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Comment

Ross L. Prentice and Lloyd A. Mancl

We would like to make two general points as well
as a few details concerning the stimulating paper by
Garrett Fitzmaurice, Nan Laird and Andrea Rotnitzky
(hereafter FLR). Our first general point will be to argue
in favor of joint estimating equations for mean and
covariance parameters, as compared to estimating
equations for mean and “mixed model” canonical pa-
rameters, for “marginal” parameter estimation in multi-
variate response regression situations. Our reasons
include reproducibility of the estimation procedure,
ease of calculations and, importantly, ease of regres-
sion modelling and parameter interpretation. Second,
we will argue that the problem of response variables
missing at random, but not completely at random,
introduces an order of magnitude greater complexity
into the estimation problem. We appreciate the authors
drawing attention to this important topic, but believe
that additional work is required to compare possible
data analysis methods.

ESTIMATING EQUATIONS FOR MEAN PARAMETERS
AND DEPENDENCE PARAMETERS

The issues discussed and reviewed by FLR do not
seem intimately tied to binary, as opposed to more
general, multivariate response vectors, nor do they
seem intimately tied to longitudinal data. Hence, our
comments will address regression methods for general
multivariate response vectors.

First consider quadratic exponential models (e.g.,
Prentice and Zhao, 1991) for a response vector yi =

. T,
(Y1 - . - » Yrnp) having mean vector ui(f) = (up1, ... ,
rny) and covariance vector ai(B, @) = (611, Gri2, .. .,
Or22y - « - » Oknpn), Where B and a are parameter vectors

to be estimated. The class of quadratic exponential
models can be written

Pi{yw; ur, on, ci(+)}

(1) T, T |
= Ak‘lexp{ykf)k + widr + ¢ (yh)},

where wi = (yi1, Yu1¥he, . . . » Yie, YasYs, - - . ), calys) is a
shape parameter function involving products of three
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or more elements of y;; 6, = 0x(uz, o) and A, = Au(ur, o2
are canonical parameters; and A, = Ay[0, Az, cr(*)] is a
normalizing constant. The marginal distribution of any
subset of y, can easily be shown to have the same
form as (1), hence the semiparametric class of models
(1) has a desirable reproductive property. Also for any
specified shape function cx(+), (1) is parametrized only
in terms of the mean and covariance parameters for
Y, yielding the type of analogue of the multivariate
Gaussian distribution for discrete or mixed data as-
sumed to be lacking by FLR.

The nice feature of the class of models (1) is that
joint score equations for the parameter vectors # and
a that characterize the mean and covariance of y; can
be written, in a notation slightly more general than
that used by FLR, as

(2) SDiVilfi=0
k=1
where
D, = 3,uk/aﬁT 0
= \00,/0BT 004007
_ [ vary cov (e, ar) (v
V = y fh - ]
cov(sk,yk) var sy Sk — O

and where s} = (sg11, Sk12s - - - » Skugns) a0 S = Sp5(8) =
(Yri — mryr; — ugj). Direct application of these score
equations is hampered by the fact that V; is typically
a complicated function of all model parameters, and
one would need to specify the shape function cx()
and apply a double iterative computational procedure.
Instead one can specify “working” models for V2 =

* coV(yr, sz) and Vg = var sy, giving rise to a conceptu-

ally and computationally simple estimation procedure
that generalizes the seminal results of Liang and Zeger
(1986) from mean parameters to mean and covariance
parameters. As we have noted previously (e.g., Zhao
and Prentice, 1990; Prentice and Zhao, 1991), the solu-
tion £ to (2) need not be consistent under covariance
model misspecification. We agree with FLR that this
is a serious drawback, and one that applies also to
FLR’s mixed model approach if elements of the re-
sponse vector are missing or if response vectors are of
variable dimension. However, as we have noted in the
references just cited, the inconsistency in J solving (2)
is easily eliminated by requiring D2 and V32 to be
identically zero, in which case (2) reduces to the pair
of equations
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@) ’Z:ID{U Vit (e — ) =0,

kEDl?zz Vi (se —ar) =0,

=1

that formalize the approach advocated by Liang and
Zeger (1986) in regard to covariance parameter estima-
tion. We believe the solutions (4, &) to (3) to have broad
applicability for “population-averaged” regression pa-
rameter estimation with multivariate data.

One might be concerned that the solutions to (3)
may be markedly less efficient for § estimation than
are the solutions to (2). While one can undoubtedly
construct examples where such is the case, in most
applications there is likely to be little usable informa-
tion about the mean parameter f§ in the vector s of
“empirical covariances.” Specifically, in a rather exten-
sive set of simulation exercises (Mancl, 1992) there
appeared to be very little potential for efficiency gain
in using (2) rather than (3). In fact, some circumstances
were encountered in which (2) involved noticeable effi-
ciency loss for f-estimation as compared to (3) even
when the variance model o (or V3i11) was correctly
specified. This apparently happened because of inap-
propriate working models for V3i2 and Vige which as-
signed undue weight to the contribution of sz, k = 1, 2,

.., nin B-estimation. Hence, even though the solutions
to (3) do not have a known maximum likelihood inter-
pretation, we believe they enjoy considerable efficiency
robustness, particularly if o} is fairly accurately speci-
fied.

In order to obtain a maximum likelihood interpreta-
tion for the first set of equations in (3), FLR consider
a partly exponential or-mixed parameter model, which
in the notation of Zhao, Prentice and Self (1992) can
be written

(4) Pulys; ur, A) = A7 'exp{ys 0x + calys, A},

where c;, is now a parameter function involving prod-
ucts of two or more elements of y; and a fixed (indepen-
dent of k) parameter 1. This semiparametric family is
generally not reproductive. However, score equations
for the mean parameter S are precisely the first set of
equations in (3). In order to reduce (4) to a model with
a finite parameter vector FLR, following Fitzmaurice
and Laird (1993), set cx(yz, A) = wrd and propose that
B and A be estimated by solving the likelihood score
equations

S Di Vit (yr — ux) =0,
(5) i=1 :
T
roE(w
Z% {wr — E(wi) — FeVi'(ye — )} =0,
k=1

where F, = cov(we, yz). We would like to argue the
merits of (3) rather than (5).

First, and most important, (3) involves the regression
modelling of marginal means and covariances for which
considerable intuition may be available, whereas (5)
involves the regression modelling of a fixed parameter
A of rather difficult interpretation, as FLR note. With
binary response data A can be given a log conditional
odds ratio interpretation, but this interpretation may
not help very much, particularly if the dimension of
the response vector, and hence if the number of binary
variates conditioned upon, is variable for 2 = 1,...,n.
If the elements of y; are continuous on the entire real
line, then A can be given an interpretation in terms of
the inverse of the variance of y;, but such inverse is
not so readily modelled as var y; itself and can only
implausibly be modelled using a fixed parameter A if
the dimension of y; is variable.

A second, possibly minor, reason for preferring (3)
to (5) is computational. Upon specifying the mean and
covariance matrix and a working variance model V2,
the solution to (3) involves a simple Newton-Raphson
iteration, whereas a maximum likelihood solution to
(5) evidently requires some more complex procedure
such as double iteration or the use of an iterative
proportional fitting algorithm.

The estimates of mean parameters § are consistent
under (3) even if the model is otherwise misspecified,
but under (5) only if the response vectors are of com-

‘mon dimension. Furthermore, it is evident from the

first equations in (3) and (5) that these estimators are
identical aside from different estimators of the weight
matrix var y, = V}11. Since asymptotic relative effi-
ciencies for f will quite generally be independent of
the precision with which parameters characterizing
Vi1 are estimated, it seems evident that (3) and (5) are
distinguished primarily in terms of the appropriateness
of the form assumed for V;;. We see no reason to
expect that a more accurate approximation to the form
of V11 can be achieved by introducing a rather difficult
to interpret parameter A, as does (4) and (5), as com-
pared to direct modelling of Vi1, as does (3), the au-

" thors’ efficiency calculations notwithstanding.

On the other side of the argument, FLR draw a
distinction between (3) and (5) in terms of constraints
on parameters (with binary response data). Given the
mean vector, the covariance vector for multivariate
binary data does satisfy a complicated set of con-
straints that need to be kept in mind when modelling
o in (3). These same constraints must, of course, be
met by the values of cov y; corresponding to (4). It
seems unlikely that a fixed parameter A, with cx(y, A)
= wiA can span the space of all possible covariance
matrices, given the corresponding mean vectors, and,
furthermore, we question whether all possible real values
for 1 are permissible if the dimension of y, varies.

Finally, FLR point to the ability to use likelihood
ratio tests and other parametric likelihood procedures
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with (5). In comparison, only Wald- and score-type
estimation procedures attend the estimating equations
(3). We suspect that this distinction is rather elusive
since likelihood ratio procedures and parametric vari-
ance formulas, for example, are unlikely to possess the
robustness to model misspecification that provides a
key motivation for the estimation procedures under
discussion.

As a final argument in favor of the use of (3), one
can note that even though the paper of FLR and our
comments above focus on mean parameter estimation,
there are a variety of problems in which response vari-
ances, as well as means, are of substantive interest.
These include, for example, studies of the dependence
among disease rates in pedigree cohort studies, and
studies of recombination rates in genetic linkage analy-
sis, and even some problems in longitudinal data analy-
sis. It seems apparent that equations of the form (2)
or (3) will be more useful than equations of the form
(5) for covariance estimation and covariance model
building.

MISSING RESPONSE DATA

As mentioned above, we commend FLR for drawing
attention to the missing response data problem, which
is common in longitudinal data and in other multivari-
ate response data settings. The missing completely at
random (MCAR) special case is typically easily accom-
modated by available statistical procedures, as it is
here by the estimating equations (3). However, the

Comment-

estimate of the mean parameter 8 from (5) generally
ceases to be consistent if elements of y, are MCAR,
owing to the lack of reproducibility of (4), as FLR
acknowledge.

The estimation problem becomes conceptually much
more difficult if response variables are missing at ran-
dom (MAR), but not completely at random. Now it is
no longer sufficient to specify marginal moments (i.e.,
means and covariances) as conditional moments for
missing components of the response vector, given the
value of the corresponding observed components, are
required. If each element of the response vector is
subject to MAR, there seems little alternative but to
fully specify a model for the joint distribution of y;
and use parametric likelihood procedures as FLR have
done. One can nevertheless ask which parametric
model is likely to be most convenient and useful with
MAR data. For example, what advantages or disadvan-
tages would the authors’ proposed method based on
(4), with ci(yz, A) = wrA, have relative to the application
of likelihood procedures to (1), with cx(yz) = 0 or some
other specified value. Neither method could ensure
consistency of f-estimation under model misspecifica-
tion. Model specification would presumably be easier
based on (1) for reasons described above (i.e., parameter
interpretation). There may be differences in computa-
tional convenience or in properties such as bias and
efficiency. We would like to encourage FLR to pursue
such comparisons in order to yield a better understand-
ing of data analysis options in MAR situations.

Scott L. Zeger, Kung-Yee Liang and Patrick Heagerty

We congratulate Fitzmaurice, Laird and Rotnitzky
(hereafter FLR) for their interesting overview of recent
work on statistical models for regression analysis with
longitudinal binary responses. The paper adopts what
we have termed the marginal approach to regression
where the marginal expectation rather than the condi-
tional expectation given other responses in the vector
for an individual is modelled as a function of explana-
tory variables. Whereas, previous work (e.g., Liang and
Zeger, 1986; Prentice, 1988) has focused on the first
two moments of the response vector, FLR propose a
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method in which the entire likelihood is specified. They

- study a mixed model in which the regression parame-

ters describe the marginal means but the association
is measured in terms of conditional pairwise odds ratios
given the other responses. Alternatively, association
can be measured in terms of pairwise correlations or
marginal odds ratios. FLR correctly point out the limi-
tations of measuring association between binary obser-
vations in terms of correlations.

FLR compare their likelihood approach to a multi-
variate analogue of quasi-likelihood called generalized
estimating equations or GEE in which only the first
two moments are specified. FLR show that their likeli-
hood formulation leads to using the same GEE with a
particular weighting matrix. They compare the asymp-
totic efficiency of GEE using their weighting matrix
and one in which pairwise correlations are assumed to



