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Expression (16) suggests that it might be impossi-
ble to find a prior density that produces confidence
limits having coverage error of order O(n~2/2); see
DiCiccio, Keller and Martin (1992).

Many of the likelihood adjustments and distri-
butional corrections discussed in the paper can
be viewed, at least to error of order Op(n‘l), in
terms of the quantities z, and @ that arise in
Efron’s (1987) BC, confidence limits. Efron defined
zg = D Ypr(§ < o)}, and a is related to the
skewness of the score function; both z, and a are
of order O(n~Y2). In the setting of Section 4.2,
DiCiccio and Efron (1992) and Efron (1993) showed
that E(r,) = —zp + O(n™') and that r, + z, has
the standard normal distribution to error of order
O(n~1). Moreover,

E(U ()} = (a - 20)|~1()}* + O(n™Y)

Comment

A. P. Dawid and C. Goutis

Nancy Reid has presented a clear and valuable
overview of the uses of conditioning, and of asso-
ciated techniques of analysis. We wish to focus on
some difficulties which can arise from too uncritical
an attitude to conditional inference.

It is implicit in Reid’s account, as in most oth-
ers, that the goal of conditional inference has been
achieved when we have identified the appropri-
ate conditional “frame of reference” (Dawid, 1991).
From that point on, it is implied, we should be free
to use any favourite method of inference within that
new frame. However, a more thorough-going analy-
sis casts doubt on this assumption. This doubt may
be evidenced in several related ways.

First there is the problem of nonuniqueness of
(maximal) ancillary statistics, and the consequent
,arbitrariness, in general, of the.conditional frame
of reference. The collected works of Basu (1988),
which deal thoroughly with these topics, should
be required reading for anyone contemplating con-
ditional inference. For example, if (X;,Y;) have
a bivariate normal distribution with known vari-
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and

L) = L, () — (a — 20){~s(¥)} /> + O(nY).

As many authors have noted, adjustment of the log
profile likelihood function /(i) reduces the bias of
the profile score. Also, E(r,) = —a + O(n~Y?), and
r. + a has the standard normal distribution to er-
ror of order O(n~!). Further details are given in
DiCiccio and Efron (1995).
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ances and unknown correlation p, each of X =
(X4,...,X,)and Y =(Yy,...,Y,)is ancillary, and
inference conditional on either appears equally jus-
tified. We cannot, however, condition on both, since
(X,Y) reproduces the whole sample.

Next, there is Birnbaum’s (1962) celebrated
demonstration that acceptance of both the suffi-
ciency and conditionality principles demands accep-
tance of the likelihood principle—and is thus incom-
patible with any method of inference which does not
respect that principle. A much weaker version of
this argument and conclusion, which nevertheless
implies the irrelevance of optional stopping and is
hence incompatible with many common forms of in-
ference, is given by Dawid (1986).

Then there is the “conflict between conditioning
and power” mentioned in Section 6.2. A concrete ex-
ample, based on Cox (1958a), is analysed in Dawid
(1983, pages 99-100). In a problem with point null
and alternative hypotheses, and a simple experi-
mental ancillary, the rule “use the likelihood ratio
test with size o« = 0.05,” if applied conditionally
on the ancillary, does not agree with any un-
conditional likelihood ratio test and is thus less
powerful than the overall 0.05-level test (which
has differing conditional «a-levels). However, the
Neyman—Pearson lemma, which simply requires use
of some likelihood ratio test, can nonetheless be ap-
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plied in ways which do not conflict with condition-
ing. For example, the rule “use the likelihood ratio
test which minimises ca + B8” (for fixed ¢; ¢ = 1
might appear attractive) yields the same conclu-
sions whether applied unconditionally or condition-
ally: this is related to the fact that it may be re-
expressed as requiring the acceptance of the al-
ternative hypothesis when the likelihood ratio in
its favour exceeds ¢, and is thus compatible with
the likelihood principle. Here we have an indication
that, if we wish to make conditional inference, some
prescriptions for inference may be more acceptable
than others. In particular, pre-fixing the size a of
a likelihood ratio test (a rule for which we are not
aware of any theoretical justification), rather than
the cutoff value c, is problematic.

Ideally, we should use forms of inference (such
as likelihood or Bayesian methods) which deliver
the same solution, whether applied unconditionally
or conditionally on any relevant ancillary (this in-
terpretation of the “conditionality principle” is dis-
cussed in Dawid, 1991, Rejoinder). There can then
be no conflict between conditioning and other infer-
ential desiderata. In particular, in the asymptotic
context which Reid emphasises, this suggests the
use of those formulae which are insensitive to the
specific choice of approximate ancillary. This typ-
ically can hold only up to O(n~!), and this ap-
proach thus suggests that analysis of further terms
in asymptotic expansions of conditional distribu-
tions is fundamentally pointless.

Another variation on the theme of conflicting
frames of reference is explored by Dawid (1975),
building on Durbin (1969). In a simple example,
there is a choice between two irreconcilable frames
of reference for inference about a parameter 6:
one based on marginalisation to the minimal suf-
ficient statistic, the other based on conditioning on
a natural experimental ancillary (the example was
phrased in terms of S-sufficiency and S-ancillarity,
but this is not crucial). Many forms of inference give

necessarily different results in these two frames’

(see, e.g., Dawid, 1977, Example 6). However, once
again the conflict can be resolved by confining atten-
tion to those forms of inference (e.g., Bayesian infer-
ence) which deliver the same conclusion (exactly or
asymptotically) in both frames.

When we come to deal with problems with nui-
sance parameters, we should be careful not to
use terminology or notation which adds further
to the already considerable difficulties. Thus, af-
ter (3.2), Reid says that “the nuisance parameter
A has been eliminated in the conditional distribu-
tion” f(sy|se; ¥) and calls s, “sufficient for A.” But
what is A? If, for example, 6 = (u, 02) and ¢ = o?,
as in the special case of Example 3.6, we can define
A =p or A = u/o, or many other choices. The “pa-
rameter of interest” is always clearly defined; “the”
nuisance parameter is not. That is one reason why
it is not appropriate, in Example 3.6, to regard y as
“sufficient for u”; a more accurate description would
be “sufficient given o2.”

Similarly, it is inappropriate to consider s? as “suf-
ficient for o2,” although this is even more tempting
since the distribution of s depends on ¢? alone.
However, even within the framework of standard
frequentist decision theory one can improve upon in-
ference based on s? alone, for example, using the im-
proved estimator of variance given by Stein (1964),
which uses information contained in y/s. A simi-
lar phenomenon appears in inference about u: the
usual ¢-pivot is not necessarily the quantity one
should base inference on. There is again informa-
tion hidden in y/s, which can be suitably exploited
for specific purposes (see, e.g., Goutis and Casella,
1992). Perhaps ironically, in both cases one is able to
improve upon standard inference using conditional
arguments, using the distributions of s? or #, condi-
tionally on y/s.

Reid mentions in passing some aspects of a
Bayesian approach to sufficiency and ancillarity in
the presence of nuisance parameters. A nonasymp-
totic study of these Bayesian concepts, and their
relation to their classical counterparts, was under-
taken by Dawid (1980). It is encouraging to see
recent work on modified likelihood functions deliv-
ering solutions with an approximate Bayesian jus-
tification. However, unless such likelihood functions
are used appropriately for inference, there will still
be possibilities for internal inconsistency. However
much they might wish it otherwise, those who would
take seriously the use of conditional frames of ref-
erence cannot ignore the constraints on their infer-
ential freedom that this imposes.



