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Comment

V. P. Godambe

It is indeed very insightful on the part of the ed-
itors to put the two papers, one of Reid and the
other of Liang and Zeger, together for discussion.
For, at first sight, the two papers have little in
common. By and large, the first paper has a para-
metric setup, the other a semiparametric one. Yet
the subject matters of the two papers have deeper
links which remain to be explored. On one hand,
we have results concerning profile likelihood pri-
marily based on parametric models (cf. Cox and
Reid, 1987), and on the other hand, we have re-
sults based on semiparametric models utilizing op-
timal estimating function theory. How to compare
these two sets of results? This stimulating ques-
tion has remained largely uninvestigated. Among
some exceptions are included the demonstrations
of Cox’s partial likelihood (Cox, 1975) as the opti-
mal estimating function for a semiparametric model
(Godambe, 1985) and similar optimality of the score
function obtained from the Cox—Reid (Cox and Reid,
1987) profile likelihood (Godambe, 1991b). Possibly

other discussants will provide other examples. Fur-

ther related comments are given in my discussion
of the paper by Liang and Zeger, to follow.
~ I'liked both the papers. However, due to time con-
straints I will restrict my additional comments only
to one paper (Liang and Zeger). I do hope that the
two papers and their discussion would stimulate
further research in the problem area (briefly men-
tioned above) implied by the papers.
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Liang and Zeger have a lucid style of presenta-
tion. With properly selected examples they first il-
lustrate how the existence of nuisance parameters
can affect inference about the parameter of interest.
Using the same examples they later demonstrate
how the effect of the nuisance parameters can be re-
duced or eliminated using estimating function the-
ory. All this is accomplished at a common level of
understanding. This paper therefore has both sci-
entific and pedagogical value.

The following comments are meant to clarify and
emphasize some points in the paper which perhaps
have not received enough attention.

In Section 2.4, the authors state that a major lim-
itation of estimating function theory is that it as-
cribes optimality to the estimating function, while
scientists and practitioners are concerned about es-
timators. They quote Crowder’s remark “This is
like admiring the pram rather than the baby”
(Crowder, 1989), from the discussion of the paper
of Godambe and Thompson (1989); these authors’
reply to Crowder, not reproduced in the present pa-
per, is given below with some elaboration. I hope
this will remove some misunderstanding about an
important aspect of the subject.

How good is the estimate? Conventionally the
question is answered in terms of the “error” of the
estimator. Now the concept of error is somewhat
complicated and does not admit a simple defini-
tion. Certainly error is not just a root of an arbi-
trary (unbiased or nearly so) estimate of variance.
In parametric inference, however, the practice is
fairly clear. For a parametric model, the error is de-
rived from the natural estimate of the variance of
the score function. The error is the inverse of the
square root of observed Fisher information (Efron
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and Hinkley, 1978). Similarly, in the example of
the “odds ratio” treated semiparametrically in Sec-
tion 4.1 of the paper the error is derived from the
estimating equation yielding the estimate (Breslow,
1981; Yanagimoto, 1989). This practice is formal-
ized and extended by the theory of estimating func-
tions. Consider the confidence intervals, 6 & const.
(error), where the estimate 6 is obtained from the
estimating equation g(é) = 0. Here a more di-
rect way of obtaining confidence intervals is by in-
verting the distribution of the standardized version
(cf. Godambe, 1991b, equation 40) of the estimat-
ing function g, around 6. These intervals, compared
to the former ones, are easier to compute. For the
distribution of the standardized estimating func-
tion is generally more manageable than that of the
corresponding estimator, particularly for large sam-
ples. An important related result here is that if g*
is the optimal estimating function and g*(8) = 0,
then, for large samples, shortest confidence inter-
vals are obtained by inverting the distribution of
g* around § (Godambe and Heyde, 1987). Similar
optimalities results obtain for testing hypotheses
(Mantel and Godambe, 1993). In this sense, the fi-
nite sample optimality of an estimating function
carries over to large sample optimality of the re-
sulting inference.

Thus, for large samples, the distinction between
“estimating function optimality” and “estimator op-
timality,” agreeing with the authors, “may not be
an issue as such.” There is one exception, however,
where the former optimality is relevant while the
latter is not. This is when we have Bayesian prior
knowledge. I will comment on this topic later at the
end. -

The following are a few remarks about the tran-
sition from parametric to semiparametric models.
This, roughly speaking, takes place in Section 4 of
the paper. Here some more discussion of the basic

concept of conditioning could be helpful. Although
a common role played by conditioning in both
parametric and semiparametric models is that of
removing nuisance or unwanted parameters, nev-
ertheless there is a distinction. In the parametric
case, there can possibly be such a thing as a con-
ditionally optimal (perhaps just locally) estimating
function. This possibility in semiparametric setup
would be far rarer because of the availability of a
variety of conditionings based on a variety of par-
titionings of the sample space. Thus, for instance,
it should be emphasized that optimality of the es-
timating function g in the authors’ (4.1) is in gen-
eral “unconditional.” The exceptions here, such as
when A; = A for all i, would imply a very restricted
semiparametric or a parametric model. We resort to
conditioning, not only to try to avoid unwanted pa-
rameters, but also to enhance the unconditional ef-
ficiency of the estimating function (Godambe, 1976,
1985; Godambe and Thompson, 1989). Unfortu-
nately, McCullagh and Nelder (1989, Section 9.4),
to whom the authors refer in Section 4.1, do not
emphasize the above aspect of conditioning.

The unconditional optimality of estimating func-
tions becomes all the more essential when there is
a semiparametric Bayesian component to the set
of elementary estimating functions. For instance,
when 6, and v, are known values of the prior mean
and variance of 0, the unconditionally optimum esti-
mating function is given by g + (8 — 6y)/vy, where
g is given by the authors’ (4.1) (Godambe and
Thompson, 1989; Godambe, 1994). Here no condi-
tional optimality is available. Also in this case, the
asymptotic optimality of the estimate mentioned
previously is not of much relevance. Actually, in
this case, the finite sample (unconditional) optimal-
ity relates the optimum estimating function directly
to the derivative of the logarithm of the posterior
density.



