although
not so severe as for higher-order kernels). We suspect
that the final resolution will be a recognition that there
exist different situations where each of 0, 1, 2, 3 could
be preferable (but we doubt there is much call for more
than 3). In particular, orders 0 and 1 are preferable
when there is a premium on speed and/or interpretabil-
ity, while orders 2 or 3 can possibly yield significant
gains for larger samples (assuming bandwidths for
each order are chosen properly). The choice between
even and odd (i.e., 0 vs. 1 and 2 vs. 3) depends on
the setting. Odd orders are usually preferable at the
boundaries, and in the interior they have the same
variance as the corresponding even order, but they
have potential for very substantial bias reduction. But
for interior points in an equally spaced design, odd

orders mean additional complication, with no benefits.
See Section 2.3 of Fan and Gijbels (1992b) for discus-
sion. We believe that serious statisticians will eventu-
ally want all four in their toolbox (and good software
packages will provide this). Despite the noted limita-
tions of higher-order fits (see Figures 1.1-1.4), consider-
able gains can still be made by using variable order
approximation where the local linear is used at a sloped
region and the local cubic is used at peaks and valleys.
An adaptive procedure for this has recently been pro-
posed by Fan and Gijbels (1992b).

3. BOUNDARY EFFECTS

There is an intuitive way of understanding the trade-
off at boundaries that can arise between the NW esti-
mator and the local linear. Note that if the underlying
regression is relatively “steep” near the boundary, for
example, as in Figures 3 and 5 in the original paper,
then the bias problems of the NW method make it
clearly inferior. However, if the true regression is rela-
tively “flat,” the gain from fitting a local line is less,
and the greater variability can drown it out. More
precisely, an increase of variance of a factor ranging
from 1 (no increase) to 4 has to be paid when a point
runs from the interior (no increase) to the boundary [see
Figures 1-3 of Fan and Gijbels (1992a) and discussion
therein].

The benefits of the local polynomial fits are even
greater in higher dimensional settings, where the
boundary problem is more severe. For example, if the
bandwidth is such that 20% of the data on each end
may be considered “boundary points” in a one-dimen-
sional problem, then the same bandwidth in the cor-
responding d dimensional problem will result in about
(1 — 0.6%9 100% of the data being in the “boundary
region.” For d = 2, this means that 64% of the data
are in the boundary. This quantifies and supports the
first conclusion made in Section 7.

4. DERIVATIVE ESTIMATION

The clever graphical devices developed in Figures
1-5 suggest a similar investigation of the problem of
estimating derivatives of the regression function. There
are three possible estimators: the derivative of the NW
estimator, the derivative of the GM estimator and the
linear coefficient of the local quadratic fit. All of these
are linear estimators. Figure 2 gives a visual compari-
son of the estimators. Clearly, the NW derivative esti-
mator has larger bias, exhibited by the zero crossing
of the weights being too far to the left, while the GM
derivative estimator has larger variance, indicated by
the wildly fluctuating heights, in this nonuniform de-
sign. The local polynomial fit clearly overcomes both
problems.
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2.1: NW derivative weights
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Fic. 2. Effective weights in derivative estimation. Zero noise regression data from random design shown as stars. Effective weights,

for estimation at x = 0.6 shown as other symbols.

5. COMPUTATIONAL ISSUES

An important point not considered carefully in the
Hastie and Loader paper is computational speed. The
standard folklore in smoothing, apparently reflected in
the discussion at the end of Section 1, is that smoothing
splines are much faster computationally (although we
disagree that fast implementations are so simple) but
much less interpretable than kernel methods (with the
asymptotic equivalence of Silverman (1984) being the
most that seems available in this direction). However,
some much faster implementations of kernel and local
polynomial methods have recently been developed, in-
cluding the binned approximations described in Hérdle
and Scott (1992), and the “extended updating algo-
rithm” of Gasser and Kneip (1989). We are currently
doing a careful comparison of these methods and find
them to be far faster than the usual naive implementa-
tions (speed factors in the 100s are available even for
moderately large sample sizes), and they are at least
competitive with smoothing splines.

6. KERNELS VERSUS NEAREST NEIGHBORS

Another relevant issue not yet discussed deeply is
the comparison between “fixed width” and “nearest
neighbor width” window methods. [See Cleveland (1979)
for a local polynomial estimator of the latter type.] The
simplest formulation of these involves using a “uniform
window,” that is, an unweighted fit of a polynomial to
the points in some neighborhood of x. In the one-
dimensional case, there are two methods for determin-
ing this neighborhood. The first involves taking the
smallest neighborhood, whose endpoints are equidis-
tant from x, which contains a given number, say k,
of the observations. We call this the “total nearest
neighbor” method. The other uses a neighborhood
which contains /2 points on each side of x, which we
call the “split nearest neighbor” method. Here we give
examples only in the local average case, but the main
ideas clearly extend to local polynomials.

Visual impression for how these estimators compare
with each other, and with the NW estimator using a
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Fi6. 3. Simulated regression example, true curve is solid, data are plusses. Diagonal dotted lines in 3.1-3.3 show window widths for
NW, jagged dotted lines in 3.2 and 3.3 show window widths for nearest neighbor methods. Estimates are step functions.

uniform kernel, is given in Figure 3. All estimators are
step functions, because of the kernel shape. The two
diagonal dotted lines in Figures 3.1-3.3 show, for each
x, the window width of the NW estimator (chosen to
represent roughly the same amount of overall smooth-
ing). For each x, the point on the upper jagged curve
in Figures 3.2 and 3.3 shows the right endpoint of
the neighborhood over which averaging is performed.
Similarly the lower curve indicates the left endpoint
of the window. All estimates are quite “jagged and
wobbly” because of the uniform kernels, but the NW
estimate is perhaps “more controlled” in its wobbliness.
This is most clear in Figure 3.4, which shows a magni-
fied comparison of the 3 estimators in the region x €
[0.8,1]. Note that the two nearest neighbor estimators
have more “wide flat spots occurring at random” to-
gether with “larger random jumps.” The jagged dotted
curves in Figures 2.2 and 2.3 explain why these happen:
for some reasonably wide intervals, the neighborhoods

remain constant in x, but in some places the neighbor-
hoods change quite abruptly. These effects occur in a
random, uncontrolled fashion because of the chaotic
nature of the design points.

~ We view this as a major drawback of nearest neigh-
bor methods because they lack the simple interpretabil-
ity of kernel methods. The simple “moving average”
intuition becomes harder to accept when the window
changes in such a noninterpretable way.

7. ADDITIONAL COMMENTS
7.1 Unpublished Related Work

Interesting proposals which address the crucial prob-
lem of bandwidth selection can be found in Fan and
Gijbels (1992b) and Ruppert, Sheather and Wand
(1992). The local polynomial fits provide an easily im-
plemented approach to assess the bias and the vari-
ance.
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Useful results concerning analysis of both high-
degree and also high-dimension local polynomial esti-
mators are in Ruppert and Wand (1992).

A forthcoming manuscript by Fan, Gasser, Gijbels,
Brockmann and Engel shows that the efficiency of the
local polynomial regression fit is good even for the
estimation of quite high derivatives and that the local
polynomial fits yield minimax efficient linear smoothers
for estimating the regression function as well as its
derivatives. Moreover, it is seen that for all polynomial
degrees and estimation of any derivative, the optimal
kernel is still the familiar Epanechnikov kernel. This
answer is much simpler than the complicated case wise
solutions developed for kernel estimation in Gasser,
Miiller and Mammitzsch (1985), for example.

7.2 Open Questions

Here is a summary of the open problems discussed
above.

Comment

Hans-Georg Miiller

1. INTRODUCTION

The article by Hastie and Loader (H&L) clearly dem-
onstrates the importance of choosing a good smooth-
ing method in the nonparametric regression context.
The authors provide important insights and further
strengthen the case for the “Local Weighted Least
Squares” (LWLS) method. This article is a continuation
of the extensive discussion of Chu and Marron (1991)
who compared various aspects of different kernel re-
gression smoothers but did not include LWLS.

It can be argued that LWLS is a third type of kernel
method, generalizing the Nadaraya-Watson (NW) ap-
proach. When discussing kernel smoothing, one may
want to refer to a broader perspective which includes
not only nonparametric regression as probably the
most important application but also the estimation of
density, spectral density, hazard, intensity, quantile
density and other functions. It is then useful to have
a general framework available which provides for the
construction of kernels, boundary kernels and band-
width selectors for a whole range of smoothing prob-
lems. Such a framework can be provided for “explicit”

Hans-Georg Miiller is Professor, Division of Statistics,
University of California, Davis, California 95616.

1. What is the best way to compute local polynomial
estimators?

2. Are local polynomials competitive with smooth-
ing splines in terms of speed?

3. Which degree of polynomial should be used?

4. Is it really better to estimate derivatives by the
appropriate coefficient, rather than by differenti-
ating an estimator of the regression?

7.3 Closing Quote

As Theodor Gasser has said (in private conversa-
tion): “We have not found any disadvantages of the
local polynomial method as yet. It should become a
golden standard nonparametric technique.”
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kernel methods, including Parzen-Rosenblatt kernel
estimates in the density and Nadaraya-Watson, Priest-
ley-Chao or Gasser-Miiller kernel estimates in the
regression context. It is not clear whether LWLS could
be included in such a framework, as it is uniquely
geared toward regression.

The LWLS method is of particular interest for change-
point modeling (Section 5), owing to its extraordinary
flexibility which allows, for instance, constructing local
fits satisfying linear constraints within the local regres-
sion model. Moreover, many well-studied features of
(global) linear model fits can be extended to local linear
models, like testing of linear hypotheses, diagnostics,
local goodness-of-fit, modeling of correlation structure
and heteroscedasticity and so on. Along with the many
desirable features demonstrated by H&L, this makes
LWLS a very attractive option for smoothing.

We should not, however, overly rely on a single
method for all possible nonparametric regression prob-
lems. It is clear that a fixed bandwidth LWLS method
has problems with smoothing data like those presented
in Figure 6 of H&L: the “holes” in the data may lead
to inappropriate zero valued or undefined regression
estimates. Window and bandwidth choices adapting to
design nonuniformities are needed in such cases. This
may lead to a fairly complicated smoother, so that
some of the initial simplicity is lost for highly nonuni-



