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Comment
Wing Hung Wong

The authors have presented a clear and elegant
exposition of the MCMC methodology, illustrated
by three substantial applications. Their descrip-
tions of the background of the applications and
insightful discussions of the modelling and compu-
tational issues will be helpful to all seriously inter-
ested in Bayesian computation.

A QUESTION ON THE CHOICE OF PRIORS

There is quite a bit of arbitrariness in the choice
of the prior models. For instance, in the prostate
cancer example, the scale parameters are assumed
to have independent proper gamma distributions.
Thus, for each scale parameter one needs to intro-
duce two free constants to describe the gamma
prior. Why is it necessary to have this extra level of
randomness? On the other hand, the parameter &
in the pairwise-difference prior (6.1) in the nuclear
medicine imaging example is treated as a free con-
stant and given the value 2. It seems to me that the
role of this latter parameter is quite similar to the
scale parameters in the prostate cancer example,
namely, to control the strength of local regularity in
space or time. Why should it be given a fixed value
in this case?

COMMENTS ON NUCLEAR MEDICINE
IMAGING

(a) Would the authors please discuss why it is
controversial to use Bayesian modelling in measur-
ing uncertainty in image analysis? I am very inter-
ested in further elaborations of their position on
this issue.

(b) In Section 6.1, it was remarked that the “point

spread function” is often known from calibration

experiments. Is this the case for the actual study in
Section 6.4? The “raw data” presented there consist
of a 256 X 256 image where the photon counts in
individual pixels vary between 0 and 93. The direct
use of the Poisson model of Section 6.1 would re-
quire us to assume, in effect, that there are 256 X
256 independent counting elements. In actuality,
the counting elements in a traditional gamma cam-
era are photomultiplier tubes whose diameters typ-
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ically are of the order 1-3 cm. Each scintillation
event would generate many thousands of light pho-
tons collected by several nearby photomultiplier
tubes, and the location of the scintillation event is
“computed” by the circuitry based on the relative
strength of the signals from the several tubes. In
principle, the signals from the individual tubes are
available and the “computation” of the position of
the scintillation event would then become a statisti-
cal inference problem! In many cases, it may be
reasonable, as a first approximation, to use a
Gaussian point spread function with a suitable
standard deviation to represent the uncertainty in
this measurement of the scintillation position. This
depends on the thickness of the scintillating crys-
tal, collimator design and the sizes of the photomul-
tiplier tubes, and I do not necessarily disagree with
the authors’ treatment in this example. I merely
wish to point out that statisticians should not auto-
matically leave the issue of the point spread func-
tion to the medical physicists. This is particularly
true in more sophisticated imaging modalities such
as SPECT and PET. For example, for the 510-keV
gamma photons in PET, the effect of Compton scat-
tering would contribute much more significantly to
the blurring. Since part of the scattering occurs
inside the body, it is not possible to determine the
exact effect of this by calibration experiments.

SEQUENTIAL BUILDUP BY MARKOV
CHAIN MONTE CARLO

In Section 7, the authors presented a useful up-
date on promising recent developments on the con-
struction of efficient Monte Carlo algorithms. I will
supplement their discussion by venturing to outline
an idea which I hope will be helpful in this regard.
Let us first consider the method of simulated tem-
pering (Marinari and Parisi, 1992) in more detail.
Let f(z) be an unnormalized density on a space Z,
that is, f(2z) is nonnegative but needs not integrate
to 1. To sample from f( ), Marinari and Parisi
propose to create a Markov chain with an enlarged
state vector (%, z), where z takes value in Z and &
ranges from 1 to m. For any k, z is updated
according to a transition kernel which has an in-
variant density proportional to the 1/7, power of
f(). For example, the update may be one complete
Gibbs sampling scan over the components of z.
After each update of z, £ may be moved to the next

A

Statistical Science. MINORY

www.jstor.org



BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 53

larger or smaller value, or it may remain the same.
This is done using the Metropolis—Hastings rule so
as to ensure that the joint stationary density is
proportional to

a, - LA™,

where a, and T, are tunable parameters satisfying
a,>0and Ty, >Ty,> .- >T, =1; T, is inter-
preted as a temperature parameter, such that when
T, is large the system for z is supposed to be
fast-mixing. The idea is that by including the
higher-temperature distributions the system has a
chance to move from a low-temperature local mini-
mum to a higher-temperature one which is much
easier to escape from. This will increase the mixing
rate of the whole system. It is clear that the condi-
tional distribution of z given 2 = m is proportional
to f( ). Hence, samples from f( ) can be obtained
from the equilibrium states of (%, z) by selecting
those 2z’s corresponding to 2 = m. Marinari and
Parisi (1992) had successfully applied this method
to simulate from the random field Ising model where
other methods had been ineffective.

Geyer and Thompson (1994) generalized this
scheme by allowing the joint stationary distribution
to take the form «,-g(z|k), where, for each £,
g(z|k) is a unnormalized density on Z. These densi-
ties are usually obtained by choosing the value of
an adjustable parameter in the specification of the
basic density. It is required that g(z|m) = f(z) and
g(z|1) is easy to sample from. In applying the
method to ancestral inference, Geyer and Thomp-
son created the sequence of densities g( |k) by
setting the penetrances to be various convex combi-
nations of two basic sets of values. One corresponds
to the genetic model of interest, the other corre-
sponds to a model that is easy to simulate.

To outline our approach, we first take the simu-
lated tempering strategy to its natural limit. We
would use a Markov chain with a state space (%, x,)
where, for different %, the sample spaces for «x,
need not be the same. The joint distribution for
(%, x,) is required to be proportional to a;, - g(x,|%),
where g( |m) is assumed to give the same density
as f(), but, for & less than m, g( |k) will give
densities on different spaces. As long as the transi-
tions are designed to satisfy some mild conditions
on the communication between states, the scheme
will work in the same way as in the original simu-
lated tempering case. .

The above scheme is so general that perhaps it
cannot qualify as a concrete approach. The impor-
tant step is to explain when and how the extra
generality can be put to good use. For example,
suppose after suitable parameterization, z can

be written as z = (2, 2,,..., 2,), and the informa-
tion used to determine the density of z can be
partitioned correspondingly as y = (¥4, ¥5,---, ¥,)-
It is assumed that, based on the partial informa-
tion w; = (¥4, ¥3,..., y,), we have a way to specify
an unnormalized density g(x;w;) for «x; =
(24, 25,...,2)). It is required that g(zlw,) =f(2)
and that, for all j, g(x;lw,) has reasonable overlap
with the marginal density of x. under the joint
density g(x;,,lw;, ). We will say that such a prob-
lem has a “sequential buildup” structure. Note that
there is no need for g(x,lw,) to be close to the
marginal of x; under f( ), although that would be
an ideal situation. The method should work under
the much weaker requirement stated above. Sev-
eral examples with such a structure, including com-
plex missing data pattern in Gaussian models and
nonparametric Bayesian analysis of binary data,
have already been discussed in Kong, Liu and Wong
(1994). They did not use Markov chain Monte Carlo
in that paper, but instead “sequentially imputed” z;
by drawing from g(z;lx;_;,w;) and then updated
the corresponding importance weight by a multi-
plicative factor reflecting the consistency of x;_,
with respect to the new information y;. Thus the
“sequential imputation” procedure is a specialized
application of the importance sampling idea. De-
spite its simplicity, the method is effective in many
problems. Recently, it was applied with spectacular
success to handle some supposedly unmanageable
computation in multiloci genetic linkage analysis
(Irwin, Cox and Kong, 1994). Since our dynamic
Monte Carlo approach exploits the same “sequen-
tial buildup” structure, we expect it to be effective
whenever sequential imputation does so.

The dynamic approach, however, has some im-
portant advantages. First, the condition in sequen-
tial imputation that certain conditional distribu-
tions be simple is no longer needed because the
Metropolis—Hastings rule allows great flexibility in

. the proposed moves. Second, in large problems the

distribution of the importance weights may eventu-
ally become very skewed in sequential imputation,
and there is a need to “restart” the process. So far
there is no entirely satisfactory way to do this. Such
a difficulty does not exist in the dynamic approach.
Finally, there is the tantalizing possibility that dif-
ferent “buildup” structures may be used in differ-
ent cycles. Admittedly this would make the dynam-
ics very complex, but the extra freedom it offers
may be helpful in hard problems.

Clearly, the method is effective only if we can
identify a good buildup structure. This can often be
achieved by attempting to drop variables and relax
constraints, one small set at a time, by optimizing
some heuristic criterion.



