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Comment

Leo Breiman

Cheng and Titterington have most commendably
brought developments in the neural network field
to the attention of statisticians. It is a notable pub-
lic service. Since their title is worded “...A Review
from a Statistical Perspective”, room is left for other
statistical perspectives.

When I first heard about neural networks some
years ago, I was put off by what I considered to be
the hype about doing things the way the brain does.
The going propaganda seemed to be that here was a
set of procedures modeled after the brain that did a
miraculously accurate job in a wide variety of tasks.

- The functioning of these procedures was coded in es-
oteric language based on terms borrowed from brain
mechanisms. The whole thing was reminiscent of
the artificial intelligence publicity a decade or two
ago.

But in going to neural network meetings, reading
and refereeing their articles and talking to many
practitioners over the last five years, my opinion
has changed. The neural network community con-
sists of different segments. Some are concerned
with constructing mathematical network models of
the brain. Others are concerned with networks as
mathematical entities, that is, their connectedness,
dynamics, etc. Probably the largest segment con-
sists of the people doing work on pattern recognition
and other predictive problems.

1. THE CHARACTERISTICS OF THIS LATTER
COMMUNITY

They are not a neural network community. They
use any methodology that works on their prob-
lems. Often, they use CART or MARS. They exper-
iment with nearest neighbor methods, separating
surfaces gotten by using linear programming, radial
basis functions, hidden Markov chains, etc. New
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methodologies are constantly proposed, and many
of these have little resemblance to standard neural
networks. Unfortunately, much of the original, and
now anachronistic, terminology is retained giving
misleading impressions about what is going on.

They are very pragmatic and problem oriented.
In fact, the field is better defined by the nature of
the problems they work on then by any particular
methodology. Typical problems are speech recog-
nition and handwritten character recognition. The
range of problems is characterized by high dimen-
sional complex data, often with very large sample
sizes (10* to 107). The goal is to find accurate pre-
dictors in classification, regression and time series.

Often, the methodology they use is hand-tailored
to the problem they are working on. In this respect,
the neural network technology is attractive in that
the network and the number of internal nodes can
be tinkered with and optimized for the problem. But
other methods are employed if they give better re-
sults.

Their bottom line is the error rate on the relevant
data set. Proposed new methodologies are judged in
terms of their error rates on banks of known data
sets. But there is little systematic research into the
circumstances under which some methods work bet-
ter than others. This may be because the work is
so oriented toward particular problem solving and
tailored methodologies.

The people involved are, by background, computer
scientists, engineers and physical scientists. They
are generally young, energetic and highly computer
literate. They have the further good fortune not
to have any formal statistical training so that they
feel no compulsion to engage in the futile games of
modeling data or in endless asymptotics. What they
have borrowed from statistics is very slight.

There are important cultural differences between
the statistical and neural network communities. Ifa
statistician analyzes data, the first question he gets
asked is “what’s your data model?” The NN prac-
titioner will be asked “what’s your accuracy?” In

®
www.jstor.org



NEURAL NETWORKS: A REVIEW FROM A STATISTICAL PERSPECTIVE 39

statistics, high dimensionality (number of parame:-
ters estimated) is 5, maybe 20, and 100 is impres-
sive. In NN problems, 100 is moderate while 1000
and 10,000 are more like it. Statisticians go for
interactive computing. A NN member might say
“what, only an overnight run? It must be a pretty
small problem.”

Another difference is that statisticians tend to
try and develop universal methodology. That is,
methodology that can be applied, virtually un-
changed, in every environment. For instance, CART
has been used, in untinkered form, in dozens of dif-
ferent fields. The NN workers, as mentioned above,
tinker and tailor, cut and slice until the suit fits the
data.

2. LOOKING AT THE NEURAL NETWORK
METHODOLOGY

In the present prediction context, what is given is
a set of data consisting of the variables to be used as
predictors (usually denoted as a vector x) together
with the associated values of the things (responses)
to be predicted. This data is known as the training
set or as the learning set. The goal is to use this data
to construct a predictor of future responses based
only on knowing x.

The neural network configuration most often used
in prediction is called the single layer feed forward
network. This has been covered by Cheng and Tit-
terington, but I want to go through it again for sev-
eral reasons. First, because it is the type of neural
network most widely used in prediction. Second, be-
cause its success in some important problems was
largely responsible for the surge of interest in these
methods. Finally, because its structure is simple,
we can hope to get some idea of its workings.

The idea is this: let the sigmoid function o(x) =
exp(x)/(1 + exp(x)). Then fit the data by linear com-
binations of ¢ (linear combinations of the predictor
variables). In regression where the training data is
of the form (y,,x,),n=1,...,N and x has M coordi-
nates x1,...,%y, X1 = 1, fit the data by a sum of the
» form ’

@) =Y apo(Be).
k

In a J class problem, the training data is of the
form (j,,x,),n =1,...,N, where each j, is a class la-
bel taking value in {1,...,J}. Then the conditional
probability for each class is estimated by a function
of the form

pjlx)=0 (Z ajko(,@kx)> ,
k

and the decision rule is to predict the class corre-
sponding to the vector x as j if

B(j| %) = maxpti | ).

To estimate the coefficients in regression, the least
squares error L is defined by

2
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Then L is minimized using gradient descent. In
classification, define z;, = 1 if j, =j, otherwise zero.
Put

2
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and again minimize L by gradient descent. The gra-
dient descent most commonly used is called back-
propagation and consists of putting in one data case
at a time and then taking a partial gradient step.
The data set is circulated through until the conver-
gence is deemed satisfactory.

This is a simple and easily programmed idea.
Since its introduction, it has been used in a wide
variety of important engineering and computer ap-
plications with almost universally “satisfactory” re-
sults. In fact, it has become an all purpose crank.
For many hopeful users, it relieves the tedium of
thinking.

For instance, consider a problem that consists of
classifying 32 x 32 bit images with each pixel in 16
grey levels and such that there are 26 classes. Note
that each prediction vector x is of dimension 1024.
Before the NN technology, researchers would puz-
zle over the images and try to extract a few fea-
tures (functions defined on each image) that would
contain most of the relevant classification informa-
tion. Having drastically reduced the dimensionality,
some standard classification methods could be used
on the feature values.

Now the procedure is to toss the data directly into
the NN software, use tens of thousands of param-
eters in the fit, let the workstation run 2-3 weeks
grinding away doing the gradient descent and, voila,
out comes the result. Automatic feature selection
has taken place.

There are pluses and minuses to the NN crank.
Prior to the crank, the only widely available meth-
ods were nearest neighbor templates, linear meth-
ods and various kludges. The NN crank is a widely
applicable nonlinear method that usually gives good
results.
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3. BUT ALL IS NOT TEA AND CRUMPETS

The NN crank may not work well without a lot of
tuning and tinkering. A number of initial decisions
have to be made to run the program. For instance,
how many sigmoids to use in the fit? (In their lan-
guage, how many nodes to use in the hidden layer?)
Each additional sigmoid used introduces M + 1 addi-
tional parameters to estimate. If too many sigmoids
are used, there is the possibility of overfitting the
data; too few and the data may be underfit.

Another problem is what initial values of the pa-
rameters to use. Gradient descent finds a nearby
local minimum and the nonlinear surface generated
by sums of sigmoids is guaranteed to have many lo-
cal minima. One way to find the global minimum
is to run the procedure many times starting from
randomly selected initial values. But the lengthy
running times of neural networks rule this out.

In my discussions with many practitioners con-
cerning this problem, I ran into two schools of
thought. One was “don’t worry, all local mins give
about the same accuracy.” The second, and more
surprising, was “never run for so long that you get
into a local minimum.”

The latter prescription defies the usual descrip-
tions of how neural networks methodology works.
But it seems to be followed by many of the most ex-
perienced and successful practitioners. The idea is
this: given that you are minimizing over thousands
of parameters, if you fall into the bottom of a mini-
mum then you are overfitting the data. The “smart
thing” to do is to set aside a test set, stop the pro-
gram at various times, run the test set down the
current predictor and select that point in the run
that gives minimum test set error.

There are other recipes for avoiding overfitting.
For instance, another current recipe is the use of
regularization (aka “weight decay” in NN terms).
Here, instead of minimizing the error sum of
squares, a penalty term is added consisting of the
sums of squares of the coefficients multiplied by a
parameter to be determined. This method takes re-
'peated runs, much more computing, and does not
seem to have been widely adopted. Still another
recipe advanced to me by knowledgeable users is to
stop the run at various times and delete “inactive”
variables from the fitting procedure.

Experienced users know how to tinker, cut and
paste. They have their own ways of adjusting the
number of nodes in the hidden layer to get good per-
formance, and of preventing overfitting. But most of
this is folk wisdom, and there is, so far, no handbook
on the sacred mysteries.of neural network tinkering.

There is nothing wrong with tinkering, but not
enough is known about how best to tinker. There is
not enough known about performance of neural net-

works on simple simulated data. We need to know
more about the whys and wherefores, ifs and buts
of NN performance.

4. ALTHOUGH SOME METHODS ARE USUALLY
GOOD, NO METHOD IS ALWAYS BEST

Neural networks cannot satisfy the desire for ulti-
mate optimality. It has become increasingly clear to
the NN community that no one prediction method
will be universally most accurate on all data and
that what is best depends on the structure of the
data. Because of this, a cottage industry in the in-
vention of new methods has risen.

The methods generally fall into one of two cate-
gories. The first I call global. These methods (like
neural nets) use the training data to estimate a
global prediction surface. Local methods make a
local prediction for each new vector x. For instance,
in classification, the class predicted for x may be the
class of its nearest neighbor in the training data.

To understand what is different and new about
neural networks, we give a brief and selective
overview of global methods currently used in non-
linear analysis.

5. GLOBAL METHODS

All current global predictive methods use selec-
tion of elements from a large set of basis ele-
ments. That is, one specifies a set of basis functions
{B(x,0)},0c0, defined on the space of predictor vec-
tors such that “most” functions of x are in the span
of the basis. Then, in regression, one uses a predic-
tor function of the form

9@) = B, 0).
k

In classification, conditional probabilities are esti-
mated as

plx)=G (Z o B(x, 9k))
k

for some specified function G. Here are some exam-
ples:

Neural Nets: {B(x,0)} = {0(0 - x)},© = {EM}.

CART: {B(x,0)} = {I(xeR); R a rectangle in E¥, I an
indicator function} Basis elements I(xcR}) are
selected such that the {R;} are disjoint with
union EM,

MARS: {B(x,0)} = {II;(x(xy; — 0:)*}, i.e., basis el-
ements are products of a finite number of uni-
variate linear splines.
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For all of these sets of basis functions, various com-
pleteness theorems are known. These have the
form: for all f(x) of some specified smoothness and
any ¢ > 0, there exists K, {ag,0:}, 2 =1,...,K such
that

IFG) = > B, 6] < e.
k

This is comforting, but it leaves open questions im-
portant to applications:

What are good sets of basis functions?
How can a “good” subset of basis functions
be selected?

There are drawbacks to the basis elements used in
CART and MARS. CART can lose accuracy because
its basis elements are discontinuous and are aligned
with the coordinate axes. The MARS basis elements
are continuous but unbounded. Also, with a high
dimensional data set, it is not computationally fea-
sible to include basis functions that are products of
more that a few univariate splines.

The strategies familiar to statistics for selecting
basis elements consists of stepwise “optimal” ad-
dition. For instance, in CART each current basis
function is “optimally split” to give two new basis
functions. A similar strategy is used in MARS. Be-
cause of this stepwise add-one-at-a-time approach
and some clever algorithms, the basis selection pro-
cedure goes very rapidly. On the other hand, neu-
ral networks optimize the choices over all basis ele-
ments simultaneously using backpropagation.

6. WHAT IS UNIQUE AND DIFFERENT ABOUT
NEURAL NETS?

Having come this far, we are in a position to ven-
ture some guesses as to why neural networks seem
to give good results over a wide range of data bases.
There may be two contributing factors. The first is
that the basis element have desirable properties.

They are very smooth functions of linear functions
, and nicely bounded above and below. Their form,
being close to zero in one portion of the space and
close to one in another portion make them particu-
larly good for approximating conditional probabili-
ties and for approximating local ripples.

Another property may explain why NN users can
throw in thousands of parameters and not have
catastrophic overfitting. Usually, in starting the NN
fit, one uses small random coefficients for the lin-
ear combinations in each sigmoid. If all of the co-
efficients in 8 are small, then o(8x) = .5 + .250x.
Then, the sum over all sigmoid functions whose co-
efficients remain small collapses into a single linear
function with the number of equivalent parameters

equal only to the number of coordinates in the x-
vector.

The other unique element in neural nets is the
idea of simultaneously selecting all basis elements
using backpropagation. My first impression of this
method was that it was bound to fail by winding up
in poor local minima. This does not seem to happen
and the why is mysterious. It may be wound up in
the nature of backpropagation. By this, I mean the
particular procedure of entering one case at a time
and then taking a partial gradient step.

For instance, the general wisdom is that one-case-
at-a-time works better than putting in all of the data
and doing “batch” gradient descent. Certainly, there
are much faster methods for nonlinear optimization
than gradient descent. But while these are faster,
it is not known if they produce the accuracy given
by backpropagation.

There is some research that claims to establish
a link between backpropagation and stochastic op-
timization methods known to converge a.s. to the
global optimum. If this is even partially true, then
the method’s largest drawback, its painfully slow
running time, may also be a source of its consistent
accuracy. Unfortunately, this is largely unexplored
territory.

A possibility that Jerry Friedman and I are ex-
ploring is stepwise entry of sigmoid basis functions.
We have designed a fast algorithm for stepwise en-
try of sigmoid functions patterned after the stepwise
entry of hinge functions given in Breiman (1993).
The procedure produces fits to the data in several
orders of magnitude less running time than back-
propagation. We have not done enough testing to
know if the accuracy is competitive with neural net-
works using backpropagation.

7. CODA

I am fond of the saying “give a man a hammer and
every problem looks like a nail”. The NN community
has their hammer. But they are also hard at work
devising pliers, saws, chisels and a full repertory of
tools, large and small. Interesting new methods are
spawned at an almost alarming rate.

Among many recent results, here are a few that
impressed me: A smart new metric leads to a near-
est neighbor misclassification rate on optical char-
acter recognition about half that of a well-tinkered
neural net procedure (Simard, Le Cun and Denker,
1993). Coding problems involving many classes into
a sequence of two class problems results in signifi-
cant decreases in error rates (Dietterich and Bakiri,
1991). Combining (“stacking”) dissimilar classifiers
also gives reduced error rates (Wolpert, 1992). Us-
ing linear programming methods to get nonlinear
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separating boundaries between classes gives error
rates on optical character recognition lower than
neural nets (Boser, Guyon and Vapnik, 1992).
Often the analogies and language used in the NN
community obscure the data analytic reality. There
is a lack of reflective introspection into how their

methods work, and under what data circumstances.
But these lapses are more than offset by the com-
plexity, interest, size and importance of the prob-
lems they are tackling; by the sheer creativity and
excitement in their research; and by their openness
to anything that works.

Comment: Neural Networks and Cognitive
Science: Motivations and Applications

James L. McClelland

Artificial neural networks have come and gone
and come again—and there are several good rea-
sons to think that this time they will be around for
quite a while. Cheng and Titterington have done an
excellent job describing that nature of neural net-
work models and their relations to statistical meth-
ods, and they have overviewed several applications.
They have also suggested why neuroscientists inter-
ested in modeling the human brain are interested in
such models. In this note, I will point out some ad-
ditional motivations for the investigation of neural
networks. These are motivations arising from the
effort to capture key aspects of human cognition and
learning that have thus far eluded cognitive science.

A central goal of congnitive science is to under-
stand the full range of human cognitive function.
During the 1960s and 1970s, when symbolic ap-
proaches to human cognition dominated the field,
great progress was made in characterizing men-
tal representations and in capturing the sequen-
tial thought processes needed, for example, to solve
arithmetic problems, to carry out deductive reason-
‘ing tasks, even to prove theorems of logic from given
axioms. Indeed, by 1980 a general computer pro-
gram for solving integro-differential equations had
been written. These accomplishments are certainly
very valuable, yet they still leave many scholars of
cognition with the very strong feeling that some-
thing very important is missing. Efforts in machine
recognition of spoken and visual input, machine un-
derstanding of language, machine comprehension
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and analysis of text, not to mention machine im-
plementation of creative or insightful thought, all
continue to fall short. A huge gap remains between
the capabilities of human and machine intelligence.
The interest in the use of neural networks among
cognitive scientists springs largely from the hope
that they will help us overcome these limitations.
Although it is true that there is much to be done
before this hope can be fully realized, there are
nevertheless good reasons for thinking that artifi-
cial neural networks, or at least computationally
explicit models that capture key properties of such
networks, will play an important role in the effort
to capture some of the aspects of human cognitive
function that have eluded symbolic approaches. In
what follows I mention two reasons for this view.
The first reason arises in the context of a broad
class of topics that can be grouped under the rubric
of “interpretation.” A problem of interpretation
arise whenever an input is presented to the senses,

- be it a printed digit, a footprint, a scientific argu-

ment or a work of creative expression such as a
poem or a painting. The problem is to determine
what the thing is or what it is intended to signify.
The problem is difficult because the direct data is
generally insufficient so that the ability to deter-
mine the correct interpretation depends on context.

Let us consider two examples. The first, shown in
Figure 1, is from Massaro (1975) and illustrates the
role of context in letter recognition. The same input
gives rise to two very different interpretations de-
pending on the context in which it occurs. The sec-
ond comes from very simple stories of a kind studied
by Rumelhart (1977):

Margie was playing in front of her house
when she heard the bell on the ice



