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Regression Models for Discrete Longitudinal

Responses
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Abstract. In this paper, we review analytic methods for regression mod-
els for longitudinal categorical responses. We focus on both likelihood-
based approaches and non-likelihood approaches to analysing repeated
binary responses. In both approaches, interest is focussed primarily on
the regression parameters for the marginal expectations of the binary
responses. The association or time dependence between the responses is
largely regarded as a nuisance characteristic of the data. We consider
these approaches for both the complete and incomplete data cases.
We describe the generalized estimating equations (GEE) approach, a
non-likelihood approach, and some proposed extensions of it. We also
discuss likelihood-based approaches that are based on a log-linear repre-
sentation of the joint probabilities of the binary responses. We describe
how a likelihood-based “mixed parameter” model yields likelihood equa-
tions for the regression parameters that are of exactly the same form as
the GEE. An outline of the desirable features and drawbacks of each
approach is presented. In addition, we provide some comparisons in
terms of asymptotic relative efficiency for the complete data case, and
in terms of asymptotic bias for the incomplete data case. Finally, we make
some recommendations concerning the application of these methods.

Key words and phrases: Correlated binary data, generalized estimating
equations, longitudinal binary data, marginal models, repeated measures.

1. INTRODUCTION

In longitudinal studies, repeated observations of a
response variable and a set of covariates are made on
individuals across occasions. Because repeated mea-
surements are made on the same individual, the re-
sponse variables will usually be positively correlated.
When analysing data from longitudinal studies, this
time dependence must be accounted for. The focus of
this paper is on longitudinal regression models, in which
the expectation of the response is related to a set of

’ covariates by some known link function. For example,
when the responses are continuous, a common choice
is the identity link function. When the responses are
binary, a natural choice is to use a logit link function,
although other link functions can be used. In longitudi-
nal studies, the covariates can be both time-stationary,
that is, constant across occasions, and time-varying.

In order to fix these ideas, consider the asthma
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studies conducted by the Environmental Protection
Agency’s Community Health and Environmental Sur-
veillance System (EPA-CHESS) and described in Korn
and Whittemore (1979). These are longitudinal studies
of the adverse effects of air pollution on rates of asthma
attacks. In these studies, daily records of the presence
or absence of an asthma attack were recorded on each
participant, in addition to measurements of air pollut-
ants and meteorological variables, such as daily tem-
perature and humidity. Here, the aerometric and
meteorological variables are time-varying covariates,
since they can change from day to day, whereas individ-
ual characteristics, such as (initial) age, sex and eth-
nicity, are time-stationary. One of the objectives of
this study was to determine the effects of outside air
quality on rates of asthma attacks. Since we are inter-
ested in relating the expectation, here the probability
of an asthma attack, to the covariates, a regression
model is appropriate. This example is introduced for
illustrative purposes only and is not discussed any
further; other examples can be found in Liang, Zeger
and Qaqish (1992).

We distinguish longitudinal studies, where the as-
sociation between the vector of responses, Y;, is of
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scientific interest, from studies where the association
parameters are considered to be a nuisance characteris-
tic of the data. In the former, the parameters modelling
cov(Y;) or the conditional expectations, E(Y|y:s, s <),
are of primary interest, while in the latter interest is
focussed primarily on the regression parameters for the
marginal expectations, E(Y;). Regression or marginal
models are the focus of this paper.

When the response is continuous and assumed to be
approximately Gaussian, there is a general class of
linear models that is suitable for analyses. Ware (1985)
provides a comprehensive description of these models.
However, when the response variable is categorical,
fewer techniques are available. This is due in part to
the lack of a discrete multivariate analogue that, as
with the multivariate Gaussian, can be parameterized
only in terms of mean and covariance parameters that
vary independently in separable parameter spaces. In
addition, with binary responses, the usual choice of
nonlinear models for the means makes the parameters
of random effects models difficult to interpret. Random
effects models are far less well developed for binary
responses than for the case where the responses are
continuous. Laird (1991) provides a detailed descrip-
tion of some likelihood-based approaches to modelling
categorical data structures. Recently, there has been
considerable interest in the generalized estimating
equations (GEE) approach to analysing longitudinal
binary responses, which does not require the complete
specification of the joint distribution of the repeated
responses.

The problem of missing or incomplete responses is
ubiquitous in longitudinal research. Incomplete or un-
balanced data can often arise as a result of attrition,
but can also arise by design, for example, in “rotating
panel” designs (Laird, 1988). In many situations, it is
not possible to identify the missing-data mechanism.
A number of alternative approaches has been proposed
for analysing incomplete longitudinal binary responses.
One very naive approach is to restrict analyses to only
those subjects measured at all occasions. However,
this approach can lead to substantial biases, and is not
usually very efficient (Little and Rubin, 1987). Another
approach is to ignore the missing data completely, and
base the analyses on only the observed portion of the
data. This approach is usually computationally simple,
requiring only a slight modification of existing methods
for analysing complete data. However, in many in-
stances, this approach may be inefficient, and can also
introduce bias. Another alternative for analysing in-
complete responses is the likelihood approach. This
approach retains the notion of a complete set of data,
by imputing the missing responses from their con-
ditional distribution given the observed responses.
However, this approach can be sensitive to model mis-
specification.

In this paper, we review the recent literature on
both likelihood-based approaches and non-likelihood
approaches to analysing repeated binary responses.
The objective is to give a brief survey of the different
regression models that have recently been proposed,
outlining the desirable features and drawbacks of each
approach. Furthermore, we provide some comparisons
in terms of asymptotic relative efficiency and bias. In
Section 2, we introduce some notation and describe
the main features of the different regression models.
In subsection 2.1, we briefly describe the generalized
estimating equations approach, a non-likelihood ap-
proach, and some proposed extensions of it. Next,
we consider likelihood-based approaches to analysing
longitudinal binary data. In subsection 2.2, we describe
two different multinomial representations of the multi-
variate binary response. In subsection 2.3, we discuss
likelihood-based approaches based on a log-linear rep-
resentation of the joint probabilities of the binary
responses. We describe a likelihood-based “mixed pa-
rameter” model that yields likelihood equations for the
regression parameters that are of the same form as
the GEE. In Section 3, we compare the GEE and
“mixed parameter” models in terms of their asymptotic
relative efficiency. Finally, in Section 4, we consider
the behavior of these estimators when there are incom-
plete or missing responses. We examine their asymp-
totic bias both as a function of the amount of model
misspecification, and as a function of the degree of
missingness. In Section 5, we summarize the similari-
ties and differences between the GEE and likelihood-
based approaches, and make some recommendations
concerning their application.

2. REGRESSION MODELS FOR LONGITUDINAL
BINARY RESPONSES

In longitudinal studies, there is an implied ordering
of the times of the repeated observations on each indi-
vidual. Initially, we assume that each of N individuals

- is observed at the same T occasions. Then, assuming

the responses are binary, we can form the T' X 1 vector
Y; = (Yy, ..., Yin)7, where the binary random variable
Y, = 1 if subject i has response 1 (success) at time
T =t, and 0 otherwise. Each individual has a P X 1
covariate vector x;; at occasion ¢, and we let X; =
(xi1, - - . , x:7)T represent the T X P matrix of covariates
for individual i. Thus, the data for the ith individual
consists of the observation (Y;, Xj).

The marginal distribution of Y; is Bernoulli,
fyi| X)) = explyif:: — log{l + exp(6:)}], where we as-
sume 6, = log[u:/(1 — wie)] = x::"B, and wi: = plB) =
E(Y:) = pr(Y;; = 1|xi, B) is the probability of success
at time ¢; and B is a P X 1 vector of parameters. With
binary responses, the logit link function is a natural
choice although, in principle, any link function could
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be chosen. We can group the u;(8) together to form a
vector u{f) containing the maiginal probabilities of
success, ui{p) = E(Y:) = (ui, ..., w7". In the preced-
ing, the only assumption we have made concerns the
marginal distribution of Y.

If the responses are naively assumed to be indepen-
dent, then the joint distribution of the binary responses
is

T T
FlydX) = explzyitou — log(1 + exp(6i) }}.
=1 =1

Then, an expression for the derivative with respect to
B, of the ith individual’s contribution to the log-likeli-
hood can be obtained by applying the chain rule,

o _ (o0 30

a8 \op/ ou: 36;

Using properties of exponential family distributions,
the derivative of the log-likelihood with respect to the
canonical parameters, 6;, is

al;

—=yi—EY) =y —w,
6 Y (Y) =y —u

and furthermore,

% = cov(Y3).
36;

Thus, we can write

%: %T -1 . R .
3B < >var (Yily: — w).

B
Since we have assumed that 6; = X8,
ous\”
<ﬁ> = X iTAiy
ap

where A; = diag[var(Ys), . .., var(Y;7)], a T X T diago-
nal matt;ix. Thus, the maximum likelihood estimate
(MLE), B, is the solution to

v al; — %(aﬂifvar—l(y,)( i— )
Hop~ S\ T
)
N
= 2 XTly: — w) =0,
i=1
where y; depends on §.

In spite of the fact that the repeated measurements
on the same individual are correlated, ordinary logistic
regression maximum likelihood estimation (which as-
sumes the repeated measures are independent) produces
estimates which are consistent and asymptotically nor-
mal (Liang and Zeger, 1986). However, the joint
likelihood under independence ignores the possible cor-
relations among the binary responses. Consequently,
the inverse of the estimated information matrix can
give inconsistent estimates of the asymptotic variance
of estimated parameters. In general, the standard er-

rors of the time-stationary effects tend to be underesti-
mated, while the standard errors of the time-varying
effects tend to be overestimated. To circumvent this
problem, Liang and Zeger (1986) propose using a “ro-
bust” estimate of the variance of the estimated parame-
ters, which is consistent regardless of the true
correlation between the responses. This “robust” vari-
ance was also proposed by Huber (1967), and more
recently by White (1982) and Royall (1986), and is
described in the next section. Thus, one simple ap-
proach to analysing longitudinal binary responses is to
use ordinary logistic regression, followed by a “robust”
variance correction. When the correlation between re-
sponses is not too high, Zeger (1988) suggests that
these estimators should be highly efficient.

2.1 Generalized Estimating Equations Approach

To gain more efficiency in estimating the parameters
of the marginal model, Liang and Zeger (1986), Zeger
and Liang (1986) and Prentice (1988) have developed
moment-based GEE. The GEE approach produces con-
sistent estimators of the regression parameters, under
only the correct specification of the form of the mean
function, u;, of the vector of responses for each individ-
ual. The GEE for 8 are of the form

N
(2) UPB) = 2 DFVi Ny — ) = 0,

i=1
where D; = du;/of”, and V; is a “working” or approxi-
mate covariance matrix of Y;, chosen by the investiga-
tor. The “working” covariance matrix in (2) can be
expressed in the following form:

Vi = AV*®Ria)A}?,

where A; = diag[var(Yy), . . ., var(Yi7)], Rie) = corr (Y3)
is a T X T “working” correlation matrix, and o repre-
sents a vector of parameters associated with a specified
model for corr(Y;). Note that the form of the estimating
equations in (2) is similar to the quasi-likelihood esti-

mating equations described in McCullagh and Nelder

(1989, Ch. 9). With a binary response vector, these

equations simply generalize the ordinary logistic re-

gression estimating equations given in (1) by introduc-

ing a “working” or approximate correlation matrix,

®Ric). This leads to estimating equations of the form
N

(3) Up) = 2, XFA Vi Hyi—uw) = 0.
i=1
The GEE approach allows the time dependence to
be specified in a variety of ways. Some common speci-
fications for corr(Y;) are as follows:

1. Ria) =1I, where I is a T X T identity matrix.
This corresponds to the “working independence”
assumption, and gives estimating equations iden-
tical to (1).



REGRESSION MODELS FOR DISCRETE LONGITUDINAL RESPONSES 287

2. Exchangeable correlation: corr(Yi, Yi) = o
s # .

3. Autoregressive correlation: corr(Yi, Yi) = oS~y
s #t.

4. Unstructured or pairwise correlation: corr(Y,
Y,) = as; ais a T(T — 1)/2 X 1 vector containing
all the pairwise correlations.

Many other correlation structures can be considered,
and « can also depend on subject-specific covariates.
Thus, the specification of ®{(«) can be expressed more
generally as A(®;) = Zia, where Z; is a set of subject-
specific covariates, and A(®;) is some suitable link func-
tion (e.g., inverse hyperbolic). Alternatively, Z; might
represent a common design matrix from the time de-
pendence.

Before discussing the estimation of ®{a), we note
that alternative specifications of the time dependence
have been proposed. Lipsitz, Laird and Harrington
(1991) and Liang, Zeger and Qaqish (1992) suggest
modelling the association by the pairwise marginal
odds-ratios, y; = (yug, Yias, - - - » Var—17), Where

E(YisYit)E[ (1 - Yis) (1 - th)]

% BYa( - YIBGO - Y]

With binary responses, the marginal odds-ratios are a
natural measure of association, and In(y;) can be mod-
elled as a linear function of covariates. Furthermore,
given (u;, 7)), we can always construct ®; since, given
the means, the pairwise correlations are a one-to-one
function of the pairwise marginal odds-ratios.

In order to estimate ®;, define a T(T — 1)/2 vector
of empirical correlations, r;, with elements

- (Yis-_ ,uis) (Yit - llit) )
[llis(l - llis)llit(l - ,Llit)]ll2

Note that E(ris) = pise = corr(Yis, Yi). If o is known,
the only unknown quantity in (2) is § and the solution
to (2) is a consistent estimate of S. However, o is
usually unknown and must be estimated. To estimate
a, a second set of moment estimating equations similar
to (2) can be used, .

Tist

' N
(4) Ula) = 2 AB [ — pi(a)] =0,
i=1
in which pil@) = (paz, pus, - - - » Pur—11) 3 Ai = api(a)daT,
and B; = cov(r;), a “working” covariance matrix for r.
Although r; is a function of B, f is assumed fixed in
(4). The estimate (&, A is the solution to (2) and (4),
and can be obtained using a modified Fisher scoring
algorithm. Liang and Zeger (1986) let B; be the TXT
identity matrix. In many cases, this leads to simple
non-iterative methods for estimating «. For example,
if a common pairwise correlation is assumed with

pia) = p, then p= YN_.r/N. Furthermore, the choice
of estimator for a has no effect on the asymptotic
efficiency for estimating g (Newey, 1990). Thus, in
general, the estimate (&, /) can be obtained by iterating
between a modified Fisher scoring algorithm for § and
moment estimation of « using .

Finally, if the time dependence has been correctly
specified, so that V; = cov(Y;), then a consistent esti-
mate of the asymptotic variance of B is given by
H,~Y(f), where

N N
H\(p = Z(DA;T VD) = X TA, VT TAX),
i i=1

i=1

where V; is V; evaluated at (§, 6), and D; and A, are D;
and A; evaluated at f, respectively. However, if the
“working” correlation, Ri(c), is misspecified, Hi‘l(,l?) can
give inconsistent estimates. Liang and Zeger (1986)
suggest using the following “robust” estimate:

H Y PHAH: (),

where

N
Hy(f) = DTV Uy — flly: — )V 'D;)
=1

(XTAV Yy: — ly: — 2TV AX).

M=

-~
1l

This estimate is “robust” since it is consistent even if
the “working” covariance, V;, is not equal to cov(Y)).

The GEE approach has a number of attractive fea-
tures that can be summarized as follows. First, it
provides a consistent estimate, B, that only requires
that the model for the mean, u:(f), is correctly specified.
Thus, regardless of whether the “working” correlation
is correctly specified, consistent estimates of the re-
gression parameters are obtained. In addition, robust
variance estimates, that are consistent even when the
“working” correlation is misspecified, can easily be ob-
tained.

Recently, Zhao and Prentice (1990) and Prentice and

" Zhao (1991) have described extensions of the GEE

methodology to allow for joint estimation of the mean
and covariance parameters. This leads to estimating
equations of the form

T -1
3#;'
N[5 O
(5) aﬂ Vi Ci yi — Ui = O
&\ dai da; |\ CT Bi| \si—ai ’
i da

where Sis; = (Yis — wis)(Yie — i)y Oist = E(Sise), Ci=
cov(Y;,S), and B; = cov(S;). The matrices C; and B; are
“working” covariance matrices, expressed as a function
of the first two moments. Liang, Zeger and Qagish
(1992), specifying the time dependence in terms of
marginal odds-ratios, describe an equivalent set of esti-
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mating equations for jointly estimating the mean and
marginal association parameters. The main advantage
of these approaches is that they lead to more efficient
estimates of both f and «, provided the model for both
the mean and the marginal association is correctly
specified. However, a serious drawback is that § may
fail to be consistent when the model for the marginal
association is misspecified even if the model for the
mean is correctly specified. This is in contrast to (2)
which only requires the correct model for the mean in
order to obtain consistent estimates of . Furthermore,
given (f, a), specification of (C;, B;) requires additional
assumptions about the third and fourth moments.
Thus, in longitudinal studies where interest is focussed
primarily on the regression parameters for the mar-
ginal expectation, the solution to (5) may yield inconsis-
tent estimates of S.

In the next two sections, we consider likelihood-
based approaches to analysing longitudinal binary
data. Before describing likelihood-based models, we
first discuss different multinomial representations of
the multivariate binary response.

2.2 Multinomial Models for Multivariate
Binary Responses

The GEE approaches described above are not like-
lihood-based, and do not require the complete spe-
cification of the joint distribution of the repeated
responses. They only require specification of the form
of the mean function. Next, we consider likelihood-
based approaches that are based on a complete repre-
sentation of the joint probabilities of the binary
responses.

The joint distribution of an individual’s binary re-
sponses at the T times is multinomial with a 27 proba-
bility vector, m; = {my,j,...;;}. The means, p;, are
related to m; by E(Yi) = e = Lj,»emyj, . - . jr- The fully
parameterized distribution has 27 — 1 parameters. In
this section we outline two particular parametric de-
scriptions of the joint distribution of a set of binary
responses. The first, suggested by Bahadur (1961),
describes the joint distribution in terms of the marginal
means, 4;, and the marginal correlations, p;. An alterna-
tive way to describe the joint distribution is in terms
of the canonical parameters, that is, conditional logits
and log odds-ratios. We refer to the latter as the log-
linear representation of the joint distribution.

2.2.1 Bahadur representation

Bahadur’s representation of the joint distribution for
Y; can be written as

T
Hﬂfjf(l — ) Vi <1 + D piresen + 2 pinesenen
=1 ‘ P <kl

+ - +paz...renen - - 'eiT>y

where e; = (Y — )l [u; (1 — ﬂij)]llz; and py =

E(eijeik), ceey P12 T Eleaeis - - - en). Thus, in
terms of the 27 — T — 1 marginal correlations, p; =
(pir2, pisy - .., Piz-..7), the joint distribution of the
responses can be evaluated in closed form. For exam-
ple, with a trivariate response, Y; = (Yi, Yi, Yis)7, the
joint probability pr{Y; = 1,Y;; = 1,Y;3 = 1} is repre-
sented as

Mirthios + Wispting + Mistting — 2piilhioltis
+ pros{pin(l — ppin(1 — podpis(1 — pis) 2,

where i = pr{Yis = 1,Y = 1} = pisttic + pee{Bpais(1 —
il — pir) }V2. The parameter piz3 can be thought
of as a “three-way” association parameter. The above
specification allows for varying degrees of dependence
among the Y;.. For example, if all of the pairwise and
“higher-way” marginal correlations are set to zero, we
have the “independence” structure. A feature of Baha-
dur’s representation, however, is that the marginal
correlations must satisfy certain linear inequalities de-
termined by the marginal probabilities. That is, the
marginal correlations are constrained by the marginal
probabilities.

2.2.2 Log-linear representation

An alternative to Bahadur’s representation is the
log-linear specification (e.g., Cox, 1972 and Bishop,
Fienberg and Holland, 1975, Ch. 2.5), which assumes
that the joint distribution of Y; is of the form

6)  fly;, ¥;, Q) = exp{¥Fy: + Qfw; — A(¥;, Q)},

where W; = (YuYs, ..., Yir1Yir, ..., YuYe - - - YiT)T
is a (2T — T — 1) X 1 vector of two- and higher-way
cross-products of Y;, ¥; = (v, . . ., wi)T and Q; = (w2,

., Wir—11s -.. , Wiz ... 7)7 are vectors of canonical
parameters, and A(¥;, Q) is a normalizing constant,
exp{A(¥,Q)} = Dlexp(¥fy; + Qfw,), where summa-
tion is over all 27 possible values of Y;. The parameters
of ¥; have interpretations in terms of conditional proba-

" bilities, ;- = logit{pr(Y; = 1|Yi;; = 0,s #r)}, while the

parameters of Q; can be interpreted in terms of log
conditional odds-ratios and contrasts of log conditional
odds-ratios. That is,

pr(Y;,=1,Y;, =1|Y;, = 0,t#r,s)
Pr(Yir = Oy Yis = 0|Yit = 0’ t#—'?‘,S)

pr(Y'ir = 17 Yvis = OIKt = 0,t=/=r,s)
pr(Y'ir = Oy Yis = llxt = O,t;&r,s) ’

and so on. Note that y; is a function of both ¥; and Q.

The above form of the joint distribution allows for
varying degrees of dependence among the Y. For
example, if all of the two- and higher-way association
parameters are set to zero, we have the independence
model. On the other hand, if Q; = (w2, .. ., Wir-11, . . -,
wiz ... 7%, we have a model that is saturated in the

explwirs) =
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association parameters. Between these extremes, we
can consider parsimonious models for the time depen-
dence. An important special case of (6) is the “quadratic
exponential family” or pairwise model, obtained by
fixing the three- and higher-way association parame-
ters of Q; at some value, typically zero (Zhao and
Prentice, 1990). Markov structures are also easily mod-
elled in this framework. An advantage of this represen-
tation is that the time dependence parameters are not
constrained by the marginal probabilities. However, a
drawback of this representation is that, unlike Baha-
dur’s representation, it is not “reproducible.” That is,
if Y7 is a T* X 1 subset of Y;, where T* < T, then

(M) fly) # exp{¥;Tyi + OTw] — A(¥;,Q0)},

where ¥; is the corresponding 7° X 1 subset of ¥;
and QF and w; are the corresponding subsets of Q;
and w; respectively. In Bahadur’s representation, the
parameters are marginal moments and thus it is repro-
ducible, while the parameters of the log-linear represen-
tation are not expressible in terms of the marginal
moments. That is, f(y;) depends on the entire (¥;,Q;).

2.3 Likelihood-Based Approaches

Zhao and Prentice (1990) propose an approach that
is based on the “quadratic exponential family,” with
the three- and higher-way association parameters set
to zero. When these parameters are set to zero, (6)
holds with VV, = (YilYiz, ey YiT—lYiT)T a T(T - 1)/2
X 1 vector of two-way cross-products of Y;, and ¥; =
(wi, . - ., wir)T and Q; = (wirg, - - . , wir-1,7)7 the vectors
of canonical parameters. Zhao and Prentice (1990) pro-
pose to model the mean, u;, and the covariance of the
response as a function of covariates by some specified
link function. They make a one-to-one transformation
from (¥;, Q;) to the moment parameters (u;, 0;) in order
to obtain the likelihood equations. Using this approach,
Zhao and Prentice (1990) derive the following set of
likelihood equations for # and «, the parameters in-
dexing u; and g;, respectively,

T -1
N B 0
ap V. K; Vi — i
8 =0,
® ,-; 30i 30; | \ K Ui| \si—a
f du

where Si;; = (Yie — wisl(Yie — i), Gisr = E(Sis), K; =
cov(Y; S;), and U; = cov(S;). Note, a 1-1 transformation
from (¥;, Q) to (u;, 6;), where g; is the vector of pairwise
covariances, results in a set of likelihood equations
identical to (5). The equations given by (8) yield pseudo-
maximum likelihood (PML) estimates (§, &), which are
maximum likelihood estimates when the true three-
and higher-way association parameters are zero. A
serious drawback of this approach, however, is that
consistency of f (and &) requires the correct specifica-
tion of the model for both the mean and the pairwise

marginal correlations. Thus, this pseudo-maximum
likelihood approach suffers from the same drawback
as the joint generalized estimating equations for (8, ).
Namely, estimates of § may be asymptotically biased
when the time dependence is misspecified.

To avoid this problem, Fitzmaurice and Laird (1993)
proposed a “mixed parameter” model based on the
general log-linear representation

ﬂyi; \Pi) Ql) = eXp{T;T i + Qlth - A(‘Pi) Qi)})

where W; = (YaYi, ..., Yir—1Yir, ..., YaYiu ... Yi)'
is a (2T — T — 1) X 1 vector of two- and higher-way
cross-products of Y;, ¥; = (wi1,...,wn)” and Q; =
(a)ilz, ey T—1,Ty + « + a)ilz,,,T)T are vectors of canoni-
cal parameters. With their approach, a model for the
mean, u;, and the canonical association parameters, Q;,
is assumed and likelihood equations are obtained via
the 1-1 transformation from (¥;, Q;) to (w;, ). That is,
the “mixed parameter” model is parameterized in terms
of the mixed mean and canonical association parame-
ters. This model can be viewed as a special case of the
class of partly exponential models introduced by Zhao,
Prentice and Self (1992).

The mean parameters are modelled, in the usual way,
as a logit function of a set of covariates, while the
canonical association parameters can be expressed as
a function of a parameter vector a and a set of subject-
specific, time-stationary, covariates Z; Alternatively,
Z; might represent the design matrix for an association
structure that is assumed to be the same for all individ-
uals. In principle, any link function could be used; a
natural one in this setting is a linear link function,
Q; = Z;o. Finally, note that although y4; and Q; com-
pletely specify the joint distribution of the binary re-
sponses, there is, in general, no closed form expression
representing the joint probabilities as a function of u;
and Q; (Bishop, Fienberg and Holland, 1975, Ch. 3.4.2).
However, Fitzmaurice and Laird (1993) describe how
this problem can be circumvented using the iterative

_proportional fitting algorithm (Deming and Stephan,

1940).
Fitzmaurice and Laird (1993) derive the following
set of likelihood equations for (8, a):

T
N fow 0 7! 0
9 9, : ! YimHio) — s
( ) l=21<0ﬂ aaQ'> <_Filli_l I> <wi B vi> 0
[+7

where v; = E(W)), V; = cov(Y;) and F; = cov(W, Y)).
Note that V; is not a “working” covariance; rather it is
the covariance between responses under the specified
model. This yields the following separate likelihood
equations for § and a:

s o g 1
9.1 = V.i_ i—Mi) = 0’
9.1) ;(aﬁ) (yi—m)
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N T
9.2) 2("’%’) (wi — vi— FiVi ™ (y: — )] =0,
i=1

3

respectively. Note that the likelihood equations for f,
given in (9.1), are identical in form to the generalized
estimating equations given in (2). In the GEE for S,
V. is the “working” or approximate covariance between
the responses. Thus, the “mixed parameter” model and
GEE only differ in how they compute the “weight”
matrix, V..

The asymptotic covariance of (4, &) can be approxi-
mated by the inverse of the Fisher information matrix,

cov(f, 6)

N T -t
i) 10t
) v 3ﬂ} °

N T -
0 (%) (G-rviot )22
(o3

=1\ 0

where G; = cov(W;). Note that the (8, &) component of
the Fisher information matrix is zero, implying that g
and o are orthogonal (Cox and Reid, 1987, 1989). In
general, with mixed parameterizations of exponential
models, the mean components are orthogonal to the
canonical components (Barndorff-Nielsen, 1978, Ch.
9.8). Finally, as an alternative to the parametric vari-
ance given above, a “robust” variance for § can also be
constructed in the usual way.

This “mixed parameter” model has a number of desir-
able features:

1. The choice of parameterization yields maximum
likelihood estimates of the marginal mean param-
eters that are robust to misspecification of the
time dependence. That is, § is asymptotically
unbiased even if the model for the time depen-
dence is misspecified.

2. The orthogonality of the mixed parameter space
implies that knowledge of the time dependence
parameters does not asymptotically add informa-
tion about B, that is, the asymptotic variance
of f remains the same whether « is known or
estimated. Furthermore, as noted by Newey
(1990), the limiting distribution of N¥2(8 — p)
remains the same if in (9.1) « is replaced by any
NY4—consistent estimate of it. Thus, ﬁ remains
asymptotically normal even when the number of
time dependence parameters increases with the
sample size at an appropriate rate.

3. Given (8, a), Gi, F;, and V; can be calculated in a
straightforward manner, using an iterative pro-
portional fitting algorithm.

4. Unlike marginal correlations and odds-ratios, the
conditional association parameters in the “mixed
parameter” model are not constrained.

5. Using a full likelihood approach yields likelihood

ratio tests and parametric variance formulae. When
the assumed model is correct, the parametric vari-
ance estimators will be more efficient than the
“robust” variance estimators.

There are two potential drawbacks with the “mixed
parameter” model. First, the association parameters,
the log conditional odds-ratios, do not have the attrac-
tive interpretation that marginal association parame-
ters have. However, this may not be such an issue in
longitudinal studies when interest is focussed primar-
ily on the regression parameters, and the association
parameters are considered to be nuisance parameters.
Second, a more important drawback of the “mixed
parameter” model, as indicated by (7), is that the distri-
bution is not “reproducible.” Thus, the “mixed parame-
ter” model is not appropriate for analyzing data from
clusters of unequal size.

2.4 Summary

In this section, we have reviewed some recently de-
veloped methods for analyzing longitudinal binary re-
sponses. We have noted that the likelihood equations
for B from the “mixed parameter” model are identical
in form to the GEE for . Assuming that the mean
structure has been correctly specified, these “estimat-
ing equations” yield estimates, §, that are asymptoti-
cally unbiased and robust to misspecification of the
time dependence. In contrast, the pseudo-maximum
likelihood approach proposed by Zhao and Prentice
(1990) and the extensions of the GEE to allow joint
estimation of (B, a) require the correct specification of
the model for both the mean and the pairwise marginal
correlations in order to yield consistent estimates of
B. That is, estimates of # may be asymptotically biased
when the time dependence is misspecified.

In general, however, the time dependence and hence
cov(Y;) is unknown, and must be estimated. Therefore,
models for the time dependence that closely approxi-
mate cov(Y;) will lead to near efficient estimation of S.
In the next section, we compare the asymptotic effi-
ciency of estimators from the “mixed parameter” model
to the GEE estimators.

3. ASYMPTOTIC RELATIVE EFFICIENCY WITH
COMPLETE DATA

Here we address the issue of the asymptotic efficiency
of estimators from the likelihood-based “mixed parame-
ter” model and GEE estimators of the marginal param-
eters in models for longitudinal binary responses. In
particular, we compare the asymptotic efficiency of the
“optimal” estimators, under a fixed fully parametric
model, to both GEE estimators and likelihood-based
estimators from a “mixed parameter” model that as-
sume an incorrect likelihood.



REGRESSION MODELS FOR DISCRETE LONGITUDINAL RESPONSES 291

In the following, we assume that the mean structure
has been correctly specified, but that the time depen-
dence may be incorrectly specified. When the model
for the means is correctly specified, but that for the
time dependence parameters is not, both the “mixed
parameter” model and GEE estimators are consistent.
The time dependence might be incorrectly specified by
assuming a parsimonious association structure be-
tween the responses, for example, pairwise or exchange-
able association. Next, let S be the solution to the
GEE or likelihood equations under some working as-
sumption about the time dependence. Then, ﬁw normal-
ized has asymptotic covariance matrix Vy given by

Vw= Ilvlin N[HT(Bw)H:(Bw)HT' (Bw)],
where

. N
H,(Bw)= Z(XiTAiVi_IAiXi>
i=1

and

N

H, (ﬁw) = Z(X,TA,'V,'_ICOV( Y,) V,‘_IA,'X,).

i=1
Let f.,: be the solution to the likelihood equations
when V; = cov(Y)), the true covariance of Y;. This is
the “optimal” or semiparametric efficient estimator of
B, which has minimum asymptotic variance among all
estimators guaranteed to be asymptotically normal
and unbiased under only the restrictions on the mar-
ginal means (Chamberlain, 1987). The estimator ﬁopt
normalized has asymptotic covariance matrix V,,, given
by

Vpe = lim N<Hr1 (/fo,,t)>,

N—>o

where

N
Hi(Bop)= 2 (XFAcov Y ))AX).
i=1
Note, if the true joint distribution of the binary re-
sponses is a “mixed parameter” model, then ﬁop, = fur,
- the maximum likelihood estimate.-
The asymptotic relative efficiency (ARE) of fw ver-
sus f.p: is given by the diagonal elements of

ARE = diag(Vw)(diag(Vop)) "

To distinguish between the GEE and likelihood ap-
proaches for calculating V;, we let Beer denote the
estimate obtained using the GEE and Bz, denote
the estimate obtained using the “mixed parameter”
likelihood approach.

3.1 Comparison of Asyhptotic Efficiencies

In this section, we consider two different design
configurations with a trivariate binary response. For

the two designs, we compare the efficiency of ﬁop, to (i)
estimators from a “mixed parameter” model, under a
misspecified association structure, and (ii) estimators
based on the GEE, under various “working” correlation
structures. Specifically, we consider a simple two-group
configuration, and allow for two different covariate
designs, one with group as a time-stationary covariate
(design A), the other with group as a time-varying
covariate (design B). When group is a time-stationary
covariate, subjects are assumed to belong to either
group with equal probability. When group is a time-
varying covariate, each of the 8 possible covariate
configurations is assumed to have equal probability of
occurrence. We chose design B because it is one where
ordinary least squares (OLS) is grossly inefficient for
estimating the group effect. However, this type of
design is related to those used in higher-order cross-
over designs for carryover effects (for an excellent
description of cross-over designs, see Jones and Ken-
ward, 1989). For example, in the case of a 2 X 2
cross-over design, there are two treatments T1 and T2,
and subjects in one sequence group receive T1 — T2,
while subjects in the other sequence group receive
T2 — T1. Baalam’s design is a variant of the 2 X 2
cross-over design that allows more efficient estimation
of carryover effects (Baalam, 1968). In Baalam’s de-
sign, subjects receive treatments in one of the following
sequences:

Sequence Period I Period 11
1 T1 T1
2 T2 T2
3 T1 T2
4 T2 T1

Thus, “treatment” in this context can be thought of
as an external time-varying covariate, in the sense
described by Kalbfleisch and Prentice (1980).

In order to calculate the relative efficiency, we need
to specify the true joint distribution of the binary
responses. We assume the following model for the
marginal expectation:

logit(u) = po + Prxic + Bolt — 1);

Here, x;; is a dichotomous covariate indicating group
membership for the ith individual at the tth occasion.
We characterize the “true” time dependence either in
terms of (i) marginal correlations, p;, or (ii) conditional
log odds-ratios, Q;. The parameters of the “true” model
are as follows. The marginal parameters are

ﬁo = 0; ﬂl = 05; ﬁz = 0.5;

and two different sets of association parameters are
selected:

t=123.

(i) Marginal Correlations: p; = (pi2, pi1s, pizs, Pir2s) =
(p, P2, p, 0), where p € (0, 0.45);

(i) Conditional Log Odds-Ratios: Q; = (wi12,wi13,wWizs,
wi123) = (w, w/2, w, k), where w € (0,10) and x¥ = 3.
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Thus, in both parameterizations, the “three-way” asso-
ciation parameter is held fixed, while the “two-way”
association parameters-vary across a range of values.
Note that given the covariate values, p and # were
chosen so that they satisfied the necessary constraints
in the Bahadur representation for the eight cell proba-
bilities, pr{ Yil = ¥, Yig = Yz Yi8 = yia}, to be positive
and to sum to 1.

We compare the asymptotic relative efficiency of
ﬁop, versus fpyz, and fgex estimated under the following
assumptions about the “true” time dependence:

1. Pairwise: fgzz estimated assuming “working”
pairwise correlation, fBpy estimated assuming
Q; = (w12, w13, Was, 0).

2. Exchangeable: fgzr estimated assuming “work-
ing” exchangeable correlation, fpyy, estimated as-
suming Q; = (w, w, w, 0).

3. Independence: fgzr estimated assuming “work-
ing” independence, (identical to fpuy estimated
assuming Q; = 0).

Note that the assumption of a common pairwise condi-
tional odds-ratio association does not imply a common
pairwise correlation. Similarly, a common exchange-
able conditional odds-ratio association does not imply
a common exchangeable correlation.

(a) Likelihood-Based Estimators
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3.2 Results

In this section, we compare the asymptotic relative
efficiency for both the group and time effects. Results
are not reported for the intercept term, since the inter-
cept is usually regarded as a nuisance parameter in
this setting. First, we consider design A, the covariate
design with group as a time-stationary covariate. Re-
gardless of whether the “true” time dependence was
parameterized in terms of conditional odds-ratios or
marginal correlations, the asymptotic relative efficiencies
of both estimators were never less than 0.95, and in
most cases were very close to 1.0 for both the group
and time effects. These results are consistent with the
relative efficiencies for binary data reported by Liang
and Zeger (1986). Thus, for this type of design, with
group as a time-stationary covariate, there does not
appear to be any discernible loss in efficiency when the
time dependence has been misspecified. This is the case
regardless of how the “true” dependence between the
responses has been parameterized. Thus, the estimator
that assumes independence between responses has as-
ymptotic variance close to that of estimators that allow
for up to T(T — 1)/2 association parameters.

For design B, the covariate design with group as a
time-varying covariate, the asymptotic relative effi-
ciency for the time effect is never less than 0.95 when

(b) GEE Estimators
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Fic. 1. Asymptotic efficiency of the likelihood-based and GEE estimators relative to the optimal estimator in design B, when the true

underlying joint distribution has a log-linear representation.
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the “true” time dependence is parameterized in terms
of conditional odds-ratios. When parameterized in
terms of marginal correlations, the asymptotic relative
efficiency for the time effect is very close to 1.0. How-
ever, for the group effect, there is substantial loss of
efficiency depending on how the “true” time dependence
is parameterized. When the time dependence is parame-
terized in terms of conditional odds-ratios, the GEE
estimators perform poorly. In Figure 1, the asymptotic
relative efficiency of the likelihood-based and GEE
estimators are plotted against the time dependence
parameter. In Figure 1(b), there is a notable loss of
efficiency for the “working independence” estimator,
while the efficiency of the “pairwise” GEE estimator
can drop as low as 50%. In contrast, in Figure 1(a)
the likelihood-based estimators that assume “pairwise,”
and to a lesser extent those that assume “exchange-
able” association, have quite high efficiency.

In Figure 2, we note that the performance of the
likelihood-based estimators is quite comparable to that
of the GEE estimators when the “true” time depen-
dence is parameterized in terms of marginal corre-
lations. Thus, the likelihood-based methods seem to
perform well even when the “true” time dependence is
parameterized in terms of constant marginal correla-
tions. Finally, note that the efficiency of the “working

(a) Likelihood-Based Estimators
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independence” estimator decreases rapidly with increas-
ing dependence between the responses. This result is
important since pairwise correlations of 0.45 and
higher are not unusual in longitudinal studies.

4. BIAS OF THE ESTIMATORS WITH
INCOMPLETE RESPONSES

The problem of missing or incomplete responses is
ubiquitous in longitudinal research. Incomplete or un-
balanced data can arise as a result of attrition, when,
for example, individuals drop out of a clinical trial
because they have not responded to the treatment.
Alternatively, unbalanced data can arise by design, in
studies which allow individuals to leave the study for
a specified period and then return. These “rotating
panel” designs are often used to reduce respondent
burden and discourage uncontrolled dropouts (Laird
1988). In many situations, it is not possible to identify
or distinguish between the different missing-data mech-
anisms.

The GEE and likelihood-based methods differ in their
approaches for analysing incomplete data. The GEE
approach ignores the missing data completely, and
bases the analyses only on the observed portion of the
data. This approach is usually computationally simple,

(b) GEE Estimators
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Fic. 2. Asymptotic efficiency of the likelihood-based and GEE estimators relative to the optimal estimator in design B, when the true
underlying joint distribution has Bahadur’s representation.
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requiring only a slight modification of the methods for
analysing complete data. However, in many instances,
this approach may be inefficient and can also introduce
bias. The likelihood approach retains the notion of a
complete set of data, by imputing the missing re-
sponses from their conditional distribution given the
observed responses. This approach, however, can be
sensitive to model misspecification.

In this section, we examine the asymptotic bias of
estimators based on the “mixed parameter” model and
GEE estimators when there are incomplete responses.
In the following, we assume the model for the marginal
expectation has been correctly specified, but that for
the time dependence has been misspecified. With com-
plete data, both the GEE and “mixed parameter” mod-
els, described in the previous sections, lead to
estimators of the marginal regression effects that are
consistent regardless of how the time dependence has
been specified. Before considering the bias of these
estimators with incomplete or missing responses, we
need to introduce some additional notation and de-
scribe the form of the estimators.

4.1 Notation

Adopting the standard notation of Little and Rubin
" (1987) and Laird (1988), let R; denote a T' X 1 vector
of indicator variables for the ith subject, where R;; = 1
if Y; is observed, and R;, = 0 if Y}, is missing. Given
R;, the complete data vector Y; can be partitioned into
Y; = (Y,;, Ym;), where Y,, are the components of Y; which
are observed (R;; = 1), and Y,, denotes the values of
Y; that are missing (R;; = 0). We can also partition u;,
X7, V; and A; in a similar fashion to obtain (u;, tm;),
(XT, XZ), and so on. Note that the covariate matrix,
X, is assumed to contain no missing values.

Next, let ¢ denote the vector of parameters of the
nonresponse model, and f(r;|y;, ) denote the joint dis-
tribution of R; given y; and ¢. If the nonresponse
mechanism is independent of Y;, f(r|y;, ¢) = f(r:|¢) and
the responses are said to be missing completely at
random (MCAR). When the probability of nonresponse
depends on the observed response, Y,,;, but not on the
missing values, Y., the responses are said to be miss-
ing at random (MAR) and f(ri|y;, ¢) = f(ri|yo; ¢) (Little
and Rubin, 1987). Intuitively, MCAR means that miss-
ingness is unrelated to the response, while MAR
implies that missingness is related to the observed
responses but unrelated to any responses that are
missing. Clearly, the former is a special case of the
latter.

4.2 GEE and Likelihood Equations with Missing
Responses

With missing responses, the GEE for 8 is based only
on the observed portion of the data. The same basic

set of estimating equations are used, except Y;, u;, X;
V; and A; are replaced by their “observed” counterparts
to yield

N
(10) Uo(ﬂ) = Z XoiTAoiV;il(in - ,Uoi) =0.

i=1
Note that the dimensionalities of y,;, to;, Xo;» Vo; and
A,; are all conformable, but potentially different for
each i depending on the pattern of missing data. With
incomplete or missing responses, these equations yield
consistent estimates of g if the responses are MCAR,
since E(Y,|R;) = pu,;. However, the GEE estimators
will be biased when the responses are MAR, since
E(Y,; — uo;) # 0, conditional on the response.

Next, we consider the form of the likelihood equa-
tions for the “mixed parameter” model when there are
missing responses. Let f(y;) denote the joint distribu-
tion of Y;, then the observed data, (Y,,, R:), has joint
distribution

s ril(l’) = Zf(ymilyoi)ﬂyoi)f(rilyiy ),

where summation is over all possible values of Y,,. If
the responses are assumed to be MAR,

f@oi 7l @) = o f(ri|Yos, 9).

Since we are not interested in making likelihood-based
inferences about ¢, the contribution of f(r;|y.; ¢) to the
likelihood can be ignored. Thus, when responses are
MAR, and ¢ is independent of the parameters of f(y),
the nonresponse mechanism is said to be ignorable.
Note, however, that Y,; and R; are not independent,
and that the expectation of Y,;, given r; depends on
the nonresponse model (Laird, 1988).

When the nonresponse mechanism is assumed to be
ignorable, the objective is to maximize the incomplete-
data likelihood. For the “mixed parameter” model, it
can be shown that the derivative of the log of the
incomplete-data likelihood with respect to 8 and a is,

g (Y, y;)
Zg[ ha) ]

T

N fou o 77! 0\/( g
- F) . 4 y;) — Wi = 0
HEs)(nn o)

where expectation is taken with respect to Y, given
Y,;, that is,

i=1

(11)

Ely:) = E(Ymilyoi)(yi) = (yo,-,S(ymi))

8wi) = Eymityon(wi) = (wo;,& (wim))).
Note that (11) is identical to the complete data likeli-
hood equations except that y; and w; are replaced by

&(y;) and &(w;). This yields the following likelihood
equations for f:
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L
— | Vil (8ly:) — i
E(cﬂi) (, (ys) — w)

N
= > XTA V7 Y&ly:) — ) = 0.
i=1

Note that the likelihood equations above use X, the
rows of X; corresponding to the missing responses.

This result establishes the most general form of the
EM algorithm (Dempster, Laird and Rubin, 1977), with
the expectation-step imputing values for the missing
data, given the current values of the parameters (8,a);
while the maximization-step solves the usual scoring
equations using the adjusted values

(yoi9 g(ymi)y woi9 g(wmi»y

as if it were a sample of complete data. The likelihood-
based estimates are easily calculated using the EM
algorithm, since the expectations needed at the expec-
tation-step are readily computed from the information
available at each iteration.

For the likelihood-based estimators, orthogonality
between the mean and time dependence parameters no
longer holds when there are missing responses. These
estimators will be biased if the time dependence has
been misspecified, regardless of whether the missing
data mechanism is MCAR or MAR. One exceptional
case is the likelihood-based estimator that incorrectly
assumes the responses to be independent. This estima-
tor, which is identical to the “working independence”
GEE estimator, is unbiased when the responses are
MCAR.

In the next subsection, we describe how the asymp-
totic bias of the estimators based on (10) and (11) can
be computed, when the likelihood or time dependence
has been misspecified.

4.3 Computing Asymptotic Bias

Let f denote the solution to Zi\;lSi(ﬁ) = 0, where
SiB) denotes the ith individual’'s contribution to the
GEE or likelihood equations for 8, under some working
assumption about the time dependence. Then, with
complete data and assuming that.- the model for the
marginal expectations have been correctly specified,
we have that under regularity conditions

N
E[Z Siw)] =0 = 55
i=1

even when the time dependence has been incorrectly
specified. Note that expectation is taken with respect
to the true process generating the data. However, with
incomplete data,

N
E ZSi(ﬂ) #0,

when either (i) Si(8) denotes the S-component of the
joint score, SiB,a) = [dlogL(y.)]/[d(B,a)], and the
time dependence is misspecified, or (ii) S{f) denotes
the ith individual’s contribution to the GEE, U,(f), and
the responses are MAR. Instead,

E[é si(ﬂ')} =0 = 54"

We are interested in assessing (5*—f), the asymptotic

bias of f. But
N

i=1

does not in general have a closed-form analytic solution
as a function of 8. However, as noted in Rotnitzky
and Wypij (1992), since for any fixed 8, L"-1S:(p) is a
function of (Y;, R;, X)), it has expectation given by the
sum of all its possible realizations weighted by their
respective probabilities. Thus, in order to solve

E[g} Sip* )} =0,

we can simply consider an artificial sample comprised
of one observation for each possible realization of
(Y; R;, X;). Then, we can solve for g in the usual way,
except that we weight each Si(f) by its respective
probability.

The probability of (Y;, R;, X;) can be written as

pr(Y;, R;, X;) = pr(R;|Y;, X:)pr(Y:| Xi)pr(X:)
and is then fully determined by specifying:

1. The probability distribution of the covariates, X..
2. The model for the marginal probability of Y; given
X; and B; and the model for the time dependence.
3. The missing data mechanism. That is, the model
for the probability of missingness and a value of

o, pr(RiIYi, Xi9 ¢)°

For specifying 1 and 2 above, we use the same
models and designs as in subsection 3.1. For 3, we
assume a monotone missing data pattern. That is, if
Y; is missing, then Y} is also missing for every & > j.
Furthermore, we consider two missing data mecha-
nisms. The first assumes that the responses are MCAR,
the second assumes that the responses are MAR. Spe-
cifically, we assume that the binary response on the
first occasion is always observed, that is, R; = 1, and
that responses at times 2 and 3 are (i) MCAR, and (ii)
MAR. When the responses are MCAR,

priRiz = 1|Y;) = pr(Riz = 1) = (1 — ¢),
pr(Ris = 1|Ri, Ri2) = pr(Ris=1|Ri2) = Rio(l — ¢);

and when the responses are MAR,
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pr(RiZ = ]-IYzl) =(1- ¢)(1_Yi1)’
pr(Ris = 1|Ris, Riz) = Rig(1 — )t~ Yi2;
where ¢ = (0.1,0.2, 0.5).

4.4 Results

In this section, we compare the asymptotic bias
for both the group and time effects when there are
incomplete responses. First, we consider the case where
the missing-data mechanism is MCAR. As noted pre-
viously, the GEE estimators are asymptotically unbi-
ased when the responses are MCAR. For both design
A and B, the bias for estimators based on “mixed
parameter” models that assume an incorrect likelihood
is minimal. The relative bias of the group effect is less
than 1% even when the probability of dropout, ¢, is
as large as 0.5. The bias tends to be slightly larger for
the group effect in design B. However, the form of the
true joint probability representation has little impact
on the bias for the group effect.

For the time effect, the relative bias is less than 1%
when ¢ = 0.1, and is not more than 2% even when
¢ = 0.5. In general, when the responses are MCAR,
the relative bias is small, and appears to be more a
function of the degree of missingness than the amount
of misspecification. Recall that one extreme form of
misspecification, “working independence,” yields as-
ymptotically unbiased estimators.

Next, we consider the case where the missing-data
mechanism is MAR. In Tables 1-4, we present the
asymptotic relative bias for estimators of the group

and time effects in designs A and B. For designs A
and B, the relative bias for estimators of the group
effect under the “mixed parameter” model tends to
increase monotonically with increases in the degree of
missingness, regardless of the form of the true joint
probability representation. For design A, the relative
bias is not more than 1% when ¢ = 0.1, and is less
than 4% even when ¢ = 0.5. For design B, the relative
bias is less than 2% when ¢ = 0.1, and is not more
than 8% even when ¢ = 0.5. For design A, the degree
and pattern of bias for the GEE estimators is very
similar to that for the estimators based on the “mixed
parameter” model. However, for design B, the relative
bias of the group effect is discernibly larger for the
GEE estimators when the true joint probability has a
log-linear representation. For this design, the relative
bias of the GEE estimator, assuming “exchangeable”
or “pairwise” correlation, is about 4% when ¢ = 0.1,
and approximately 30% when ¢ = 0.5, while the bias
of the “working independence” GEE estimator is con-
siderably smaller. Thus, in situations where the asymp-
totic efficiency of the GEE estimator is poor, the
asymptotic bias is also noticeably larger.

For the time effect, biases are very dependent on the
assumed model. When the true joint probability has a
log-linear representation with w = 5, the relative bias
of “working independence” estimators is approximately
16% when ¢ = 0.1, 35% when ¢ = 0.2, and over 110%
when ¢ = 0.5. When the true joint probability has
Bahadur’s representation with p = .45, the relative
bias is approximately 7% when ¢ = 0.1, 16% when
¢ =0.2, and almost 50% when ¢ = 0.5. With the

- TaBLE 1
Percent asymptotic relative bias for GEE and PML estimators in design A, when the true underlying joint distribution
has a log-linear representation and the missing data mechanism is MAR

Exchangeable Pairwise
Independence

Effect @ ) GEE (PML) GEE PML GEE PML
Group 0 0.1 0.9 0.3 0.4 0.3 0.4
0.2 1.7 0.6 0.8 0.6 0.9
0.5 2.7 1.5 2.1 1.5 2.1
2 0.1 : 1.0 0.0 0.0 0.0 0.0
0.2 1.8 0.0 0.0 0.0 0.0
0.5 3.1 —0.1 0.1 0.1 0.1
5 0.1 1.1 0.0 0.0 0.0 0.0
0.2 2.0 —0.1 0.0 0.0 0.0
0.5 3.7 —0.2 0.0 0.0 0.0
Time 0 0.1 8.2 —1.3 —1.4 0.1 —0.1
0.2 17.8 —2.3 —-2.9 0.3 —0.4
0.5, 60.2 —-2.9 —9.2 2.8 —3.5
2 0.1 14.2 —1.3 —1.0 0.0 0.0
0.2 30.7 —2.8 —2.6 0.0 0.0
- 0.5 102.4 —-1.9 —6.5 0.0 —0.4
5 0.1 15.7 —1.0 —0.1 0.0 0.0
0.2 34.1 —2.2 —0.2 0.0 0.0
0.5 113.1 —8.3 —0.6 0.0 0.0
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TABLE 2
Percent asymptotic relative bias for GEE and PML estimators in design B, when the true underlying joint distribution
has a log-linear representation and the missing data mechanism is MAR

Exchangeable Pairwise
Independence

Effect () [ GEE (PML) GEE PML GEE PML
Group 0 0.1 —0.6 —-1.7 —0.8 —-1.5 —-0.5
0.2 —1.0 —3.6 —1.6 —3.2 —0.9

0.5 —1.6 —9.6 —4.5 —8.6 —2.8

2 0.1 —1.6 —3.8 —0.7 —3.5 —0.2

0.2 —-2.9 -17.9 —1.6 —7.4 —0.4

0.5 —=5.1 —23.0 —4.5 —21.2 —0.4

5 0.1 —1.8 —4.4 0.8 —4.3 1.8

0.2 —-3.8 —-9.9 0.6 —9.8 14

0.5 =77 —29.6 —-0.2 —29.4 2.0

Time 0 0.1 8.0 —-1.2 —-1.3 0.1 —0.1
0.2 17.6 —2.2 —2.8 0.3 —0.4

0.5 59.4 —2.7 —-8.7 2.8 —3.6

2 0.1 14.0 -1.3 -1.0 0.0 0.0

0.2 30.3 —2.8 —2.1 —0.1 —0.1

0.5 100.7 —8.1 —6.5 —=0.7 —0.1

5 0.1 15.8 —-1.1 —0.2 —0.1 —0.2

0.2 34.1 —2.4 —0.4 —0.2 0.2

0.5 112.9 -9.1 —-0.9 —1.2 3.3

TABLE 3
Percent asymptotic relative bias for GEE and PML estimators in design A, when the true underlying joint distribution
has Bahadur’s representation and the missing data mechanism is MAR

Exchangeable Pairwise
Independence

Effect 0] ] GEE (PML) GEE PML GEE PML
Group o 0.1 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.1 0.1 0.1 0.0 0.1 0.0 0.1

0.2 0.1 0.0 0.1 0.0 0.1

0.5 —0.1 0.0 0.3 0.0 0.4

0.3 0.1 0.3 . 0.0 0.1 0.0 0.2

0.2 0.5 0.0 0.3 0.1 0.4

0.5 0.3 0.2 1.1 0.5 1.2

0.45 0.1 . 0.5 0.0 0.1 0.0 0.2

0.2 0.9 0.0 0.3 0.2 0.5

0.5 1.4 0.7 1.6 1.1 1.9

Time 0 0.1 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.1 0.1 1.3 —0.3 —-0.3 0.0 0.0

0.2 2.7 —=0.7 —0.7 0.0 0.0

0.5 8.3 —-1.7 -1.9 0.0 0.0

0.3 0.1 4.4 -0.9 —0.8 0.0 0.0

0.2 9.5 —-1.7 —1.8 0.0 0.0

0.5 29.6 —4.6 —5.4 0.4 —0.4

0.45 0.1 74 —-1.1 -1.0 0.0 0.0

0.2 16.0 —2.2 —2.2 0.1 —0.1
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TABLE 4
Percent asymptotic relative bias for GEE and PML estimators in design B, when the true underlying joint distribution
has Bahadur’s representation and the missing data mechanism is MAR

Exchangeable Pairwise
Independence

Effect ® ) GEE (PML) GEE PML GEE PML
Group 0 0.1 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.1 0.1 0.1 0.0 0.1 0.0 0.1

0.2 0.2 0.0 0.2 0.0 0.2

0.5 0.5 —-0.1 0.5 0.0 0.5

0.3 0.1 0.3 0.0 0.4 0.0 0.4

0.2 0.7 —0.1 0.8 0.1 0.8

0.5 2.2 -0.3 1.9 -0.1 2.0

0.45 0.1 0.5 0.0 0.8 0.0 0.8

0.2 1.2 —0.1 1.6 0.0 1.7

0.5 4.3 —0.7 4.2 —0.4 4.5

Time 0 0.1 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.1 0.1 1.3 —-0.3 —0.3 0.0 0.0

0.2 2.7 —-0.7 -0.7 0.0 0.0

0.5 8.3 -1.7 -1.9 0.0 0.0

0.3 0.1 4.4 —-0.9 —0.8 0.0 0.0

0.2 9.5 -1.7 —1.8 0.0 0.0

0.5 29.6 —4.6 —5.4 0.4 —0.4

0.45 0.1 7.4 —-1.1 -1.0 0.0 0.0

0.2 16.0 —2.2 —2.2 0.1 —-0.1

0.5 50.3 —6.0 —17.1 1.0 —1.1

pairwise association assumption, the biases are gener-
ally negligible for both the GEE and PML estimators.
In general, when the responses are MAR, the relative
bias appears to be a function of both the degree of
missingness and the amount of model misspecification.

5. CONCLUSION

In the previous sections, we have reviewed both
likelihood-based and non-likelihood approaches to ana-
lysing longitudinal binary responses. The GEE meth-
odology yields consistent estimates of the regression
parameters provided that the model for the mean has
been correctly specified. “Robust” estimates of the vari-
ance of the estimated parameters are easily obtained.
These are consistent regardless of how the correlation
between responses has been specified. In an effort to
obtain more efficient estimates of both the mean and
association parameters, extensions of the GEE meth-
odology to allow joint estimation of the regression
and association parameters have been proposed. A
limitation of the proposed extensions of the GEE is
that consistency of the estimates of the regression
parameters requires the correct specification of the
model for both the mean and the association. Thus,
estimates of the regression parameters may be asymp-
totically biased when the model for the mean is cor-

rectly specified, but that for the association is
misspecified.

The GEE approaches are not likelihood-based meth-
odologies; that is, they do not require the complete
specification of the joint distribution of the repeated
binary responses. We also described a “mixed parame-
ter” model that is based on a log-linear specification
of the joint distribution. This model yields likelihood
equations for the regression parameters that are identi-
cal in form to the GEE. Assuming that the mean

* structure is correctly specified, the “mixed parameter”

model provides consistent estimates of the regression
parameters that are robust to misspecification of the
association between responses. Other likelihood-based
approaches, that parameterize the association in terms
of the marginal associations, do not share this desirable
property.

Comparing these two approaches, we find that the
simple “working independence” estimator is highly
efficient for traditional longitudinal designs, when the
data is complete and balanced. However, when the
design includes time-varying covariates, it becomes
much more important to obtain a close approximation
to cov(Y;) in order to achieve high efficiency. In this
regard, the “mixed parameter” model seems to offer a
more flexible approach to modelling cov(Y?) for different
representations of the association.
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Although all the estimators perform well in terms
of bias when the data are MCAR, in practice, when
there are missing responses, the distinction between
responses MCAR and MAR can usually not be made
with much certainty. With incomplete responses, the
GEE approach performs remarkably well when the
responses are MAR and the design does not include
time-varying covariates. For both the GEE and likeli-
hood-based approaches, there is a substantial reduction
in the bias of the time effects when a close approxima-
tion to cov(Y;) is obtained. Thus, when interest is fo-
cussed primarily on the time effects and there are
missing responses, the “working independence” estima-
tors cannot be recommended. For group effects, this
distinction is not quite so clear, and it seems to depend
on whether group is a time-stationary or time-varying
covariate. Finally, although in many instances the as-
ymptotic biases of the GEE and likelihood-based ap-
proaches are comparable, there may be substantial
differences in terms of efficiency.

In conclusion, the importance of accurately model-
ling the correlation among the repeated responses in a
longitudinal study will depend on a number of factors:
the design of the study, the parameters of interest and
whether or not there are missing data. Fortunately,
for many practical situations, it appears that nearly
efficient and unbiased estimates of the regression pa-
rameters for the marginal expectation can be obtained
even when the true association between the responses
is only crudely approximated.
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