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less other assumptions are made. Therefore, one
often restricts attention to linear estimators, ¢ =
aX + b. Within this class, the estimator which min-
imizes the mean squared error depends only upon
the first two prior moments, both of which can of-
ten be estimated with (X, ...,X7). The optimal lin-
ear estimator is often the same as the unrestricted
Bayes estimator derived under a conjugate prior
(Rao, 1976). When the conditional distribution of X;
is binomial, the optimal linear estimator is a com-
posite estimator,

c;=WX;+(1 - W,

where

W; = 02{(1 — 1/n,-)o'2 +u(1 - ;t)/n,'}_l

and n; denotes the number of observations from
small area i (Spjgtvoll and Thomsen, 1987). With
these weights we have that

T T
1 E {(I/T) > i - u)2} =o%(1/T))_W; <o

i=1 i=1

It follows that the variation between the small
area estimators can be much smaller than the prior
known variance. I have often observed this phe-
nomenon in practice; a consequence is usually that
the range of the small area estimators is much
smaller than expected. (Expectations are based on
information outside the sample.) In practice the pa-
rameter o2 is often of great importance in itself. As
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. We thank the discussants for their insightful com-
ments as well as for providing various extensions of
the models and the methods reviewed in our paper.
These expert commentaries have brought out many
diverse issues and concerns related to small area es-
timation, particularly on the model-based methods.

Several discussants emphasised the importance of
model diagnostics in the ¢ontext of small area esti-
mation. We agree wholeheartedly with the discus-
sants on this issue. As noted in Section 7.1 of our ar-
ticle, the literature on this topic is not extensive, un-
like standard regression diagnostics. We hope that
future research on small area estimation will give

said in the introduction, “Increasing concern with
issues of distribution, equity and disparity (Brack-
stone, 1987).” To me, this means that the disparity
between the small area is important and should be
easily read from a table presenting small-area es-
timators. As mentioned by Ghosh and Rao, there
are composite estimators which have the same ex-
pectation and variance as the prior distribution, one
of which is simply to use {W;}'/2 instead of W; as
weights in the composite estimator.

When area-specific auxiliary information is avail-
able and a model like (4.1) in the paper is used, I
have often observed a similar “overshrinkage” as un-
der the simpler model above. An inequality similar
to (1) can be found under model (4.1), but now o2 de-
notes the variance of the residual in equation (4.1).
Again {W;}!/2 can be used to avoid “overshrinkage”.

Due to the often observed “overshrinkage” and the
fact that our models seem too complicated to many
of our users of small-area estimators, I have often
found it very difficult to make them use the optimal
estimators presented in the paper. On the other
hand, a number of sample-size dependent estima-
tors are more easily “sold” to the user and therefore
more used up until now.

In Statistics Norway a number of administrative
registers are available and used to construct small-
area estimators. In many cases it is natural to use
nested error regression models. However, progress
in this area has been slow due to difficulties concern-
ing model diagnotics for linear models involving ran-
dom effects. I therefore find Section 7.1 particularly
interesting and shall use this section intensively in
our further hunt for feasible small area estimates.

greater emphasis to model validation issues.

A second concern expressed by some of the discus-
sants is that the composite estimators typically used
for small area estimation may “overshrink” towards
a synthetic estimator. Thomsen, in his discussion,
suggests that a larger weight should be given to
the direct estimator. We agree with his suggestion
but are hesitant to recommend blanket use of the
weight Wil/ 2, instead of W;, to the direct estimator
(0 < W; < 1). We believe that the weight should
be determined adaptively meeting certain optimal-
ity criteria as in Louis (1984) and Ghosh (1992).
Cressie and Kaiser, in their discussion, address con-
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strained estimation at some length, emphasising
the multivariate aspects of the problem but not in-
voking any optimality conditions.

Cressie and Kaiser as well as Holt suggest possi-
ble extensions of the two basic small area models
(4.4) and (4.6) given in Section 4. Their general
hierarchical modeling ensures that the variability
among observation vectors for the different small ar-
eas is attributable not only to sampling variability
but also to variability among the associated regres-
sion coefficients, 5;. Holt’s model looks promising
since it allows the §; to depend on area level aux-
iliary variables, Z;, thus effectively integrating the
use of unit level and area level covariates into a sin-
gle model.

A slightly less general version of Cressie and
Kaiser’s hierarchical model (3) appears in Datta and
Ghosh (1991) where a full hierarchical Bayes anal-
ysis is presented. In an earlier version of our paper
(Ghosh and Rao, 1991) we have in fact considered
the general model of Datta and Ghosh but decided
to abandon it in the revision in favour of the sim-
pler, but widely used, models (4.4) and (4.5) in order
to keep the discussion more accessible to a general
readership and the notation simple.

We now turn to some of the specific points raised
by the discussants.

CRESSIE AND KAISER

Cressie and Kaiser stress the importance of non-
linear modelling which is especially needed for bi-
nary and count data. Our Section 7.3 gives a brief
account of logistic regression and log-linear models
suitable for such data. These can be viewed as spe-
cial cases of generalized linear models (McCullagh
and Nelder, 1989). Zerger and Karim (1991) have
studied generalized linear models with random ef-
fects using a Gibbs sampling approach. Their re-
sults may be applicable to small area estimation.
In a 1993 Ph.D. thesis at the University of Florida,
Kannan Natarajan implemented an extensive hi-
‘erarchical Bayes analysis under generalized linear
models in the context of two-stage sampling within
small areas. He used the Metropolis within Gibbs
sampling algorithm (cf. Miiller, 1991). His method
is easier to implement than the procedure of Zeger
and Karim (1991) due to logconcavity of certain pos-
terior distributions which permits the use of adap-
tive rejection sampling of Gilks and Wild (1992).

We agree with Cressie and Kaiser regarding the
multivariate aspects of small area estimation. Our
analysis can be extended to produce approximately
unbiased estimators of the off-diagonal elements of
the mean-square error matrix as well as to obtain
exact posterior covariances of small area means. Re-

porting these quantities in tables, however, is usu-
ally cumbersome since there will be (% ) such quan-
tities when the number of small areas is m. Never-
theless, these estimates should be available, as they
are needed in calculating measures of uncertainty at
higher levels of aggregation.

HOLT

The example in Section 6 of our paper, based on
a simple random sample drawn from a synthetic
population, was introduced mainly to illustrate the
proposed methods. We agree with Holt that a sim-
ulation study based on repeated samples from the
population is better for comparing the relative per-
formances of estimators. Such a simulation study
was, in fact, conducted by Choudhry and Rao (1993)
using both real and synthetic populations. Com-
parisons were made under customary repeated sam-
pling (approach (c) of Holt) as well as under a con-
ditional framework by fixing the values of samples
sizes, n; (approach (b) of Holt).

We also agree with Holt that one should be cau-
tious in comparing relative performances based on
summary measures, obtained by averaging across
all small areas, without paying some attention to
the distribution. Such summary measures, how-
ever, may be quite useful in an overall comparison
of competing estimators, especially when there is no
clear-cut winner when the small areas are judged
individually.

SCHAIBLE AND CASADY

Despite many success stories of model-based in-
direct estimators, there are some practical prob-
lems associated with their use. We are grateful to
Schaible and Casady for providing a comprehensive
list of such problems.

We agree with them that models based on expedi-
ency “instill little confidence in either the producers
or consumers of the estimators.” Model diagnostics
should be an integral part of any model-based pro-
cedure in order to alleviate this problem.

SINGH

We are glad that Singh has investigated under
a simplified model some frequentist properties of
the Kass-Steffey first-order approximation (KS-I) to
the posterior variance and Hamilton’s (1986) Monte
Carlo integration method (H) of evaluating the pos-
terior variance. He also suggests modifications, KS-
II* and MH, to improve their accuracy; in particular
his formula (13) which is a simplified version of the
second-order approximation of Kass and Steffey. It
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would be useful to provide similar improved approx-
imations for more complex models and to study their
frequentist properties.

We agree with Singh that the Bayesian approxi-
mations KS-II* and MH have the advantage of dual
interpretation in both frequentist and Bayesian con-
texts, although Prasad Rao’s estimator of MSE per-
formed better with respect to frequentist properties.

In the case of known variance components, Singh
has demonstrated that the linear Bayes estimate
(LBE) and its Bayes risk coincide with the BLUP
estimator and its MSE. A similar result appears in
Datta et al. (1992).

STASNY

Stasny provides an excellent account of USDA’s
program of country-level estimation of crop and live-
stock production. She also raises the important is-
sue that the current small area estimation methods
need to be modified in the presence of nonresponse.
In this regard, Stasny’s (1991) important work on
hierarchical models for the probabilities of a survey
classification and nonresponse might be relevant.
We might add that the role of measurement error in
small domain estimation is also important. Eltinge
and Harter (1990) have studied the effect of mea-
surement errors and propose some modified small
area estimators.

We agree with Stasny that in some small area
estimation problems historical data can be used to
construct informative priors and obtain the result-
ing hierarchical Bayes estimates.

We are also delighted to learn about the success
story that Arkansas is currently using satellite data,
in conjunction with USDA survey data, for the pro-
duction of county estimates based on small area
models.

THOMSEN

We agree with Thomsen’s observation that many
users find the small area models too complicated
and are bothered by the overshrinkage problem as-
sociated with the optimal estimators. Further work
on model diagnostics and constrained estimation
and the development of suitable packages to imple-
ment both model selection and estimation should
alleviate this problem.

Thomsen also remarks that sample-size depen-
dent estimators, such as those based on the weights
(3.6), are more easily “sold” to the user. Such es-
timators are clearly useful and computationally at-
tractive, but their limitations should also be noted.
As mentioned in Section 3 of our paper, sample-size
dependent estimators can fail to borrow strength

from related domains even when the expected do-
main sample size, E(n;), is not large enough to
make the direct estimators reliable. These esti-
mators were originally designed to handle domains
for which E(n;) is large enough to make the direct
estimators satisfy reliability requirements (Drew,
Singh and Choudhry, 1982). Another disadvan-
tage of sample-size dependent estimators, noted in
Section 3, is that the weights do not take account
of the size of between area variation relative to
within area variation for the characteristic of inter-
est, unlike model-based estimators. Choudhry and
Rao (1993) demonstrate that large efficiency gains
can be achieved by using the EBLUP estimators
when the between area variation is small relative
to within area variation.
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