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Publication Bias in Meta-Analysis:
A Bayesian Data-Augmentation Approach
to Account for Issues Exemplified
in the Passive Smoking Debate
Geof H. Givens, D. D. Smith and R. L. Tweedie

Abstract. “Publication bias” is a relatively new statistical phenomenon
that only arises when one attempts through a meta-analysis to review
all studies, significant or insignificant, in order to provide a total per-
spective on a particular issue. This has recently received some notoriety
as an issue in the evaluation of the relative risk of lung cancer associated
with passive smoking, following legal challenges to a 1992 Environmen-
tal Protection Agency analysis which concluded that such exposure is
associated with significant excess risk of lung cancer.
We introduce a Bayesian approach which estimates and adjusts for publi-
cation bias. Estimation is based on a data-augmentation principle within
a hierarchical model, and the number and outcomes of unobserved stud-
ies are simulated using Gibbs sampling methods. This technique yields a
quantitative adjustment for the passive smoking meta-analysis. We es-
timate that there may be both negative and positive but insignificant
studies omitted, and that failing to allow for these would mean that the
estimated excess risk may be overstated by around 30%, both in U.S.
studies and in the global collection of studies.

Key words and phrases: Meta-analysis; publication bias; missing data;
data augmentation; Markov chain Monte Carlo; MCMC; Gibbs sampling;
environmental tobacco smoke; ETS; passive smoking; lung cancer; file-
drawer problem.

1. INTRODUCTION

1.1 The Publication Bias Problem

Publication bias, or the “file-drawer problem”
(Iyengar and Greenhouse, 1988), is in some sense
a new statistical phenomenon which runs counter
to the way in which the scientific method has
developed over the past century.

One of the key historical contributions of statis-
tical thinking has been a move away from a con-
text where possibly random observations were ac-
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ceptable, to one where only those results which are
“statistically significant,” that is, not due to chance
alone, are seen as being established and worth con-
sideration.

However, the use of meta-analysis introduces a
situation where studies themselves, both signifi-
cant and insignificant, form the basic population of
interest, so that this paradigm ceases to be valid.
Meta-analysis seeks to combine the analyses from
all relevant individual studies into a single statisti-
cal analysis with an overall estimate and confidence
interval for effect size (Cooper and Hedges, 1994;
Hedges and Olkin, 1985). Ideally, greater statisti-
cal power can be achieved through meta-analysis
than through any one individual study, since data
from a greater number of subjects are used, and in
recent years there has been an enormous increase
(see, e.g., Olkin, 1992) in the use of meta-analysis
in many areas in order to obtain overall evalua-
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tions of association when individual studies are
equivocal.

Studies for a meta-analysis are usually collected
through a review of the literature. Since insignifi-
cant studies are, by the very nature of the scientific
process, published less frequently (if at all), such a
process is inherently subject to bias introduced from
being based on only one part of the real population.

This problem has recently received considerable
notoriety in the debate on passive smoking, or ex-
posure to environmental tobacco smoke (ETS). The
U.S. Environmental Protection Agency (EPA) is-
sued, in December 1992, a report concluding that
ETS is a class A human carcinogen. This was based
largely on an argument by analogy with data on the
relationship between lung cancer and active smok-
ing, but also included a meta-analysis of 31 studies
on the association of lung cancer in never-smokers
with ETS exposure through spousal smoking. Af-
ter this assessment was published, several tobacco
companies filed a lawsuit against the EPA, claiming
that “: : :various sources of bias, including publica-
tion bias : : : could explain any association claimed
by the EPA between ETS and lung cancer” (Bero,
Glantz and Rennie, 1994, page 133).

In any meta-analysis, a well-documented con-
cern (Hedges, 1992; Dear and Begg, 1992; Sterling,
Rosenbaum and Weinkam, 1995) is the need to
have available all relevant information. It is clearly
crucial to attempt to collect at least all published
studies, and if possible, one should also search for
unpublished studies such as dissertations and tech-
nical reports. After doing so, however, it then seems
appropriate to assess not only the existence, but
also the possible extent, of the potential biasing
effect of unpublished or uncollected studies, to at-
tempt to quantify claims such as that against the
EPA evaluation.

No such attempt was made by the EPA, and this
exemplifies the need for the type of methodology we
will consider.

In this paper, we develop a new Bayesian ap-
proach and use it to examine the existing ETS data.
The method is based on a Bayesian hierarchical
model for meta-analysis that combines the esti-
mated effect sizes from heterogeneous individual
studies after estimating and adjusting for poten-
tial publication bias. We use a data-augmentation
technique that is related to the frequentist model
of Hedges (1992), which assumes that studies are
missing with probabilities that are a function of
their lack of statistical significance. Our analysis
indicates that world wide there may be around 10
possible missing negative studies, and a similar
number of missing insignificant positive studies.

After allowing for this, we see in Section 4 that the
95% posterior credibility interval for relative risk is
shifted downward toward the null hypothesis of no
effect; more important, perhaps, the actual estimate
of excess risk is cut by approximately one-third.

When applied to studies in the United States,
which the EPA used in its final meta-analysis, a
very similar picture emerges: only some four or five
studies are estimated as missing but the effect is
now to lower the Bayesian overall relative risk es-
timate from 1.17 with a 95% posterior credibility
interval of �1:02;1:33� to 1.10 with a 95% interval
of �0:95;1:29�.

The ETS issue is destined to be only one of many
important public debates in which meta-analysis is
emerging as a useful tool to provide an overview of
multiple and perhaps disparate studies. Although
one of our goals is to quantify, in this specific con-
text, an issue that has previously been approached
in largely qualitative terms, the methodology we de-
velop is clearly applicable to the wider range of sit-
uations in which this same question arises.

2. THE ETS DEBATE

2.1 Studies of Lung Cancer and ETS Exposure

Epidemiological studies such as those related to
exposure to ETS are carried out to try to confirm
or quantify the health risk associated with expo-
sure to some possible toxic agent. The investigators
collect prospective or retrospective data in order to
estimate relative risk, which we denote by RR. Con-
ceptually, relative risk is the ratio

RR = Pr�getting disease � exposure�
Pr�getting disease �no exposure� :

Estimates of the relative risk also lead to estimates
of the “excess risk” given by RR− 1, which is often
used also as a measure of the impact of the exposure
on the disease incidence.

In general, epidemiological studies are neces-
sarily observational, rather than controlled exper-
iments. In the two most common study designs,
cohort and case–control studies (Mausner and
Kramer, 1985), subjects are categorized in a 2 × 2
cross-classification table. Each subject is classified
as either exposed to the possible toxic agent or not
exposed. Each subject is also classified based on
disease status, with those diagnosed with the dis-
ease being “cases,” and those without the disease
being “controls.” The relative risk is then estimated
as the ratio of the incidence rate among the ex-
posed population to the incidence rate among the
unexposed population. In our ETS modeling, the
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substance—environmental tobacco smoke—is a po-
tential carcinogen, the disease is lung cancer and
the hypothesis of concern is RR > 1.

Between 9% and 20% of lung cancer cases occur
in nonsmokers (Schneiderman, Davis and Wagener,
1989; Alavanja, Brownson and Boice, 1992). Un-
til the early 1980s, epidemiological studies had
not reported any noticeable increase in the in-
cidence of lung cancer among nonsmokers who
were exposed to ETS. This changed starting in
1981 when a case–control study in Greece by Tri-
chopoulos and coworkers (Trichopoulos, Kalandidi,
Sparros and MacMahon, 1981; Trichopoulos, Ka-
landidi and Sparros, 1983) and a cohort study in
Japan by Hirayama (1981, 1984) reported an asso-
ciation between lung cancer and exposure to ETS
in nonsmoking spouses of smokers.

During the next 15 years, a large number of such
epidemiological studies were conducted to address
the health effects of ETS. In 1990, the Environmen-
tal Protection Agency of the United States published
a draft evaluation of the association of ETS expo-
sure with lung cancer (EPA, 1990); after receiving
comments, this was issued as the final EPA Report
(EPA, 1992) and concluded that exposure to ETS
was a class A human carcinogen. Much of the ar-
gument in that paper was based on biological and
toxicological studies which considered the similari-
ties and differences between ETS exposure and ac-
tive smoking. However, a key component of the EPA
report was a meta-analysis of epidemiological stud-
ies. The EPA initially considered 31 studies, but
changed in the 1992 Report to using, for most pur-
poses, a formal combined estimate based only on 11
U.S. studies, after receiving arguments on the va-
lidity of non-U.S. studies in forming an estimate of
relative risk to be used in the U.S. context.

Since that time a small number of other stud-
ies have appeared in the United States. The ETS
meta-analysis data that we shall use consists of 35
studies that assess the risk of lung cancer in non-
smoking women exposed to spousal smoking. These
studies with their relative risks and associated
confidence intervals are given in the top part of Fig-
ure 1. The studies are enumerated and described
by Lee (1992), Mengersen, Tweedie and Bigger-
staff (1995) and Tweedie, Mengersen and Eccleston
(1994), and represent a complete set of such stud-
ies as far as could be determined at the time of
preparation of Tweedie, Mengersen and Eccleston
(1994).

We note that one of the real issues in the ETS
area is the relevance of these data to exposure to
ETS in the workplace, where many of the regula-
tions on ETS exposure are being proposed [cf. the

Fig. 1. Confidence intervals and relative risks for the 35 ETS
studies, the EPA fixed effects meta-analysis (based on U.S. stud-
ies only), the standard random effects meta-analysis, the standard
Bayesian meta-analysis and the Bayesian meta-analysis account-
ing for potential publication bias.

recent OSHA Draft Regulation (OSHA, 1994) and
the Australian NH&MRC Draft Report (NH&MRC,
1995)]. As noted in Biggerstaff, Mengersen and
Tweedie (1994) and Tweedie, Scott, Biggerstaff
and Mengersen (1996) there is now a reasonable
amount of data relevant to workplace exposure, but
we will not consider such studies in more detail
here, merely noting that the methods we propose
could be applied to the workplace data set also.

2.2 Frequentist Models for Meta-Analysis

We first need to outline the models for meta-
analysis which we use without considering publi-
cation bias, and to sketch their application in the
ETS context.

The most commonly used frequentist models for
meta-analysis of relative risk (Cooper and Hedges,
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1994) are the so-called fixed effects (FE) and ran-
dom effects (RE) models. The FE model was used
in the EPA Report (EPA, 1992), although in com-
parison with the RE model it has a number of lim-
itations, discussed in some detail in the National
Research Council (NRC) Report (NRC, 1992) on
combining data.

Both models assume that there is a true underly-
ing value of RR across all studies. In order to use
normal theory, it is common to work on the log scale
and we take 1 = logRR as the response variable of
interest. If 1 = 0, then exposure is associated with
no change in health risk; 1 > 0 implies that expo-
sure is associated with an increased risk, and 1 < 0
implies that exposure is associated with a decreased
risk, that is, a health benefit.

We assume we have n individual studies which
produce estimates of 1, say Yj, for j = 1; : : : ; n. The
FE model treats these results from the individual
studies as data, and models them by

Yj = 1+ εj(1)

where εj ∼N�0; σ2
j�, so that 1 is interpreted as the

overall relative risk.
The random effects model has an extra term com-

pared with (1), namely,

Yj = 1+ βj + εj;(2)

where βj ∼ N�0; τ2� is introduced to account for
heterogeneity between studies, and εj ∼ N�0; σ2

j�
represents within-study variability of study j as be-
fore. We write s2 = �σ2

j� for these variances.
The RE approach has been argued (NRC, 1992)

to be preferable to the FE model which essentially
assumes that any heterogeneity between studies is
purely random. In the special case where τ2 = 0,
indicating such homogeneity between studies, the
RE model (2) reduces to the FE model.

This frequentist meta-analysis then leads through
normal theory to the estimate

1̂ =
�
Yj�σ2

j + τ2�−1

� �σ2
j + τ2�−1

(3)

with

Var�1̂� = 1
� �σ2

j + τ2�−1
:(4)

In the FE model we take τ2 = 0 in these equations
and in the RE model there are various moment-
based and maximum likelihood approaches giving
estimates of τ2 (Biggerstaff and Tweedie, 1996); in
both models it is assumed that the σ2

j are known, ei-
ther from estimates based on the raw data in the in-
dividual papers or from published estimates in those
papers.

Table 1
Results from meta-analyses of ETS data

Model Relative risk Confidence interval

Fixed effects 1.17 �1:08;1:26�
Random effects 1.20 �1:07;1:34�
Bayesian hierarchical 1.22 �1:08;1:37�

The results of meta-analyses using (3) and (4) are
given in Table 1, based on the 35 studies in Figure 1.
Note that the RE analysis does make a difference to
the 95% CI although not in any meaningful way to
the estimate of RR itself; the estimate of τ̂2 = 0:023
in this case is insufficient to make a great deal of
difference (Tweedie et al., 1996).

Clearly one source of between-study variation
that might lead to a requirement for heterogeneity
in the Yj (expressed through τ2 > 0) is the use of
studies from different countries. The analysis of the
ETS data in Mengersen, Tweedie and Biggerstaff
(1995) clearly shows this to be a real concern with
ETS data, and the initial use of FE approaches by
the EPA without allowing for this heterogeneity
has been criticized on these grounds.

Following such comments on the EPA use of FE
models, and of amalgamating over different coun-
tries, 11 studies relating to the U.S. were used in
a FE meta-analysis in the final EPA Report (EPA,
1992). We analyze in more detail in Section 4.3 the
14 studies currently available in the United States.
Recent tests for τ2 = 0 have been developed by Big-
gerstaff and Tweedie (1996), and applying these to
this U.S. data set indicates that in this case the dif-
ference between FE and RE models is almost nonex-
istent: both lead to an estimate of RR = 1:16 with
a 95% CI of �1:04;1:31� for the RE and �1:03;1:30�
for the FE model. These are quite close to the EPA
values of RR = 1:19 with a 95% CI of �1:04;1:35�
(EPA, 1992, Table 5-9). Thus the EPA would be
reasonably justified, at least in using current U.S.
data, in maintaining its stance that “: : : it is im-
plicitly assumed that studies within a country : : :
are sufficiently homogeneous to warrant combining
their statistical results into a single estimate for the
country” (EPA, 1992, page 5-31).

2.3 Bayesian Hierarchical Models

In the random effects model, 1, τ2 and s2 are pre-
sumed to be fixed parameters. We will also consider
a Bayesian analysis of this model, using methods
described in detail by DuMouchel (1990). In the gen-
eral hierarchical Bayesian scheme, 1, τ2 and s2 are
also treated as random variables. The distributions
of these quantities are specified a priori according to
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the application. In our approach, Bayesian methods
will not primarily be used to describe prior informa-
tion in any strong sense. Rather, the prior distribu-
tions for 1, τ2 and s2 can be viewed as more detailed
descriptions of the way in which the studies might
be heterogeneous. This allows one to account explic-
itly for greater variability in the underlying collec-
tion of studies than is done in the fixed or even the
random effects models.

Typically an “uninformative” prior is chosen for 1,
since even with a small number of studies, “the com-
bined data become relatively informative about the
location of the effect-size prior distribution” (Car-
lin, 1992, page 146). Standard Bayesian analyses
might use independent conjugate priors, which for
this problem are normal for 1 and inverse gamma
for s2 and τ2. The specific priors we adopt are de-
tailed in Section 4.

With these choices, the posterior distribution for 1
is a normal distribution centered at the weighted av-
erage of the mean relative risks from the prior and
from the individual studies; the weights in the aver-
age are proportional to the inverse of the variance of
the prior and the variances of the individual studies.
In this formulation, other posterior distributions be-
come quite complicated, leading DuMouchel (1990)
to make approximations to normality for compu-
tational convenience. In contrast, we use Markov
chain Monte Carlo (MCMC) methods to carry out
the analysis of our extension of this model, imple-
mented using the Gibbs sampling routines in BUGS
(Spiegelhalter, Thomas, Best and Gilks, 1996).

Table 1 shows that in the ETS data set in Figure 1
the Bayesian methodology does not make a large
difference to the estimates of RR given by the RE
models, as indicated in more detail in Tweedie et al.
(1996).

2.4 Publication Bias and the Funnel Plot

A large number of discussion papers have ap-
peared which assess the benefits, drawbacks and
problems of meta-analysis techniques (see, e.g.,
Mosteller and Chalmers, 1992; Felson, 1992; Chal-
mers, 1991; NRC, 1992; Thompson and Pocock,
1991; Mengersen, Tweedie and Biggerstaff, 1995).
One of the most frequently considered aspects is the
need for collection of all studies, especially taking
into account the possibility that some studies might
not get to the peer reviewed publication stage.

The studies that are to be combined in a meta-
analysis to obtain an overall estimate of relative
risk are usually compiled by review of scientific jour-
nals. Even if the search is effective or even exhaus-
tive, this selection process may introduce an impor-
tant source of bias, since not all studies submitted

for publication are accepted, and not all studies con-
ducted are even submitted.

There are many reasons why simple searches
might not turn up all studies. One widely be-
lieved publication bias hypothesis is that scientific
journals prefer to publish articles that show statis-
tically significant results. Another potential source
of bias in the same direction could be the possible
decision by scientists not to submit for publica-
tion manuscripts describing the results of their
studies because the results were not statistically
significant.

There are other sources of potential publication
bias, even against significant studies. For example,
some students leave the academic arena and do not
publish their Ph.D. or M.S. dissertations; or studies
are suppressed by those who do not wish to have
results appear that are against their own vested in-
terests, political beliefs or funding source’s interests
(see Crossen, 1994, page 19). With these possible
reasons for publication bias, it is clearly hard to
ensure that all studies will be found even by dili-
gent search procedures. Sterling, Rosenbaum and
Weinkam (1995) discuss recent indications that pub-
lication bias may be pervasive in the scientific liter-
ature and can create potentially severe distortions
in meta-analyses.

Publication bias is not incorporated in the com-
bined estimates in Table 1. A number of ways of at-
tempting to assess the possibility of missing studies
(Berlin, Begg and Louis, 1989; Hedges, 1992; Dear
and Begg, 1992) and the number of missing studies
(Gleser and Olkin, 1996; Eberly and Casella, 1996)
based on such data have been proposed but perhaps
the most common is the funnel plot (Light and Pille-
mer, 1984; Vandenbroucke, 1988; Thompson, 1993;
Mengersen, Tweedie and Biggerstaff, 1995), which
is a graphical method to display possible publica-
tion bias. It shows the relationship between the es-
timated value of 1 and the size of the study, mea-
sured by, say, the inverse of the standard error, σ−1

j ,
or the number of lung cancer cases in the studies. If
there is no publication bias, then one expects to get
a typical inverted funnel shape, since the estimates
of 1 for small studies at the bottom of the graph are
more variable, whereas the estimates from larger
studies near the top of the graph are more concen-
trated, but both should center around the common
true value of 1.

Figure 2 shows a funnel plot of the data in Fig-
ure 1. For this ETS funnel plot, most of the studies
are clustered to the right of zero, suggesting that
1 may be positive. However, the funnel shape of
Figure 2 is asymmetric: the lower left corner of the
graph appears to be missing a number of points.
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Fig. 2. Funnel plot of 35 ETS studies.

This suggests publication bias may be present, be-
cause these missing points would correspond to
studies that would have shown nonsignificant risk,
or even a negative result, for ETS exposure. The
funnel plot suggests there are fewer of these studies
published than one would expect. Other graphical
indicators used in Mengersen, Tweedie and Bigger-
staff (1995) support this conclusion; this contrasts
with Vandenbroucke (1988), who decided, using an
early subset of these data, that there was some in-
dication at that time of missing male studies but
no such indication of missing female studies.

The sensitivity to possible publication bias of
point estimates and associated confidence inter-
vals as given in Table 1 cannot be overlooked.
Mengersen, Tweedie and Biggerstaff, (1995), using
an ad hoc method based on Figure 2, estimated
that the possible impact of allowing for this publi-
cation bias would be to reduce the RE estimate of
RR from 1.20 [95% CI �1:07;1:34�] to 1.12 [95%
CI �1:01;1:24�]. This would indicate that as much
as 40% of the observed excess risk could be due to
publication bias.

None of the frequentist or Bayesian models above
account for such a possibility. We now develop the
components of a formal statistical model for meta-
analysis data which incorporates potential publi-
cation bias. Our approach may be generalized to
account for other selection biases, such as those
based on differing study quality, for covariates in-
fluencing selection bias, and for additional hierar-
chical strata in the model; we pursue this elsewhere
(Smith, Givens and Tweedie, 1997). Clearly, this ap-
proach will also be applicable in many areas other

than the epidemiological context in which we illus-
trate it.

3. META-ANALYSIS ALLOWING
FOR PUBLICATION BIAS

3.1 The Data-Augmentation Approach

If it were somehow possible to discover all missing
studies, meta-analysis would be straightforward us-
ing any of the models described in Sections 2.2–2.3.
The approach we develop in this paper to account for
potential publication bias relies on the ideas of miss-
ing data and data augmentation: using a Bayesian
model we augment the observed data by simulating
the outcomes for the missing studies, thus creating
a “complete” data set for analysis.

Data augmentation is a technique which has
proven useful in a range of Bayesian and likeli-
hood problems, including applications of the EM
algorithm (Dempster, Laird and Rubin, 1977) and
the IP algorithm (Tanner and Wong, 1987). The
premise of data augmentation is that the “observed
data” Y can be thought of as a partial realiza-
tion of the random variable X = �Y ;Z�, where
a complete realization X of X is called the com-
plete data, and a realization Z of Z is called the
missing or latent data. We assume that the distri-
bution of X depends on parameters of interest u
through the family p�X �u�, which gives a marginal
distribution p�Y �u� for the observed data. This
framework is most useful when inference about u
based on p�Y �u� is difficult, but would be more
straightforward using the complete data likelihood
p�X �u�.
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In our case, we treat both the number and out-
comes of unpublished studies as latent data to aug-
ment the observed study outcomes, using the model
described in Section 3.2. Completing the data in this
manner allows us to obtain posterior distributions
for quantities of interest which are then marginal-
ized across the latent random variables.

Problems with genuinely missing data are natu-
ral candidates for data augmentation. It is also pos-
sible to recast other problems as if they involved
latent data. In these cases, the latent data are only
an artifact of the analysis methodology. Our situa-
tion is somewhat between these two extremes. The
latent studies are missing data in the sense that
they possibly exist and we have not observed them.
However, they are also essentially an artifact to con-
struct a meta-analysis which adjusts for publication
bias, since a sampling scheme for observing the com-
plete set of studies is inconceivable.

In the next two sections we describe the formal
structure of the meta-analysis problem, and how to
augment this structure to consider the possible exis-
tence of missing studies resulting from publication
bias.

3.2 A Model for Selection Bias

We now formalize the approach described above.
Using the random effects model in (2), the likelihood
of the observed data Y = �Y1; : : : ;Yn� is

p�Y �1; τ2;s2�

∝
n∏
j=1

exp
(
−1

2

�Yj − 1�2
�τ2 + σ2

j�

)/√
τ2 + σ2

j :
(5)

In order to extend this model to account for pub-
lication bias, we assume that, in addition to the n
observed studies, there are an additional m studies
which were not observed, due to publication bias.
The number m and the relative risks which might
have been found from these m studies are unknown
and must be estimated. Uncertainty about these es-
timates must be reflected in the final meta-analysis
inference, and we do this by treating them as pa-
rameters in a Bayesian analysis.

Let the estimated log relative risks from the
jth missing study be denoted as Zj for j =
�n+ 1�; : : : ; �n+m�, and let Z = �Zj�. We will also
denote the complete set of estimated log relative
risks for all studies, both observed and missing, by
X = �Xj� for all j, where Xj = Yj when j indexes
an observed study and Xj = Zj when j indexes a
missing study.

We assume that the same random effects model
in (2) holds for the outcomes of the missing studies,

namely,

Zj = 1+ βj + εj;(6)

where βj ∼ N�0; τ2�, and εj ∼ N�0; σ2
j� are mu-

tually independent. Note that now s2 includes the
variances of the latent studies as well as those of
the observed studies.

There are various selection mechanisms that one
might now consider when trying to model publica-
tion bias. Following Hedges (1992) and Dear and
Begg (1992), we assume here that the selection cri-
terion for a study is based solely on the study’s p-
value for rejecting the null hypothesis that 1 ≤ 0
in favor of the alternative hypothesis 1 > 0. This
mechanism is compatible with the widely held view
that statistically significant studies are more likely
to be published than insignificant studies.

To make this dependence explicit, we consider a
partition of the unit interval into c interval seg-
ments, say I1; : : : ; Ic. A p-value from any individual
study must fall into one of these intervals. Now let

wk = Pr
[
a study with p-value

in Ik is published
]
; k = 1; : : : ; c;

(7)

and let w = �wk�. For consistency with model ex-
tensions by Smith, Givens and Tweedie (1997), we
adopt notation where superscripts index p-value in-
tervals and subscripts index studies.

Let nk be the number of studies observed with
p-values in Ik. Similarly, let mk be the number of
missing studies with (unobserved) p-values in Ik.
Let pj equal the p-value of study j corresponding
to H0x 1 ≤ 0. Then n = �

k n
k and m = �

km
k,

where the nk are known and the mk are unknown;
we write m = �mk�. We adopt a negative binomial
model for the number of missing studies with p-
values in Ik:

mk �w ∼ negative binomial�nk;wk�:(8)

Note that (8) depends on knowing the weight vector
w. Hedges (1992) and Dear and Begg (1992) present
a maximum likelihood method for estimating the
wk from a meta-analysis data set, but we pursue a
Bayesian approach in this paper.

3.3 The Complete Data Likelihood and
Conditional Posterior Distributions

The observed data are the outcomes Y of the ob-
served studies, and we condition on the numbers of
observed studies n. Using (5) we write the likeli-
hood for the observed data under this conditioning
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as

p�Y �1; τ2;s2;w�

∝
n∏
j=1

c∏
k=1

1�pj∈Ik�
exp�− 1

2�Yj − 1�2/�τ2 + σ2
j��√

τ2 + σ2
j

:
(9)

The latent data are the outcomes Z of the unob-
served studies, and the numbers of such studies m.
At times, it is convenient to consider the latent data
�Z;m� as nuisance parameters to be marginalized
out of final inference about 1.

This model has a partial conditional likelihood for
the complete set of outcomes X given by

p
(
X �1; τ2;s2;m

)

∝
n+m∏
j=1

c∏
k=1

1�pj∈Ik�
exp�− 1

2�Xj−1�2/�τ2+σ2
j��√

τ2 + σ2
j

:
(10)

We stress that (10) is conditional on knowing m.
Treating m as unknown latent data and condition-
ing instead on the parameter w, the complete data
likelihood is

p�X;m �1; τ2;s2;w�
∝ p�X �1; τ2;s2;m�

·
c∏

k=1

(
nk +mk − 1

mk

)
�wk�nk�1−wk�mk

:

(11)

In our Bayesian analysis, we adopt independent
prior distributions p�1�, p�τ2�, p�s2�, p�w� and
p�Z� for the model and latent data treated as
nuisance parameters. Since m and w are related
through (8), no separate prior for m is needed since
its conditional distribution is known once w is
known. Degenerate priors are allowed and, for ex-
ample, we may take σ2

j to be known for individual
observed studies; see Section 3.5.

Note that (11) is an extension of (5) but now in-
cludes parameters w which can be used to model
publication bias. Hedges (1992) considered only the
observed data and used an observed data likeli-
hood of a form analogous to (11). For identifiabil-
ity, Hedges (1992) assumed that w1 = 1, and con-
sidered maximum likelihood estimation only up to
a multiplicative constant. Following Hedges (1992),
we also scale the wk, as shown below, and we do not
assume that the maximum publication probability
corresponds to the most significant p-value interval.
However, such a monotonicity constraint is straight-
forward to enforce in our context, and in Section 4.2
we discuss the effect on ETS inferences of constrain-
ing the wk to be monotonically decreasing as the p-
value increases. Such a constraint is much harder to
put in place in the frequentist setting (Dear, 1995),

and we note that in other circumstances we have
found that it seems to be worth enforcing (LaFleur,
Taylor, Smith and Tweedie, 1996).

Using prior distributions and the complete data
likelihood, univariate conditional posterior distribu-
tions can be derived. We use p�q � ·� to represent the
conditional posterior distribution of any parameter
q given all other parameters. The univariate con-
ditionals for 1 and τ2 are then easily found from
(11) as

p�1 � ·� ∝ p�1�
A�1�

n+m∏
j=1

exp
(
−1

2

�Xj − 1�2
�τ2 + σ2

j�

)
;(12)

p�τ2 � ·� ∝ p�τ
2�

A�τ2�

·
n+m∏
j=1

[
exp

(
−1

2

�Xj − 1�2
�τ2 + σ2

j�

)/√
τ2 + σ2

j

]
;

(13)

where here and below A is a normalizing function
A�1; τ2;s2;w�, which we write in varying notation
to emphasize its dependence on each parameter of
interest.

The conditional density for the pair �Z;s2� is also
straightforward:

p�Z;s2 � ·� ∝ p�Z;s2�
A�s2�

·
n+m∏
j=1

c∏
k=1

exp�− 1
2�Xj−1�2 / �τ2+σ2

j��√
τ2+σ2

j

·1�pj∈Ik�:

(14)

We consider Z and s2 in a bivariate form since for
any new study the values of Zj and σ2

j must be
chosen to ensure the constraint 1�pj∈Ik� is satisfied.

If we consider m as a nuisance parameter, then
its conditional posterior distribution is merely

p�m �w�∝
c∏

k=1

(
nk+mk − 1

mk

)
�wk�nk�1−wk�mk

;(15)

since we have no prior on m, as discussed above.
Finally, because of the scaling we impose on the

weights w, the posterior conditional distribution of
w is given by

p�w � ·� ∝ p�w�
A�w�p1�w � ·�;(16)

where p1�w � ·� is the conditional probability density
function that results when the conditional probabil-
ity density function of w ×maxkwk is proportional
to (15).
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3.4 Gibbs Sampling Methods

The model above is more complex than the stan-
dard hierarchical Bayesian model, and the posterior
for 1 can no longer be derived in a tractable an-
alytical form. Instead, numerical techniques must
be used, and we use a Gibbs sampling strategy
(Geman and Geman, 1984) to obtain approximate
samples from the desired posterior distribution.
Gibbs sampling techniques, which have been very
successful at solving a wide variety of similar prob-
lems in Bayesian estimation (Smith and Roberts,
1993; Besag and Green, 1993), can be used to
obtain a sample from a desired distribution by sim-
ulating realizations from a Markov chain whose
stationary distribution is equal to the target distri-
bution.

Here, the target distribution is the joint poste-
rior distribution implied by the priors and complete
data likelihood for our model. This target is then
marginalized to obtain the observed data posterior,
from which inference is drawn. By sequentially sam-
pling from the univariate conditional posterior dis-
tributions of the parameters, we can simulate ap-
proximate realizations from the joint posterior.

We iterate Gibbs steps in the following sequence:
(m;Z;s2�, w, 1 and τ2. We update m, Z and s2

jointly to ensure that the number of missing study
outcomes is always equal to the number of missing
studies. In practice, given m, for each k it is effi-
cient to draw mk missing study variances σ2

j from
p�s2 � ·� with no constraint on the outcomes or p-
values of the missing studies, then simulate the mk

missing study p-values pj uniformly on Ik and, fi-
nally, calculate the corresponding Zj = σj8−1�pj�.
This effectively draws the mk values of Zj from
their conditional density which is proportional to
p�Z �s2; ·�. Note also that in our examples below we
assume that σ2

j are fixed for the observed studies,
which corresponds to taking their priors as degen-
erate at the observed values.

In our case, the univariate conditional posteriors
derived in Section 3.3 are not easily sampled, and
we use an inverse CDF method (Press, Flannery,
Teukolsky and Vetterling, 1986) to perform this
numerically.

The Gibbs sampling results in a large collection
of approximate realizations from the joint posterior.
The distribution of sampled points converges to the
posterior distribution as iterations increase, because
the procedure generates an aperiodic Markov chain
which is irreducible since the conditionals in equa-
tions (12)–(16) assign positive probability to the en-
tire parameter space that may be supported by the
posterior.

Therefore, for example, to obtain the overall me-
dian and 95% interval for relative risk, 1, we cal-
culate the corresponding sample quantiles from a
collection of values of 1 obtained via simulation.
Iteration length, burn-in and subsampling are dis-
cussed in Sections 3.5 and 4. Estimation from this
sample reflects the combined results from all stud-
ies and accounts for estimated publication bias.

3.5 Simulation Studies

It is important to evaluate the reasonableness of
this method before using it to address a real anal-
ysis such as that of lung cancer and ETS. Readers
who want to jump straight to the ETS results may
prefer to skip this section.

We assessed the method on a range of simulation
studies. We first generated 50 studies with mean
1 = 0 and suppressed some of them according to
the various criteria described below. The studies not
suppressed were assumed to be observed. Without
further data, βj and εj in (2) are nonidentifiable.
However, each “observed” study has not only a pub-
lished outcome Yj but also a published variability
estimate, say σ̂2

j . We assume here that each indi-
vidual study variance σ̂2

j is exactly correct. Hence,
the prior distribution from which each σ2

j is drawn
is degenerate at σ̂2

j for the jth study when j in-
dexes an observed study, but the remaining σ2

j are
random.

We generated the original variances σ̂2
j for the

50 studies from a gamma distribution with a shape
parameter of 3 and a mean of 1/3. Each of the 50
relative risks Xj was drawn from a normal distri-
bution with mean 0 and variance σ̂2

j + τ2, where
τ2 = 0:03. This gives data which are not dissimilar
in structure to the ETS data.

We then applied suppression criteria to simulate
publication bias in three different circumstances, as
detailed below. In each case, we either partitioned
the unit interval into k = 3 p-value regions given
by I1 = �0;0:05�, I2 = �0:05;0:10�, I3 = �0:10;1:00�
or k = 2 p-value regions with I1 = �0;0:50� and
I2 = �0:50;1:00�. In every case we performed two
Bayesian meta-analyses on the observed stud-
ies after suppression: one standard hierarchical
analysis as in (2) using BUGS (Spiegelhalter et
al., 1996) which does not take into account the
possibility of missing data, and one using our
data-augmentation techniques as discussed above.
Except for the prior for w, these meta-analyses all
had identical priors given by 1 ∼ normal�0;0:42�,
τ2 ∼ inverse gamma�shape = 32; mean = 1/32�
and σ2

j ∼ inverse gamma�shape = 3:5; mean =
0:33� for any j that indexed a missing study. For all
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Fig. 3. Relative risk posteriors for the simulated data set with suppression of negative studies. The posterior on the left was calculated
using data augmentation, and the one on the right assumes no publication bias. The truth is RR = 1.

Gibbs sampler runs, we used a burn-in of 500 and
ran 1,000 additional iterations. Convergence over
this period seemed acceptable; formal and graphical
assessments of convergence were similar to those
discussed in Section 4 for the ETS analysis.

A Bayesian meta-analysis without augmentation
on the complete set of 50 simulated data points re-
sulted in a posterior mean and 95% interval of 1.007
�0:889;1:156� for RR = exp1, which indicates that
the sample we had drawn was not an aberrant one.

3.5(a). Suppression applied to negative studies.
We initially tested the performance of the algo-
rithm when a considerable portion of the data is
missing. For this, we used only two p-value regions,
I1 = �0;0:50� and I2 = �0:50;1:00�. We suppressed
no studies in I1, but we suppressed 70% of all stud-
ies in I2: that is, we chose w1 = 1 and w2 = 0:3. Out
of the 50 simulated studies, 25 each had p-values
in I1 and I2. After the suppression criteria were
applied to I2, our observed data set consisted of
32 studies; specifically, n1 = 25 had p-values in I1
and n2 = 7 had p-values in I2. The 18 suppressed
studies were discarded.

We took the prior on w1 as uniform on �0:5;1:0�
and the prior on w2 as uniform on �0:2;1:0�. Each
of these priors envelops the true probability of be-
ing published while not reflecting strong beliefs
about the amount of publication bias present in the
data set.

Figure 3 shows the posteriors of the two meta-
analyses for RR = exp1. These density estimates
were obtained from the Gibbs samples using normal
kernel density estimation with the maximal smooth-

ing span of Terrell (1990), as were all other density
estimates below.

The standard meta-analysis produced a poste-
rior mean and 95% interval for RR of 1.18 and
�1:03;1:33�. This interval does not include the null
value of 1.00, thus leading to an erroneous in-
ference that 1 > 0. In contrast, the mean of the
posterior and 95% posterior probability interval for
our Bayesian meta-analysis with data augmenta-
tion to account for publication bias was 1.00 and
�0:84;1:19�. This interval contains the 95% pos-
terior probability interval from the meta-analysis
performed on all 50 studies.

Figure 4 shows histograms of the numbers of
missing studies in both p-value intervals at each
iteration of Gibbs sampling. Although there might
seem to be some probability of the algorithm find-
ing studies missing in I1, the weighting of the wk

so the maximum is 1.0 has led to no missing stud-
ies being found in I1. In the I2 interval, the correct
number of studies missing was 18. The mean of the
posterior distribution of m2 was 15.3, so the algo-
rithm slightly underestimated, on the average, the
number of missing studies. The posterior means of
the weights are w1 = 1:00, w2 = 0:35; clearly the
prior mean for w2 of 0.6 has been adjusted down-
ward substantially by the data to approach the true
value of 0.3.

3.5(b). No suppression. The other extreme we
tested was where in fact no studies were sup-
pressed. For the augmented data meta-analysis, we
used three intervals and assumed the prior weights
were uniform on �0:5;1:0� for all of I1, I2 and I3.



PUBLICATION BIAS IN META-ANALYSIS 231

Fig. 4. Frequency histograms of the numbers of studies augmented in the p-value intervals �0:00;0:50� and �0:50;1:00�. The true number
missing in �0:00;0:50� is 0; and the true number missing in �0:50;1:00� is 18. The black triangle represents the mean of the number of
studies augmented.

Fig. 5. Relative risk posteriors for the simulated data set with heavy suppression of insignificant studies. The posterior on the left was
calculated using our data augmentation procedure, and the one on the right assumes no publication bias. The truth is RR = 1.

The algorithm (as one must expect given any priors
not degenerate at 1) gave a positive number of pre-
dicted missing studies: the mean estimated num-
ber of missing studies was 15.7 compared with a
prior expected value of 16.6. Clearly there is a quite
strong lingering effect of the prior distribution of w
in this case. However, the posterior mean and 95%
interval forRR were 0.99 �0:83;1:14�, and so the es-
timated relative risk was largely unaffected by the
latent values, which were not distributed in such a
way as to affect the meta-analysis unduly.

3.5(c). Heavy suppression applied for insignificant
studies. We next consider a situation where a fairly
heavy suppression regime was in place for insignif-
icant studies. The weights for acceptance chosen
were: for I1 = �0;0:05�, w1 = 1; for I2 = �0:05;0:10�,
w2 = 0:85; and for I3 = �0:10;1:00�, w3 = 0:3. Out of
the 50 simulated studies, 2, 3 and 45 had p-values
in I1, I2 and I3, respectively. After the suppres-
sion criteria were applied, we “observed” 19 studies:

specifically, n1 = 2, n2 = 3 and n3 = 14 observed
studies had p-values in I1, I2 and I3. Thus, on
this sample the suppression rate was almost exactly
realized.

For the augmented-data meta-analysis, we as-
sumed the prior weights were, respectively, uniform
on �0:5;1:0�, �0:5;1:0� and �0:2;0:7�. Note that the
prior assumes that on I3 there must be a nontrivial
probability of a study being unpublished.

Figure 5 shows the posteriors of these meta-
analyses for RR = exp1. The posterior mean and
95% posterior probability interval for RR using
our Bayesian meta-analysis with data augmen-
tation to account for publication bias were 1.105
and �0:889;1:391�, compared with the standard
meta-analysis mean and 95% interval of 1.28 and
�1:07;1:50�. Thus our data augmentation proce-
dure shifted the posterior of RR to the left so that
the true relative risk, 1.00, is now within the 95%
posterior probability interval for RR. In contrast,
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Fig. 6. Frequency histograms of augmented studies in three p-value intervals: �0:00;0:05�; �0:05;0:10� and �0:10;1:00�. The true
numbers of missing studies were 0; 0; and 31; respectively. The black triangle represents the mean of the number of studies augmented.

note that the standard meta-analysis produces an
interval which does not cover the truth.

The posterior mean numbers of imputed studies
were 0.3 in I1, 0.3 in I2 and 23.4 in I3, correspond-
ing to posterior mean weights of 0.89, 0.93 and 0.42,
and to distributions as in Figure 6. Thus in this case
the data have not moved the weights in the last in-
terval as close to the true weight of 0:3 as one might
hope although all the posterior weights move in the
right direction.

3.5(d). Strong suppression applied with different
priors. The prior used in Section 3.5(c) for w3 may
seem to lead to a mean number of missing studies
rather less than those we actually simulated. To as-
sess sensitivity to such prior choice, we also consid-
ered the model in Section 3.5(c) with two different
priors applied, one less and one more suitable for
the actual situation.

Our first variation uses prior weights taken, re-
spectively, as uniform on �0:5;1:0�, �0:5;1:0� and
�0:2;0:4�: that is, as in Section 3.5(c) except that
the prior mean suppression rate in I3 in this case
is exactly equal to the true suppression rate. In
this case the method performed extremely well. The
mean number of studies estimated as missing in I3
was 30, compared to the actual 31, and the posterior
mean and 95% interval of RR was 1.07 �0:88;1:32�.

Our second variation uses prior weights which
are, respectively, uniform on �0:5;1:0�, �0:5;1:0� and
�0:3;0:7�, so the true suppression rate on I3 was on
the boundary of the corresponding prior. Now the
mean of the posterior and 95% posterior probabil-
ity interval for RR were 1.14 and (0.92, 1.42). Thus
our data-augmentation procedure still shifted the
posterior of RR to the left, relative to the standard
analysis, so that the true relative risk is within the
95% posterior probability interval for RR. However,
histograms analogous to Figure 6 show that the al-
gorithm typically underestimated the correct num-
ber of missing studies in I3 in this case, and tended
to a posterior mean probability of publication in I3
that was greater than the true value of w3 = 0:3.

These results indicates that, although the method
is somewhat sensitive to choice of prior on w, the

impact on the final estimate of RR is less serious
than the impact on the number of imputed studies
might indicate.

3.6 Methodological Comments

These simulation trials indicate that the method
gives an outcome that is usually conservative: not
conservative in the number of missing studies, per-
haps, but conservative in the adjusted estimate of
1 in the final meta-analysis. This helps to obviate
the concern that the number of studies assessed as
missing is driven to some extent by the prior dis-
tribution on the probability of publication in each
interval.

The method we have used is based on a fixed
set of intervals I1; : : : ; Ic to stratify p-values. We
use the intervals �0;0:01�, �0:01;0:05�, �0:05;0:10�,
�0:10;0:50� and �0:50;1:00� in our ETS example,
and similar cutoff points in the simulations. This is
based on the idea (Hedges, 1992) that these are the
common ranges in which editors and researchers
might decide to change the probabilities of publica-
tion. Other researchers (Dear and Begg, 1992; Paul,
1995) have considered methods for estimating the
endpoints and number of such intervals, rather than
fixing them in advance. This may permit a more
flexible, data-based determination of how the prob-
ability of publication depends on p-value. However,
the intervals and the expected number of missing
studies in each interval can be very variable with
this approach. The fixed interval approach seems to
provide an adequate, stable estimate.

Direct parametric modeling of publication prob-
ability has also been proposed (Iyengar and Green-
house, 1988; Patil and Taillie, 1989). Larose and Dey
(1995) survey and compare several alternative para-
metric models. This parametric approach seems to
yield some of the same benefits as our approach, in-
cluding tighter posterior confidence intervals and a
direct model for publication bias and heterogeneity.
However, our method should be more robust than
a parametric method to changes in the form of the
exclusion criteria.
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Fig. 7. Estimated posterior of relative risk and 95% posterior probability region for the ETS example. The posterior on the left was
calculated using our data augmentation procedure which accounts for publication bias, and the one on the right assumes no publication
bias.

It would be of substantial interest to develop a
more advanced model for the mk which depends on
covariates. In this article we have assumed that the
probability of publication depends only on the p-
value, which in turn depends only the study’s es-
timated relative risk and σ2

j . We can extend the
dependence of the publication probability to other
covariates, such as study quality, study design, sam-
ple size, the mode of exposure, the population stud-
ied or other factors. One way to do this is to define
the analogues of the classes Ik based on other prop-
erties of the studies. The model is then extended to
additional hierarchical levels. This extended model
is described in Smith et al. (1997) and is used there
to analyze a collection of studies relating the rela-
tive risk of cervical cancer to use of oral contracep-
tives, a situation that we have also studied using
the simpler models above in LaFleur et al. (1996).
Direct modeling of the relationship between covari-
ates and publication probability can also be worked
into the model.

4. PUBLICATION BIAS IN THE ETS DATA SET

4.1 The Possible Effect of Bias

We now apply the methods above to the ETS
data set in Figure 1 This leads to the posterior
density in Figure 7. The posterior mean relative
risk is 1.14 and the 95% posterior probability in-
terval �1:00;1:28�, compared with the Bayesian
posterior values of 1.22 �1:08;1:37� ignoring publi-
cation bias in Table 1. These results show that the
meta-analysis after adjusting for publication bias

continues to suggest that exposure to ETS through
spousal smoking is associated with an increased
risk of lung cancer, but it also appears credible
that there is distinct publication bias in this data
set. This result is satisfyingly close to the ad hoc
value of 1.12 with 95% posterior probability inter-
val �1:01;1:24� found in Mengersen, Tweedie and
Biggerstaff (1995).

The details of the approach are as follows. We
take c = 5, and we use the intervals I1 = �0;0:01�,
I2 = �0:01;0:05�, I3 = �0:05;0:1�, I4 = �0:1;0:5� and
I5 = �0:5;1�, by analogy with Hedges (1992). Of the
35 studies under consideration, 2 had p-values in
I1, 4 in I2, 7 in I3, 14 in I4 and 8 in I5. Thus,
75% of the observed studies have RR greater than
1, and nearly 40% have significance levels of 0.1
or less. This suggests either that exposure to ETS
through spousal smoking elevates lung cancer risk
or that publication bias favors positive and signifi-
cant studies, or both.

For 1, we adopt a N�0;0:152� prior distribution.
This allows us to cover a reasonable range of rel-
ative risk. We use an empirical exponential prior
with mean 0.17 independently for each σ2

j corre-
sponding to a missing study, based on the 35 pub-
lished variances. We also assume that each individ-
ual study variance σ̂2

j is exactly correct, so p�s2�
is degenerate for observed studies. For τ2, we use
an exponential prior with mean 0.031, based on a
meta-analysis of studies on workplace ETS (Bigger-
staff, Mengersen and Tweedie, 1994). We take an
improper uniform prior for Z and our initial prior for
w (before being scaled by the largest) is that of three
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Fig. 8. The convergence behavior of estimates of 1 and the proportion of missing studies for the ETS example.

Fig. 9. Frequency histograms of the numbers of missing studies simulated in each p-value interval for the ETS example. The black
triangle represents the mean of the number of studies augmented.

uniform random variates on �0:5;1� for I1; I2; I3,
and uniform on �0:3;1� for I4 and on �0:3;0:7� for
I5: that is, we assume a positive probability of sup-
pression in the least significant class.

We used a burn-in of 500 iterations and stored
an additional 1,000 iterations. Figure 8 shows the
convergence behavior of the Gibbs approach with
respect to 1 and the proportion of missing studies,
and indicates that the estimates of each stabilize
reasonably quickly and the burn-in period seems ad-
equate. We based our simulation effort on the meth-
ods of Raftery and Lewis (1992a, b; 1995), focussing
on the central 95% posterior probability interval for
1. For the 0.0125 precision tolerance level recom-

mended by Raftery and Lewis for ordinary situa-
tions, we calculate that 650 realizations are needed
after a burn-in of 300. This number changed to 4,020
realizations for the extreme 0.005 tolerance limits
Raftery and Lewis recommend when the posterior
may have severely heavy tails. These diagnostics
also suggested that there was no detectable auto-
correlation between iterations and that it is not nec-
essary to thin the chain to maintain a roughly in-
dependent sample. Results seemed to be insensitive
(at least to the second decimal place) to increasing
the number of iterations from 1,000 to 5,000.

Figure 9 shows histograms of the total numbers of
missing studies simulated in each p-value interval
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Table 2
Results of sensitivity analysis on five classes

maxkwk 5 1 1 5 w1 ≥≥≥w2 ≥≥≥w3 ≥≥≥w4 ≥≥≥w5

Posterior 95% posterior Posterior 95% posterior
Prior for D mean of RR prob. int. mean of RR prob. int.

N�0; SD = 0:1� 1.12 �1:01;1:25� 1.12 �1:01;1:24�
N�0; SD = 0:15� 1.14 �1:00;1:28� 1.14 �1:03;1:26�
N�0:1133; SD = 0:11� 1.15 �1:02;1:26� 1.14 �1:03;1:25�
N�0; SD = 0:4� 1.15 �1:03;1:31� 1.14 �1:02;1:27�

Table 3
Results of sensitivity analysis on four classes

maxkwk 5 1 1 5 w1 ≥≥≥w2 ≥≥≥w3 ≥≥≥w4

Posterior 95% posterior Posterior 95% posterior
Prior for D mean of RR prob. int. mean of RR prob. int.

N�0; SD = 0:1� 1.09 �0:98;1:22� 1.10 �1:00;1:22�
N�0; SD = 0:15� 1.11 �1:00;1:24� 1.13 �1:01;1:25�
N�0:1133; SD = 0:11� 1.12 �1:01;1:25� 1.12 �1:02;1:24�
N�0; SD = 0:4� 1.12 �1:00;1:25� 1.12 �1:00;1:26�

at each iteration of the Gibbs sampling. The modal
number of missing studies in each p-value interval
is zero except for the interval I5. The posterior mean
number of missing studies is around 22, with about
10 in each of the two higher groups.

4.2 Sensitivity Analyses

We carried out several sensitivity analyses on the
analyses above. These include using the following:

(a) a variety of priors for 1, namely, (i) A restrictive
or more informative N�0;0:12� prior, (ii) the prior
used in the main analysis, N�0;0:152�, (iii) an
empirical N�0:1133;0:112� prior based on work-
place exposure to ETS (Biggerstaff, Mengersen
and Tweedie, 1994) and (iv) a broader N�0;0:42�
prior that is quite uninformative;

(b) an alternative model, which enforces a mono-
tonicity constraint on the publication probabil-
ities, namely, 1 = w1 ≥ w2 ≥ w3 ≥ w4 ≥ w5

(this constraint was implemented by rejection
sampling, and reflects a popular belief about the
nature of publication bias);

(c) the same variants but with only four classes,
amalgamating I4 and I5 and using a single pub-
lication probability on the resultant class, with
prior uniform on �0:3;0:7�.

Tables 2 and 3 list the results of these analyses.
We also carried out some investigations of sensitiv-
ity to the priors for τ2 and s2, and the meta-analysis
results seem to be insensitive to the choice of priors
for these parameters.

The posterior for RR appears to be only mildly
sensitive to the choice of prior for 1, and slightly
more sensitive to the choice of four versus five p-
value intervals (and the corresponding change in
the prior on w). Sensitivity to the prior for 1 is un-
derstandable because this prior provides informa-
tion not only about 1 itself, but also implicitly about
the likely amount of publication bias present.

Overall, however, the posterior mean remains
within the range 1.09–1.15 for our choices of priors,
indicating both a real effect of missing studies, and
also that the posterior of 1 is probably not centered
around 1.0, even after assessing the possibility of
publication bias and attempting to account for it.

4.3 United States Data

The initial EPA Draft Report (EPA, 1990) was
criticized for not using a random effects model, espe-
cially since the overall data set seems to have some
identified subgroups such as country groups within
it. In the final EPA Report (EPA, 1992) the studies
were grouped into different geographical areas and
the EPA focussed largely on the FE meta-analysis of
U.S. studies in drawing conclusions about the public
health aspects relevant to the United States.

A recent review in California (OEHHA, 1996) also
used 14 U.S. studies, updating the EPA Report to
include a further 3 studies. The data are given in
Table 4; details of these studies are in either the
EPA Report (EPA, 1992) or the OEHHA Draft Re-
view (OEHHA, 1996). The values we have used are
adjusted for various covariates, and all relate to
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Table 4
Individual studies and meta-analyses of studies of U.S. nonsmok-
ing women (except Janerich et al., 1990; see text) exposed to

spousal ETS

Study RR 95% CI

Brownson (1987) 1.68 �0:39;6:90�
Brownson (1992)† 1.00 �0:80;1:20�
Buffler (1984) 0.80 �0:34;1:90�
Butler (1988) 2.02 �0:48;8:56�
Correa (1983) 2.07 �0:81;5:25�
Fontham (1994)† 1.29 �1:04;1:60�
Garfinkle (1981) 1.17 �0:85;1:61�
Garfinkle (1985) 1.23 �0:81;1:87�
Humble (1987) 2.20 �0:80;6:60�
Kabat (1984) 0.79 �0:25;2:45�
Kabat (1995)† 1.08 �0:60;1:94�
Janerich et al. (1990) 0.93 �0:55;1:57�
Stockwell (1992)† 1.60 �0:80;3:00�
Wu (1985) 1.20 �0:48;3:01�

EPA FE analysis∗ 1.19 �1:04;1:35�
RE Meta-analysis 1.16 �1:04;1:31�
Bayesian analysis 1.17 �1:02;1:33�
Publication bias analysis 1.10 �0:95;1:29�
∗EPA did not use studies marked with a dagger (†) (although they
used an earlier version of Fontham, 1994) and used a 90% CI.

Fig. 10. Funnel plot of 14 U.S. ETS studies.

studies of never-smoking females in the U.S. ex-
posed to spousal ETS, except for Janerich et al.
(1990) in which there are both males and females.
Note that one might choose to exclude this study
on those grounds, but we will not address such is-
sues. We also do not wish here to go into related
questions such as choice of adjusted or unadjusted
data, or the choice of studies used. Note, however,
that this can require real decisions: for example, in

Section 4.1 we have not used the results in Janer-
ich et al. (1990) but rather those in our Figure 1
taken from the original Varela thesis (Varela, 1987),
on which the Janerich paper is based. The statisti-
cal issues raised in all such questions are beyond
the scope of this paper, although some of them are
addressed by Tweedie et al. (1996) and Mengersen,
Tweedie and Biggerstaff (1995) with regard to these
data sets.

Table 4 also gives various relevant meta-analyses,
including for comparison purposes the FE analysis
carried out by the EPA on 11 studies, and using
only a 90% CI (which has been much criticized al-
though clearly it is not hard to convert). The RE
analysis uses the adjustments for variability in the
estimate of τ2 in Biggerstaff and Tweedie (1996);
the Bayesian analysis was carried out using BUGS
as in previous sections. All of these analyses give
very similar pictures.

Publication bias methods can be applied to this
subset of studies, and the outcome of this is shown
in Figures 10–12. The funnel plot in Figure 10 again
shows a clear and classical indication of perhaps
three small negative studies which may have been
suppressed.

The Bayesian analysis gives strong support to
this heuristic. Figure 11 shows posterior distribu-
tions of the imputed missing study numbers. There
is a weak indication that there might be about
one study missing in the positive range, and there
is strong indication of 1–5 studies missing in the
group with p > 0:5, that is, with RR < 1. Overall,
there is an estimated mean number of 4.5 studies
missing.
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Fig. 11. Frequency histograms of the numbers of missing studies simulated in each p-value interval for the U.S. ETS studies. The black
triangle represents the mean of the number of studies augmented.

Fig. 12. Estimated posterior of relative risk and 95% posterior probability region for U.S. ETS studies. The posterior on the left was
calculated using our data augmentation procedure which accounts for publication bias, and the one on the right assumes no publication
bias.

The effect on the posterior distribution in Fig-
ure 12 is, however, quite noticable: Table 4 shows
that if we allow for these missing studies, the es-
timate of risk is lowered from around 1.16–1.18 to
1.10, and the credibility interval also now includes
the null value.

5. CONCLUSIONS

We have tried in this paper to achieve two goals.
Primarily, we have wished to show that in meta-
analysis, publication bias is a problem which can
be addressed using appropriate tools, rather than



238 G. H. GIVENS, D. D. SMITH AND R. L. TWEEDIE

just a potential problem which has to be overlooked
for lack of any remedies. Second, we have used the
ETS example, currently one of the most visible and
contested uses of meta-analysis in the public health
arena, to highlight both the use of the techniques
and the difference they can make in real terms.

Our approach has been to examine the data for
internal consistency and to impute missing studies
based on the model used in the meta-analysis itself.
We have seen through simulations that this seems
to work effectively, and the ETS examples show that
such imputation can lead to noticable differences,
especially in estimated excess risk.

An alternative approach to the problem, quite dif-
ferent from that we have used, is to search the lit-
erature for clues that might lead to missing papers.
This was carried out in Bero, Glantz and Rennie
(1994), and they found at that time “five unpub-
lished negative studies” not cited in the EPA Report
(EPA, 1992). They imply that the problem is there-
fore a minor one, although they did not conduct a
further meta-analysis using these extra studies. In-
terestingly, this is very similar to the 4.5 studies our
methods show as missing in the U.S. data set, and
we have shown that even this degree of omission
can have a serious effect on relative risk estimates.

Nonetheless, Bero, Glantz and Rennie (1994)
stands out as a more serious attempt than usual to
attack this problem. It is more common to find that
lip-service is paid to the existence of publication
bias but that little attempt is made to account for
it. The EPA Report (EPA, 1992) itself makes no at-
tempt to investigate this issue and, as noted in the
Introduction, is being forced to defend that posi-
tion. Other reviews of the studies in this area have
also swept aside this question: publication bias
is mentioned by the Californian OEHHA Report
(OEHHA, 1996, pages 9–10) but ignored (largely
on the basis of the findings of Bero, Glantz and
Rennie, 1994), and similarly is mentioned by the
Australian NH&MRC Draft Report (NH&MRC,
1995, page 89), but again is ignored. Kawachi and
Colditz (1996) also review the issue, noting some
further studies either completed or located since
the EPA Report, but do not carry out any quan-
titative analyses which shed light on the effect of
publication bias. They cite Vandenbroucke (1988),
whose funnel-plot analysis is both dated and diffi-
cult to sustain, and Bero, Glantz and Rennie (1994)
again, in asserting that this is not a problem.

The approach we propose is clearly more system-
atic than merely looking at funnel plots. Even if
one would obviously not wish to dismiss any as-
sociation just because the publication bias meta-
analysis indicates lack of formal statistical signif-

icance, one would certainly treat it with much more
caution. On the other hand, when the publication
bias meta-analysis still yields a significant estimate
of increased relative risk, the conclusion is even
more convincing in light of the cautious assumption
of potential missing studies on which the analysis
is based. This added strength, in the context of a
formal model and analysis, is an important contri-
bution of the approach developed here.

The changes in estimated relative risk when ac-
counting for publication bias might seem to be small
perturbations on small numbers. However, the use
of meta-analysis as a tool is clearly much more rel-
evant in precisely those areas where the excess risk
is small and not well established. In such cases,
the estimated level of excess risk is of consider-
able importance. It plays a big part in terms of
trying to establish if there is really an association
not due to chance, since it relates to strength of
association in using, say, the Bradford Hill criteria
[see the NH&MRC Draft Report (NH&MRC, 1995)].
Moreover, if the excess risk is small, then there is
much more concern about other possible factors that
might have led to it than if it is large: the values
of the RR (or even of the lower bound on the con-
fidence interval on the RR) need to be at least 2
before many authorities will consider them estab-
lished (Doll, 1986; Wynder, 1987). We have not gone
into these issues here, but the possibility that an
observed association might be caused by such fac-
tors as diet (Lee, 1992) or misclassification bias (Lee,
1992; Tweedie, Mengersen and Eccleston, 1994) cer-
tainly should deserve more attention if the excess
risk is reduced as it seems to be when allowing for
publication bias.

The estimate of excess risk is also central in eval-
uating the problem that the association might cause
in the population, and it is used in the EPA Report
(EPA, 1992, Chapter 6) in this way. There are many
parameters that need to be taken into account in
estimating the attributable number of lung cancer
cases that might flow from spousal exposure to ETS,
but as shown in Taylor and Tweedie (1997) the value
of the relative risk is one of the most sensitive. If
the real value is 1.10 rather than 1.19 then this al-
most halves the estimated attributable number of
cases, and this of itself might have a serious impact
on how the exposure is viewed.

Most meta-analyses cover relatively small num-
bers of studies. The 30 or so available in the ETS ex-
ample, or the similar number on cervical cancer and
oral contraceptive use considered in Smith, Givens
and Tweedie (1997), represent the type of public
health study where one might have some confidence
that the imputed studies give a credible representa-
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tion of the truth. What remains to be developed is a
method of handling small collections. Simes (1996)
estimates that up to half of all studies granted fund-
ing do not get to publication. Until we know what
these studies showed, or would have shown if com-
pleted, we still run grave risks of making decisions
based on very limited, and very biased, data. The
methods developed here are just one small step to-
ward improving that situation.
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Comment
Colin B. Begg

The credibility of the statistical analysis of any
data set should be influenced, to a considerable ex-
tent, by the quality of the data. The recent interest
in publication bias is a recognition of a specific data
quality problem, and one that is particularly appar-
ent, and theoretically correctable, in the context of
meta-analysis. However, this is not the only problem
with the data on which the meta-analysis of Givens,
Smith and Tweedie is based. My comments will en-
compass the issue of data quality in some detail, in
addition to some purely technical issues regarding
the analysis.

DATA QUALITY ISSUES

Givens, Smith and Tweedie advance the thesis
that publication bias has influenced substantially
the interpretation of the available data on lung
cancer risk induced by passive smoking, concluding
that the “estimated excess risk may be overstated
by around 30%.” The notion that selective pub-
lication could occur in this context is certainly
highly plausible. All but 3 of the 35 studies ana-
lyzed are case–control studies of lung cancer. When
conducting case-control studies of cancer, epidemi-
ologists will usually collect detailed information on
a broad range of risk factors, including diet, alco-
hol consumption and a variety of other lifestyle and
personal factors, in addition to detailed informa-
tion on smoking history. In fact, smoking is such a
pervasive risk factor it is included in the majority
of cancer epidemiologic studies, and information on
passive smoking will undoubtedly have been col-
lected on an indeterminate number of lung cancer
studies not included in this meta-analysis. On com-
pletion of a case–control study, the investigators
will then typically publish the results in a series
of articles, each one dealing with a different risk
factor of set of factors. The image of investigators
trawling around their factor-rich datasets looking
for interesting correlations to publish is a famil-
iar one to statisticians working in this field. An
important consideration in sorting out the wheat

Colin B. Begg, Ph.D., is Chairman, Department of
Epidemiology and Biostatistics, Memorial Sloan-
Kettering Cancer Center, 1275 York Avenue, New
York, New York 10021-6007.

from the chaff in this setting is the concept of “sci-
entific intent.” Usually the study will have been
constructed with a stated primary focus, compris-
ing a specific hypothesis or set of hypotheses, and
the other factors will be collected either to permit
adjustments for potential confounding, or simply
for hypothesis-generation purposes. The results
pertaining to the primary hypotheses thus have
greater credibility than any unexpected or casual
observations from the remaining data. In short, re-
sults stemming from a hypothesis-driven strategy
have more credibility than those stemming from a
data-driven strategy.

It is of interest to examine the passive smoking
studies from this perspective. In the short time I
had available to prepare this commentary I was un-
able to access the articles from all of the studies.
However, I looked at the majority of them and it is
clear that most of the articles report subsets of data
from larger case–control studies of lung cancer, in
which the subsets comprise nonsmoking cases and
controls. Indeed, the few cohort studies also appear
to be of this variety. It could be argued that the
very fact that information on passive smoking was
collected is evidence of “scientific intent” with re-
gard to the passive smoking hypothesis, although I
am personally skeptical of this in view of the en-
compassing nature of data collection with regard to
risk factors, as outlined above.

However, there are some studies that are un-
equivocally hypothesis-driven, and a close exam-
ination of the methods used in these studies is
instructive about some of the additional problems
of studying this issue, unrelated to publication bias.
In the study by Garfinkel, Auerbach and Joubert
(1985) the investigators identified cases of lung
cancer retrospectively in women diagnosed between
1971 and 1981 at four hospitals, and used corre-
sponding cases diagnosed with colorectal cancer
as controls, on the presumption that smoking is
unrelated to colorectal cancer, a topic that has be-
come more controversial since the publication of
the article. The nonsmokers and ex-smokers were
identified on the basis of the information in the
medical charts, obtained as routine clinical infor-
mation. The individuals so identified comprise the
cases and controls, and only nonsmokers or cases
with missing data were followed up. Detailed data
on passive smoking were obtained by interviewing
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the proband, or the spouse if the proband was
deceased, or the next of kin if the proband was un-
married or no longer living with the spouse (note:
only 57% of cases were married and living with
their husbands at the time of the cancer diagnosis).
Passive smoking exposure was based on the habits
of the husband or cohabitating relative, whichever
was appropriate, and was based on questions relat-
ing to issues such as the duration and intensity of
smoking, the number of hours per day the proband
was exposed and recollected childhood exposures.
Women whose “husbands” smoked only occasion-
ally were designated as not exposed. Janerich et
al. (1990) pursued a more ambitious strategy us-
ing population-based cases and controls, but with
similar data collection and case identification meth-
ods. Clearly, in these settings, there are numerous
opportunities for exposure misclassification, both
in absolute and in relative terms. Moreover, these
two studies are probably among the best in the
meta-analysis with respect to bias control and care
in data collection, in addition to their hypothesis-
driven intent. In fact in the pioneering study in this
genre, the study conducted by Trichopoulous et al.
(1981) in Athens, not only was the small series of
51 cases hospital-based, but the controls came from
entirely different hospitals, limitations which were
recognized and acknowledged by the authors. The
bottom line is that the reported results from the
component studies in the meta-analysis are individ-
ually much “softer” than is reflected in the reported
statistical confidence intervals.

There exists a sentiment among some commenta-
tors that meta-analysis is simply an inappropriate
tool for use in aggregating nonrandomized studies,
and that it is especially inappropriate in evaluat-
ing “small” effects. Certainly, one has the sense that
there is a substantial fudge-factor associated with
the studies in this analysis, and that it would not
matter how many additional observational studies
might be performed. As long as the results continue
to produce a summary relative risk in the region of
1.2 or less one can never obtain truly convincing ev-
idence of the causal link between passive smoking
and lung cancer based only on these kinds of stud-
ies. In fact this is why the arguments supporting
EPA classification of passive smoking as a carcino-
gen rely on analogies and extrapolation of evidence
from studies of active smoking, and are fundamen-
tally subjective. My personal view about this par-
ticular meta-analysis, and by extension other meta-
analyses of observational studies of relatively small
effects, is that it is important not to imply a quan-
titative precision to the statistical analysis that is

unsupported by the quality of the data. The au-
thors may feel they are indeed accomplishing this
via their adjustments for publication bias. My feel-
ing is that any purely statistical (i.e., quantitative)
analysis cannot fully capture the strength of the ev-
idence, or lack thereof, in the data. Moreover, the
use of a complex and sophisticated analysis imparts
a subliminal message that the analysis is indeed
encompassing and definitive. In other words, I am
much more in favor of relatively simple analyses
and data presentations that allow the data to speak
for themselves to the extent possible, and which
attempt to provide insights into the quality and
strength of the evidence.

TECHNICAL ISSUES

Meta-analysts have long recognized the problem
of publication bias, and the funnel plot has been
the preferred informal mechanism for identifying its
presence (for a review, see Begg and Berlin, 1988).
This plot of effect size versus sample size, or more
properly the variance of the effect size, should be
symmetric in the absence of bias. If there is a sys-
tematic preference for publishing data-dependent
results favoring (or opposing) the hypothesis of in-
terest, this will have the effect of skewing the graph.
A relatively simple significance test can thus be con-
structed based on the rank correlation between the
effect sizes and their variances, suitably standard-
ized to ensure that the studies are i.i.d. (Begg and
Mazumdar, 1994). I have performed this test using
the data reported in Table 2 of Tweedie et al. (1996),
including the study by Butler although it appears
to be omitted from the analysis by Givens, Smith
and Tweedie. This results in an adjusted rank cor-
relation of 0.18 and a corresponding two-sided p-
value of 0.13. The sample size for this test is the
number of component studies in the meta-analysis,
namely, 36, so its power is limited. Nonetheless the
results show a nonsignificant trend supporting the
concept of bias, that is, the studies with the small-
est p-values tend to be the ones with the smaller
sample sizes.

Bias of this nature has a differential impact on
the type of analysis performed. Givens, Smith and
Tweedie, like many other commentators, favor a
random effects approach to the analysis. In fact
the traditional random effects method (Dersimo-
nian and Laird, 1986) is much more susceptible
to publication bias, in the absence of adjustment
for bias, than the fixed effects approach. In both
of these methods, the summary effect size is a
weighted average of the individual effect sizes; only
the weights differ. In the fixed effects approach the
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weights are inverse variances of the individual es-
timates, while in the random effects estimator the
weights are smoothed out in relation to the ex-
tent of between-study heterogeneity, and thus the
small (biased) studies are given relatively more
weight and the large studies are given relatively
less weight. Thus the random effects estimator will
have greater bias in the presence of selective publi-
cation. Furthermore, since publication bias tends to
exaggerate the apparent heterogeneity, this further
accentuates the bias in the random effects estima-
tor. In my own analysis of the data from Tweedie et
al. (1996). I obtain a fixed effects estimate of 1.17
�1:08;1:26� and a random effects estimate of 1.21
�1:09;1:35�, and so the additional bias in the ran-
dom effects estimator caused by this phenomenon
would appear to be about 0.04. Although the rel-
ative impact of bias on these methods, if it exists,
is fairly small in this example, it can be profound
if the range of variances is large and the effect of
selective publication is strong, as was the case in
the important meta-analysis of the risks of cancer
due to the chlorination of the water supply (Morris
et al., 1992). In general, uncritical use of the ran-
dom effects method is hazardous, in my opinion.

The use of the funnel graph and the analogous
rank correlation test is not the only contrast avail-
able for detecting publication bias. In fact this ap-
proach is largely dependent for its power on the ex-
istence of a broad range of variances among the
individual component studies, and this has been
examined quantitatively by simulation (Begg and
Mazumdar, 1994). A completely different structure
for tackling the problem, and one which does not
rely in any fundamental way on the variances dif-
fering from study to study, is to use “selection mod-
eling,” and this is the general framework employed
by Givens, Smith and Tweedie in the spirit of earlier
work by Iyengar and Greenhouse (1998), Hedges
(1992) and Dear and Begg (1992). All of these au-
thors have elected to assume that the selection prob-
ability is a function of the p-value. Conceptually,
what happens in these models is that the pattern
of the distribution of p-values is examined to see
if it is consistent with what would be expected in
the absence of bias. If there are gaps in the antici-
pated pattern, then their presence is attributed to
missing unpublished studies, the impact of which is
imputed to make the bias adjustments. It is easi-
est to conceptualize this in the context of the null
hypothesis of no effect size, that is, 1 = 0. In this
setting the p-values should correspond to a uniform
distribution on �0;1�. Selective publication of sta-
tistically significant studies will lead to a concen-
tration of p-values at the lower end of the sample

space. However, this pattern could also be due to
the fact that 1 6= 0. Thus, the effects of a true sig-
nal �1 6= 0� and of publication bias are hard to dis-
entangle, and the leverage for doing so is entirely
bound up in the modeling assumptions, notably the
assumption of normal distributions for the observed
effect sizes, the assumption of known variances and
the nature of the random effects distribution. My
own experiences with this kind of approach lead me
to believe that it is not a sound basis for making in-
ferences about the true effect size, and that these
models are useful only as part of a set of semifor-
mal tools for identifying bias, rather than for cor-
recting it (Dear and Begg, 1992). Indeed the “sim-
ulation” studies presented by Givens, Smith and
Tweedie, which appear to be simply two applications
of the method using data generated from a known
model, do not inspire confidence that the model will
be reliable in making accurate bias corrections in
general.

A final concern I have is with the selection of
prior distributions. As so often occurs in the applica-
tion of fully Bayesian methods the priors appear to
be picked out of the thin air without any substan-
tive justification. In the primary analysis, the use
of a N�0;0:152� prior is essentially akin to adding a
new study to the meta-analysis with effect size zero.
That is, this imaginary study has a relative risk of 1
and a confidence interval ranging from 0.75 to 1.34.
A glance at Figure 1 of Givens, Smith and Tweedie
shows that such a study would be among the larger
of the existing studies. Moreover, since it is centered
on the null hypothesis, its inclusion clearly tilts the
analysis in favor of the null. The sensitivity analy-
ses of this issue are unconvincing to me, since even
though the posterior means only range from 1.12
to 1.15 (Table 2), this is quite a large difference in
the context of the analysis, especially regarding the
conclusion in the Abstract about the 30% overstate-
ment of risk. The only prior that would make any
sense to me in this context is the noninformative
prior, and the implied advocacy of a highly informa-
tive prior centered on the null would seem to me
to be very poor advice for any future users of this
methodology. The other priors are similarly unap-
pealing to me. The restricted uniform priors on the
weights seem contrived, and also tilted in favor of
publication bias with no clear rationale. The need
to generate study variances via a prior distribution
also seems contrived, and tangential to the funda-
mental goals of the analysis.

In summary, I suspect that the overall conclu-
sions of Givens, Smith and Tweedie may not be
too far from the truth, but I am concerned about
how the authors got there. There is some suggestive
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evidence of publication bias, but its impact is proba-
bly not especially strong in this meta-analysis, and
as a result the apparent overall trend in the data
is a small positive effect of passive smoking on lung
cancer risk. However, the limitations of data quality,
and the apparent weakness of the effect of passive
smoking mean that the analysis is far from con-
clusive, and it is unlikely that additional observa-
tional studies could affect this overall conclusion.
My feeling is that these are the appropriate con-
clusions from a relatively simple analysis of these

data, comprising a plot of the data as in Figure 1, a
funnel-graph as in Figure 2, some rudimentary tests
for publication bias and a careful evaluation of the
quality of the component studies. Givens, Smith and
Tweedie have brought fashionable modern statisti-
cal techniques to bear on the issue, with the atten-
dant jargon of Gibbs sampling, burn-in periods, sup-
pression criteria, elaborate prior distributions and
all the rest. Does this stuff really add insight to the
analysis? I’m afraid my vote is no.

Comment
William DuMouchel and Jeffrey Harris

The paper by Givens, Smith and Tweedie (GST) is
a fresh attempt to tackle the “file drawer problem,”
which at first blush seems insoluble without actu-
ally going out and finding some missing studies. For
example, the attempt by Iyengar and Greenhouse
(1988) seemed to fall short of a solution. The current
authors use more sophisticated modeling tools, pri-
marily in their use of a hierarchical random effects
model and Gibbs sampling, and perhaps they also
have a more fortunate example data set. However,
all attempts to assess publication bias beyond sim-
ple graphs like the funnel plot seem to involve a tour
de force of modeling, and as such they are bound to
run up against resistance from those who are not
statistical modeling wonks. After all, the present
analysis is pretty hard to follow, even though the
paper is well written, and readers who think they
do understand the presentation of the modeling pro-
cess are likely to be the type who enjoy nit-picking
on the details. The following discussion is offered in
this latter wonkish spirit.

The random effects model, equation (2) in GST,
represents each published study effect as

Yj = 1+ βj + εj;

William DuMouchel is with AT&T Labs—Research,
600 Mountain Avenue, Room 2C 271, Murray Hill,
New Jersey 07974 (e-mail: dumouchel@research.
att.com). Jeffrey Harris is Associate Professor, De-
partment of Economics, Massachusetts Institute of
Technology, E52-252, Cambridge, Massachusetts
02139 (e-mail: jeffrey@mit.edu).

where the standard deviation of εj is σj and these
standard deviations, usually given as the nomi-
nal standard errors presented by the authors of
the original studies, play a key role in the detec-
tion of publication bias. Some might object that
the variance of a study effect involves more than
a simple sample size calculation and that, for ex-
ample, a study that carefully measured exposures
and documented lung cancer cases should have a
smaller within-study error than a study that did
not carefully gauge exposure and relied upon un-
documented cancer ascertainment. This raises the
question of how and whether measures of study
quality can be incorporated into a meta-analysis. If
such measures are not available for specific stud-
ies, but you suspect that there is a lot of variation
in study quality, then the random effect term βj in
the above model provides a handy way to represent
such variation. If you desire to incorporate specific
information about the quality of particular studies,
there are two modeling strategies available. First,
you can subjectively inflate the values of σj for
poor-quality studies. Second, you can incorporate
regression terms into the model involving study-
level covariates. Both strategies were used in the
meta-analysis of biological effects of diesel and re-
lated emissions reported in DuMouchel and Harris
(1983).

A key assumption made by GST is that the pub-
lication selection criterion is based solely on each
study’s one-sided p-value for rejecting the null hy-
pothesis 1 ≤ 0. Why should this be based on the one-
sided p-value? Are the authors assuming that stud-
ies showing a significant protective effect of ETS
would be discriminated against?
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More generally, we suspect dependence of the
selection criterion on more than the p-value. For
example, the sample size, cost or power of a study
seem natural additional selection criteria. These
could be summarized in the value of σj. If studies
with high values of σj are harder to publish, then
of course high p-values would also be underrepre-
sented. If the authors change their model so that
(7) reads

Pr
[
a study with standard error σj
and a p-value in Ik is published

]
= wk/σj;

their substantive conclusions may be very different.
Section 3.3 of GST, on the definition of the like-

lihood function, is the technical heart of the paper,
and perhaps the hardest section to follow. For ex-
ample, the authors condition on the numbers of ob-
served studies, n = �nk� in each p-value interval,
whereas normally one imagines that the nk are a
function of the Yk. Maybe it’s all right, but there is
the appearance of circularity in (11), in that X de-
pends on m, m depends on n and n depends on X.
We have a similar difficulty understanding the role
of the normalizing functions A�·� in (12), (13), (14)
and (16). How exactly are they defined?

In the discussion of the Gibbs sampling steps in
Section 3.4, it is stated that the missing p-values

are drawn uniformly on the intervals Ik. But is not
a uniform distribution for the pj only appropriate if
1 = 0? Could this be producing a bias in the Gibbs
sampling in favor of the null hypothesis?

Considering the simulation experiments, the
authors assume that the prior distributions for the
selection weights in Section 3.5(b), with no suppres-
sion, are uniform on �0:5;1� for all of the p-value
intervals. Yet in the analysis of the ETS data,
stronger priors were used. It would be nice to have
a comparison assuming identical priors.

Finally, the authors refer to the report of Bero,
Glantz and Rennie (1994), who found five unpub-
lished negative studies not cited in the EPA Report
(EPA, 1992). What were the values of the σj for
these new studies? We guess that they are larger
than those for most of the first-reported studies.

To summarize our discussion, in spite of what may
seem like critical comments we do assume that pub-
lication bias is a real phenomenon and that the pa-
per under discussion is a nice contribution to the
methodology of detecting and correcting for such
bias. Our most serious concern is with the form
of the assumed publication bias criterion, and we
would like to see whether adding a factor for de-
pendence on the σj, as we suggested above, would
modify the results of the ETS analysis.

Comment
Annette Dobson and Keith Dear

The culture of meta-analysis has traditionally
favored very simple methods, such as weighted av-
erages and the one-step random effects method
of Der Simonian and Laird. The same is true of
early approaches to publication bias, such as the
file drawer of null studies conceived by Rosenthal.
Now that meta-analysis is taking a high-profile role
in public policy-making and regulatory affairs, it is
entirely appropriate that more sophisticated tech-
niques, such as those proposed by Givens, Smith
and Tweedie, be developed. In these comments we
will concentrate on the methodology, and not on the

Annette Dobson is Professor, and Keith Dear is Sen-
ior Lecturer, Department of Statistics, University
of Newcastle, NSW 2308, Australia 61-249-215544
(e-mail: stajd@cc.newcastle.edu.au and dear@mail.
newcastle.edu.au).

specific results about the relationship between ETS
and lung cancer.

The choice of prior is always an issue in Bayesian
analysis and seems to us to be critical here. Three
simulations are provided in Section 3.5. In the
first simulation [Section 3.5(a)] mild suppression
is applied and the prior on the wk reflects this by
preferring lower probability of publication if the
p-value is greater than 0.5 than if it is less than
0.5. This is described as “not reflecting strong be-
liefs about the amount of publication bias present”;
however, it does embody the belief that there is
some. In Section 3.5(b) no suppression is applied,
and the prior reflects this by having equal priors
on all three regions of the p-value scale. Finally,
in Section 3.5(c) strong suppression is applied, and
publication bias this time is forced into the model
by the use of a U�0:2;0:7� prior for 0:1 < p < 1. In
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Section 3.5(d) different priors are tried for the data
in Section 3.5(c), but always imposing publication
bias. In all these simulations, the true mean effect
was 1 = 0.

One is inevitably left with several unanswered
questions. What would be the effect of applying un-
prejudiced priors to simulations where suppression
was present—would it still be detected? How about
prejudiced priors where suppression was absent—
would it be spuriously imposed? And, most perti-
nent, what would be the effect of this last case when
1 > 0? It could be that estimates of 1 close to zero
would be returned, as happens with the real ETS
data set. The analysis of the real, as opposed to
simulated, data uses a prior which prefers low pub-
lication probability for 0:1 < p < 0:5 and insists on
it for 0:5 < p < 1. It would have been valuable to
include an assessment of how critically this assump-
tion affects the outcome. The sensitivity analyses of
Section 4.2 do not address this particular point.

The simulation trials show that when 1 = 0, but
appears positive due to suppression, then the model
usually moves the estimate back toward zero but not
all the way. It does not necessarily follow that what-
ever the true degree of suppression, “the method
gives an outcome that is usually conservative.” It
appears to us that some more finely targeted simu-
lations might well have been used to strengthen the
argument.

We were glad to see the discussion of possible ex-
tensions of the model to include covariates affecting
publication probability. Dependence on study size in
particular is to be expected—indeed, how much re-
liance can be placed on a model that omits a covari-
ate known to be important? It may be that while the
broad features of such a model are meaningful, such
as whether there appears to be publication bias or
not, details such as adjusted estimates of relative
risk are not to be taken seriously. We look forward
to the appearance of Smith, Givens and Tweedie
(1997), where a fuller treatment including covari-
ates is promised.

A more aggressive approach also seems possible
in the context of data augmentation. If publication

probability depends on study size as well as on p-
value, then the augmented data set should reflect
these patterns and should include studies of differ-
ent sizes with different frequencies. The expectation
is that the missing studies will tend to be small,
and this is not sufficiently captured by recreating
them based only on the distribution of p-values.
Augmenting the data set with a large null study
will have a greater moderating effect on the esti-
mate than will adding a small null study, even if
both have the same p-value. Consider, for exam-
ple, a meta-analysis of three studies having y =
�1:2;1:3;1:4� and s2 = �0:5;0:6;0:7�. The weighted
mean is 1.29. If we now add a fourth study with
y = 1, s2 = 1 and therefore a one-sided p-value
of 0.16, the mean is reduced only a little to 1.24.
This represents adding a small null study, since
the within-study variance is relatively large: but
if instead we add a large study with y = 0:3162,
s2 = 0:1 and therefore again p = 0:16, then the re-
vised estimate is drastically reduced to 0.68. Hung,
O’Neill, Bauer and Köhne (1997) considered how the
distribution of the p-value under the alternative hy-
pothesis depends on sample size.

The paper aims to show, first, that the problem
of publication bias is not one “which has to be over-
looked for lack of remedies,” and, second, that proper
adjustment for publication bias can make a differ-
ence to the conclusions drawn from a meta-analysis.
The proposed new method for accounting for publi-
cation bias is not the first such method proposed,
and previous methods have not been much used,
perhaps because the previous authors (Hedges 1992;
Dear and Begg 1992) were more cautious about rec-
ommending reliance on estimates emerging from
their models, or because of the perceived complex-
ity of the techniques. The value of any new statis-
tical methodology depends, in part, on the extent
to which it is adopted. However, the Bayesian ap-
proach of Givens, Smith and Tweedie provides valu-
able insights, not only for the results shown here,
but because others may be encouraged to use a sim-
ilar approach, with modifications, to explore more
broadly the practical effects of publication bias.
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Rejoinder
Geof H. Givens, D. D. Smith and R. L. Tweedie

1. THE GENERAL AND THE PARTICULAR

We are grateful to all the discussants for high-
lighting a number of the central issues which
enter into any approach to the evaluation of meta-
analysises, and for their comments on the particular
instances relevant to our Bayesian approach to pub-
lication bias.

There is some universality of themes in all the
discussions, and in particular there are insightful
ideas on the questions of how to model the mecha-
nism of publication bias; comments relevant to gen-
eral Bayesian models on the choice of priors; and
some thought-provoking concerns on the practical
value of complex models. We address these below.

It is of interest that there is little comment on
the specific results of our analysis of the ETS data,
other than some supportive analyses by Colin Begg
using different methods. In preparing this paper,
we were strongly encouraged by editors and refer-
ees to focus on the ETS debate because of the al-
most universal relevance of the subject, and what
were perceived as substantive statistical questions
that should receive wider review in a journal such
as Statistical Science. Thus ETS became, not the
normal sort of application that we had initially pro-
posed, but rather a more thorough exemplification of
the issues facing statisticians commenting on issues
in the public arena. In general, however, the discus-
sants have returned the focus rather more to the
generic and the mathematical issues, rather than
giving strong views on this particular application.

This is refreshing in the light of some of the acri-
monious debates in public health journals on such
issues. Perhaps optimistically, we hope it signals
that statisticians are able to consider the strengths
and weaknesses of arguments in a logical rather
than a political framework, a role that our disci-
pline is perhaps uniquely designed to play.

2. THE NATURE OF PUBLICATION BIAS

All three discussion papers provide valuable com-
ments of different forms on the nature of publication
bias and how it might be modeled.

In our paper we explicitly used the p-value as the
sole determining factor in deciding on whether a pa-
per might or might not be published. The argument
for this is simple, believable and undoubtedly too

simplistic. Begg provides an equally believable ac-
count of another source of publication bias, namely,
the choice of “interesting” exposures from studies
where many sets of data are available but only some
are selected by the authors for publication. Some of
the authors may have made this choice based on sta-
tistical significance, but others may use other crite-
ria. If we add in the work of Simes (1996) and oth-
ers on research grants that never led to publication,
we see that the sources of missing studies are many,
and that the parameters describing nonpublication
are not easy to select.

Bill DuMouchel and Jeffrey Harris suggest that
two parameters, the p-value and the study vari-
ance σ2

j , should be used to decide on the probability
of exclusion; Annette Dobson and Keith Dear sug-
gest, essentially equivalently, that p-value and size
of study should provide this probability. Certainly it
seems probable that large and well-funded studies
may be less likely to slip away. But Begg’s image,
that some of these large studies are still unmined
on a variety of topics, cannot be overlooked as an ex-
tra complication. As a further alternative, we note
that exclusion criteria could be based explicitly on
p-values and the size of the relative risk in a study:
studies with larger, “interesting,” relative risks are
published even if insignificant, perhaps. Formally,
this latter criterion might be essentially the same
as using the size or variance; but the common-sense
interpretation might be easier with this parameter-
ization.

We endorse the desirability of further work to
take up these bases for developing exclusion crite-
ria, and indeed in Smith, Givens and Tweedie (1997)
we do develop a more complex methodology that
could be used to investigate such multiple criteria,
as well as those based on exclusion of poor stud-
ies (however defined). These further methods might
allow some systematic handling of the quality is-
sues raised by Begg or by DuMouchel and Harris,
as well as the relationships with other covariates
commented on by DuMouchel and Harris or Dobson
and Dear.

3. MODELING ISSUES, PRIORS AND BIASES

Even within the framework of a criterion using p-
values, there are nontrivial questions. DuMouchel
and Harris point out that we use the one-sided p-
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value in our criterion. This is deliberate: our expe-
rience is that funnel plots are, as in the ETS case,
typically missing one rather than two corners, indi-
cating that there is directional discrimination. The
model could easily be adjusted to incorporate two-
sided p-values if this seemed appropriate.

They also note correctly that in our Gibbs sam-
pling, we introduce a bias by drawing p-values uni-
formly, implicitly using the distribution appropriate
to 1 = 0. Since this is only uniform in each inter-
val Ik, we believe the bias to be small. Within the
Gibbs step, the number of studies mk imputed in
that interval is based on the current best estimator
of 1 (and its current posterior approximation); thus
if 1 is truly far from 0, we would expect to place few
studies in an inappropriate Ik, even though the con-
sequent augmenting studies have a variance (back-
calculated from p) that is biased toward small stud-
ies. The exact distribution of p under alternative
hypotheses is, as noted by Dobson and Dear, stud-
ied by Hung et al. (1997), and with sufficient ef-
fort such a distribution could be incorporated in the
Gibbs sampler we use.

Conversely, we think there is little cause for the
concern of Begg that we might be including aug-
mented studies biased toward the null by use of
the prior distribution N�0;0:152� on 1. This does
not draw a new study with mean zero and CI
�0:75;1:34�, which would indeed be a largish study
in the ETS context. It only draws the new mean 1
from that range; the actual mean is modified ac-
cording to the data, and then the variance of the
new study is drawn differently, to fit the p-value
criteria. Hence our prior on 1 contains very little
information. This is clear in Table 2, where we find
that when we increased the variance on the prior by
using a N�0;0:42� prior, there was no real change
in the results. If we used a prior of N�0;0:12�, then
the estimate of RR did change, down to 1.12 rather
than 1.14, showing that this was perhaps not a
sufficiently diffuse prior.

One can use graphical methods to verify these ef-
fects, as developed in Smith and Tweedie (1997).
Figure 1 shows the characteristic shape of a fun-
nel based on a density estimate of the 50 “observed”
studies in simulation example (a) [Section 3.5(a)].
Figure 2 shows a density estimate for the location
of the imputed studies in simulation example (a).
Note that the imputation typically misses the ex-
treme suppressed studies, although in general it
does coincide with the locations of the missing stud-
ies; and the augmenting studies are indeed smaller
than Begg fears.

All discussants consider questions raised by the
use of prior distributions. DuMouchel and Harris,

Fig. 1. Funnel plot and smoothed density of the total data set
of 50 studies from simulation example (a) [Section 3.5(a)] before
suppression.

Fig. 2. Funnel plot of 32 “observed” studies and smoothed den-
sity of augmented studies from simulation example (a) [Sec-
tion 3.5(a)]. Note that the missing studies appear to be imputed
near the lower-left corner of the funnel plot, covering essentially
the area that has been truncated due to publication bias.

Begg, and Dobson and Dear all found the use of
uniform priors on the publication bias weights to
present difficulties for different reasons. The option
adopted in the similar but simpler model of Eberly
and Cassella (1996) was to use beta distributions:
this clearly overcomes none of the queries of the
discussants. Perhaps all we can do in such a situa-
tion is to point out that with our model this aspect
is quite subjective and that different users could use
other priors more to their taste.

Nonetheless, we recognize that the choice of pri-
ors on the wk is perhaps the most sensitive part of
the method, since they always do imply that some
degree of publication bias is present; although, if
the priors are identical on all Ik, then at least there
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should be no bias in the location of the augmenting
studies.

However, as pointed out by Dumouchel and Har-
ris and by Dobson and Dear, we have used differ-
ential priors favoring more bias in low-significance
studies in our analysis of the ETS example. Ac-
cordingly we have reanalyzed the overall ETS data
set with priors uniform on �0:5;1� for each Ik,
as suggested by both these discussants. Table 2
showed that with our original priors the posterior
mean on RR was 1.14 with CI �1:00;1:28�. Us-
ing the priors identical on each Ik, this changes
to 1.19 �1:06;1:34�; using identical priors but with
monotonicity constraints we get 1.15 �1:04;1:28�,
very comparable to the constrained version of 1.14
�1:03;1:26� in Table 2.

It thus appears reasonable to conclude that the
values we give are not driven too much by the pri-
ors if the monotonicity, or ordering of rejection by
p-value, is correct: clearly our priors had a tendency
for this same preference built in through a different
mechanism. We believe this is in general an appro-
priate constraint, and note that in another appli-
cation, in LaFleur et al. (1996), we found a simi-
lar need to impose monotonicity to reach agreement
with the subjective impressions given by the funnel
plots.

Finally, we note that Dobson and Dear suggest a
number of other questions that might be addressed
by simulation. Some of these are indeed considered
in Smith (1997); we agree that for the reliable use
of this method more such analysis would be useful,
but feel in general it is wise for any user to consider
the specific shape of the problem (numbers and sizes
of studies, etc.) and carry out such simulations in a
relevant context.

4. COMPLEX OR SIMPLE SOLUTIONS?

Our remarks about publication bias needing some
attention, rather than being “overlooked for lack of
remedies,” was not in any way intended to ignore
the contributions in papers such as Dear and Begg
(1992) or Hedges (1992); on the contrary, it was in-
tended as a comment on the way in which some
reviews (such as those of ETS) have typically swept
the problem aside rather than using such remedies.

Dobson and Dear comment that perhaps the lack
of use of those papers was because the authors were
more cautious in recommending their adjusted re-
sults; but we think they are more accurate with
their other possibility, that methods are not used
because they are complex. Clearly Begg feels that
this is the situation, and we hope his pessimism on
this will not prove entirely accurate.

It is indeed regrettable if methodological complex-
ity has discouraged researchers from careful adjust-
ment of meta-analyses for publication bias, and our
methods are unlikely to remove such reluctance.
We do think that our Bayesian methods, relying on
various computer-intensive Monte Carlo methods,
are not only fashionable, but are easier to imple-
ment than the methods in Dear and Begg (1992) or
Hedges (1992); but they are not trivial.

What can be done about more simple meth-
ods? We disagree with the philosophy in Begg’s
comments, that one should use simple methods
to identify publication bias even if no adjustment
can be carried out. It is pleasing that his rank-
correlation method largely confirms, even with its
low power, the likely presence of bias in the ETS
data; but clearly one should not throw out the ETS
data just because such a bias (of unknown size and
importance) exists, any more than one should feel
comfortable accepting the original values once one
confirms the likely presence of bias.

The rather subjective method given in Mengersen,
Tweedie and Biggerstaff (1995), of trimming funnel
plots of unmatched studies rather than trying to
augment them, does at least “disentangle the true
signal and the publication bias” to some extent. It
does seem vastly preferable to the surprisingly fre-
quently used Rosenthal (1979) “fail-safe” method,
which enjoys considerable popularity because it is
simple even if it answers quite the wrong problem:
it is hard to conceive of a situation where one really
wants to know how many exactly null studies are
needed to reverse one’s conclusions, rather than the
degree of bias in the set of studies one actually has!

Perhaps the best balance lies in ensuring that
some complex methods are available when needed.

We think DuMouchel and Harris are correct in
that, to address this at first sight insoluble prob-
lem, one must have some tours de force of modeling,
whether they be Bayesian or frequentist; and that
these will rarely become standard techniques, even
among statistical wonks. But in cases such as those
of ETS, where serious public health or legal issues
are being debated, it must be valuable to be able
to revisit ad hoc judgements, made by (for example)
looking at simple funnel plots, and by using more
difficult but in principle more rigorous methods, to
provide some level of confirmation or contradiction
of the initial conclusions.
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