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Effects of Unobserved and Partially
Observed Covariate Processes on
System Failure: A Review of Models
and Estimation Strategies
Anatoli I. Yashin and Kenneth G. Manton

Abstract. Stochastically changing covariates may influence survival.
They may be observed, unobserved or partly observed. We review the
properties of hazard models explicitly representing the effects of un-
observed, and partially observed, stochastic covariates. Such models will
increase in importance as new longitudinal population studies, and longi-
tudinal surveys of high dimensional failure processes in humans, become
available—many are now in progress. It is shown that marginal survival
distributions and likelihoods generated in analytically closed form make
such parametrically detailed models computationally tractable. Several
ways of defining the marginal distribution of the data for constructing a
likelihood function are considered. The most complete models can han-
dle both continuously and discretely evolving covariates. Parameters can
be estimated from multiple data sets to retrospectively and prospectively
evaluate covariate trajectories. Such methods will both extract more in-
formation from a longitudinal study and use it in a parametric structure
that is logically consistent with the behavior of the underlying processes
of substantive interest.
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Cameron–Martin, martingales, conditional Gaussian processes, Wiener
processes, Kalman filters, quadratic hazard functions.

1. INTRODUCTION

The goal of survival studies is to evaluate the
failure of stochastic dynamic systems. However,
standard survival models often ignore both the dy-
namics of unobserved, or partly observed, stochastic
covariates—and information about them available
from prior empirical studies or theory. We discuss
the statistical and mathematical background nec-
essary to develop a stochastic process model for
survival analysis which can be estimated from lon-
gitudinal study and survey data, and the potential
use of ancillary information about the structure of
the process. We present the likelihood for, and illus-
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trate, a specific stochastic process model, referred
to as the MWY approach (Woodbury and Manton,
1977; Yashin, 1980, 1985), which has the necessary
properties to estimate the risk of failure condi-
tional on the past trajectory of the system’s state
from longitudinal data—possibly augmented with
information (e.g., estimates of specific system pa-
rameters) from prior studies of a system’s structure
(e.g., Singpurwalla, 1995).

In developing such a model, when trajectories
are unobserved or partly observed, the conditional
risk of failure must be averaged over influential,
unobserved variables. The difficulty and burden of
computation depends on whether that averaging
can be expressed in an analytic form. Several meth-
ods which produce analytic averaging functions like
Cameron–Martin (Cameron and Martin, 1944) and
its generalizations (e.g., Myers, 1981) only evalu-
ate marginal survival distributions. The general
conditional hazard form in MWY and models for
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more complicated observational plans require the
application of martingale techniques. Thus, MWY
significantly extends survival analysis procedures
used in demography, epidemiology and biostatistics
where models of fixed unobserved heterogeneity
(e.g., frailty) are used to approximate the influence
of latent multidimensional stochastic processes
(e.g., Vaupel, Manton and Stallard, 1979). In MWY,
influential partly or fully observed process compo-
nents may also be used; this makes the approach
especially useful for analyzing longitudinal studies.

We first examine the structure of likelihood
functions which use ancillary information on the
conditional (random) hazard and on the proba-
bilistic properties of unobserved or partly observed
covariates. We examine assumptions guarantee-
ing the conditional survival function is exponential
in form for stochastic covariates. Cameron–Martin
methods are reviewed, as are martingale tech-
niques generalizing Kalman filters to deal with
failure processes. These latter techniques lead to
the MWY approach for analyzing longitudinal data.
Extensions of the MWY approach, using Gaussian
semimartingale methods to analyze unobserved co-
variates with piecewise continuous trajectories, are
also discussed.

We assume all random variables and processes
are defined for a probability space with stochas-
tic basis ��;F;=;P� (e.g., Liptser and Shiryayev,
1988), so the failure time T is an F-stopping time
and covariate processes Yt or Zt are F-adapted
stochastic processes. Since our goal is to examine
the applied statistical aspects of models of stochas-
tic processes, we do not present all of the formal
mathematical rationale for each model. Those are
found in detail in various references.

2. MOTIVATION

Two situations illustrate most of the methodolog-
ical issues of concern here: analyses of failure times
with only ancillary or indirect data on latent, influ-
ential covariate processes; and longitudinal studies
of survival where covariates are observed at multi-
ple points in time.

2.1 Analysis of Failure Times Generated
by a Latent Process

Let T be the failure time, and let Y = �Yt�t≥0
be an unobserved process, defining the randomly
changing state of a system. Assume the conditional
survival function for Yt

0 = �Yu; 0 ≤ u ≤ t� is

P�T > t�Yt
0� = exp

[
−
∫ t

0
µ�Yu; u�du

]
;

µ�Yu; u� is a nonnegative function where
Eµ�Yu; u� < ∞ for any u > 0: The probability
distribution of Y and the structure of µ�Yu; u� are
assumed known—but not the values of parameters.
Trajectories of Y are unobserved. T is measured for
each system being assessed. The problem is to esti-
mate parameters of the probability distribution of
Y and the conditional hazard µ�Yu; u� when only
the failure times for N systems are observed. The
marginal survival function, averaged over Yu, is

P�T > t� = exp
[
−
∫ t

0
µ̄�u�du

]
:

The marginal hazard µ̄�u� [in a form consistent
with the distribution of Y; and the structure of
µ�Yu; u�] is needed to form a likelihood function.
Both Cameron–Martin and the martingale versions
of MWY can be used to define a form for µ̄�u�;
estimate parameters of µ�Yu; u� and of Y’s dis-
tribution, from failure times alone, that is, when
the trajectories of Y are not observed. In longi-
tudinal data with covariates measured, however,
the use of the Cameron–Martin approach is com-
plicated by boundary conditions on differential
equations describing state changes. In contrast, in
the martingale version of MWY, the Kalman filter
is generalized by adding terms reflecting systematic
attrition, transforming the problem of finding the
form of µ̄�u� to one of solving ordinary differential
equations from initial conditions.

2.2 Longitudinal Study Data Where Covariates
Are Measured

We define T, Y = �Yt�t≥0 and P�T > t�Yt
0 � in

Section 2.1.
Observations of the state of the system at

t1; t2; : : : are described by Xtj
; j > 0; which

are related to an underlying process by

Xtj
= A�tj� +A1�tj�Ytj

+B�tj�εj;
where A, A1 and B are fixed functions of time, and
�εj�j≥0 are independent normally distributed ran-
dom variables. The conditional survival function for
Xt

0 = �Xtj
, 0 ≤ tj ≤ t� is

P�T > t�Xt
0� = exp

[
−
∫ t

0
µ̄�Xu

0 ; u�du
]
:

The marginal hazard µ̄�Xu
0 ; u� [in a form consistent

with the distribution of Y given Xu
0 and the struc-

ture of µ�Yu; u�] is needed for the likelihood. We
will show how MWY is used to estimate µ̄�Xu

0 ; u�;
the parameters of the conditional hazard µ�Yu; u�
and the probability distribution of Y from data on
Xtj

and T for N systems. Before examining the re-
lation between µ̄�u� and µ�Yu; u� in Section 2.1,
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and µ̄�Xu
0 ; u� and µ�Yu; u� in Section 2.2, we will

briefly review the properties of conditional survival
functions.

2.3 Randomly Changing Hazards and Conditional
Survival Function

For T; if P�T > t� is absolutely continuous, then

�1� P�T > t� = exp
(
−
∫ t

0
µ�u�du

)
;

where µ�u�, u ≥ 0, is the hazard function

�2� µ�t� = −P�T > t�−1 dP�T > t�
dt

:

Different forms of (2) may be used in martingale
representations (e.g., Andersen, Borgan, Gill and
Keiding, 1993; Arjas, 1989). If Y is a latent ran-
dom variable influencing T; the conditional survival
function is

�3� S�t�Y�=P�T > t�Y�= exp
(
−
∫ t

0
µ�Y;u�du

)
;

where µ�Y;u� is a random hazard. In proportional
hazard, frailty models µ�Yu; u� is a linear function
of Yy for example, µ�Yu; u� = µ0�u�Y: When Y is
a stochastic process, as for MWY, and µ�Y;u� =
µ�Yu; u�; one can use the conditional survival func-
tion S�t�Yt

0 � = P�T > t�Yu; 0 ≤ u ≤ t�y that is,
the probability of living to age t when Y’s trajec-
tory is observed for the interval �0; t�: This survival
function is written

�4�
S�t�Yt

0� = P�T > t�Yu; 0 ≤ u ≤ t�

= exp
(
−
∫ t

0
µ�Yu; u�du

)
:

Sufficient conditions for (4) to be exponential in
form are discussed by Yashin and Arjas (1988).
For example, one such condition is that S�t�Yt

0 � is
almost surely absolutely continuous. Since Yt

0 is
unobserved, ancillary information is required to
average S�t�Yt

0 � over Yt
0 to define a marginal sur-

vival distribution, and then a marginal probability
density function to construct a likelihood function.

3. STRATEGIES FOR EVALUATING
SURVIVAL FUNCTIONS

In some studies, covariates are measured from the
start. In others, covariates are also observed at fixed
times during the study. For example, the National
Long Term Care Surveys (NLTCS) examine persons
age 65+ up to 4 times (1982, 1984, 1989 and 1994)
over 12 years. Individuals who enter the sample,
say, in 1989, are either reassessed in 1994, drop out
of the study before 1994 or die before 1994 (i.e.,
the next measurement). All three situations occur

in the NLTCS. When covariates are not measured
during a study (e.g., between 1989 and 1994 in the
NLTCS), one may assess the properties of Y and
evaluate µ̄�u�; using, under certain assumptions,
the Cameron–Martin approach.

3.1 Cameron–Martin

The Cameron–Martin (Cameron and Martin,
1944) approach can be used to define a marginal
life-span distribution with unobserved randomly
changing covariates for likelihood estimation.
Although we show how this is done below, the
original Cameron–Martin paper (Cameron and
Martin, 1944) did not explicitly adapt the pro-
cedure for survival analysis. Let w = �Wt�t≥0,
Wt ∈ Rk, be a k-dimensional Wiener process, and
let Q�t� = �qij�t��ij = 1;2; : : : ; k; be a nonnegative-
definite symmetric k× k matrix where

�5�
∫ t

0

k∑
i;j=1

qij�s�ds > 0:

Proposition 1. WithW andQ defined above (an
asterisk indicates transposition),

�6�
E

[
exp

(
−
∫ t

0
W∗uQ�u�Wu du

)]

= exp
(

1
2

∫ t
0

tr 0�u�du
)
;

where 0�u� is a symmetric nonpositive-definite ma-
trix which is the unique solution of the matrix Ric-
cati equation,

�7� d0�u�
du

= 2Q�u� − 02�u�;

with boundary condition 0�t� = 0:

The proof uses Radon–Nikodym derivatives of two
Wiener measures (Liptser and Shiryayev, 1977). For
one dimension, (7) can be solved

E

{
exp

(
−q

∫ t
0
W2

udu

)}
=
[
cosh

(√
2qt

)]1/2
;

where q > 0:

3.2 Generalization of Cameron–Martin

The Cameron–Martin approach can be used in
survival analyses by interpreting (6) as an aver-
age of a conditional survival function with a Wiener
process as an unobserved covariate. For a quadratic
hazard this is

P�T > t�Wu; 0 ≤ u ≤ t�

= exp
(
−
∫ t

0
W∗uQ�u�Wu du

)
:
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However, using Wiener processes as covariates
is unrealistic because real covariates start from
nonzero initial values and their dynamics reflect
not only stochasticity, but also the influence of
external factors, deterministic trends and homeo-
static forces. Such dynamics can be represented by
stochastic differential equations driven by Wiener
processes. Woodbury and Manton (1977) suggest us-
ing stochastic processes as covariates, for example,
by a k-dimensional diffusion process Y = �Yt�t≥0;
satisfying the stochastic Itô differential equation,

�8� dYt = a�t�Yt dt+ b�t�dWt;

with initial conditions Y0; Wiener process W =
�Wt�t≥0 and matrices a�t� and b�t� whose elements
are continuous functions of time. If a�t� ≡ b�t� ≡ 0,
the process reduces to a random variable Y0: The
hazard is a time-dependent, quadratic function
(Woodbury and Manton, 1977),

�9� µ�Yu; u� = µ0�u� +Y∗uQ�u�Yu

with conditional survival function, where Q�u� is
positive definite

P�T > t�Yt
0�

= exp
(
−
∫ t

0
µ0�u�du−

∫ t
0
Y∗uQ�u�Yu du

)
;

(10)

Yu ≡ 0 is the covariate value with the lowest failure
rate. The point with the lowest failure rate may not
be equal to the value of an observed covariate when
it is zero. To deal with the problem of identifying
location parameters forYu; we include sets of linear
terms in the quadratic function actually estimated
in empirical analyses which we illustrate below.

We will show how (10) can be applied to a sur-
vival analysis when measurements Xt are made of
the underlying process Y: The use of a quadratic
hazard like (10) (with location parameters) can be
justified in several ways. Empirically, the relation of
risk-to-risk factors (or their transforms) is often J-
or U-shaped—especially in elderly populations (e.g.,
Witteman et al., 1994). Those observations are con-
sistent with theoretical arguments that a complex
system such as the human organism has homeo-
static mechanisms that keep it from straying to ei-
ther extreme positive or negative physiological state
variable values. This also implies that an optimal
point exists which minimizes risk in the interior of
the state variable space. That point is identified by
location parameters added to Q.

A second biological argument for a U- or J-
shaped hazard function, with a minimum point
in the interior of the state variable space, is the
principle of hormesis (Stebbing, 1987), that is, very

low exposure to stresses stimulate the organism
to increase its “fitness”—the ability to resist envi-
ronmental stress. This suggests the lowest levels
of risk for a biological system may not occur pre-
cisely at zero exposure, even for noxious stimuli,
but at a positive, low level of exposure. When this
model is valid the quadratic hazard represents
the effects of covariate interactions on risk con-
ditional on the location parameters. In contrast,
including quadratic and higher order interactions
in a Cox model, with its exponential relation to the
hazard, produces location-dependent quadratic co-
efficients, that is, location parameters interact with
the quadratic terms (Pekkanen et al., 1992). Be-
cause of their location independence, coefficients
in (9) can be more easily compared across study
populations. Fundamentally, since any physiolog-
ical process under homeostatic control operates
within specific state space regions, U-shaped haz-
ard functions are needed to describe the state
evolution of systems with well-developed internal
feedback control mechanisms. For the hazard in (9)
and the process in (8) the following holds (Myers,
1981).

Proposition 2. The survival function givenY0 is

P�T > t�Y0� = exp
(
−
∫ t

0
µ0�u�du+Y∗0Ut�0�Y0

+ tr
∫ t

0
b�u�b∗�u�Ut�u�du

)
;

(11)

where Ut�u� is a solution of the matrix differential
equation

�12�

dUt
t�u�
du

= Q�u� − a�u�
(
Ut�u� +U∗t �u�

)

− 1
2

(
Ut�u� +U∗t �u�

)

· b�u�b∗�u�
(
Ut�u� +U∗t �u�

)
;

with terminal condition Ut�t� = 0:

Remark. If a�t� ≡ 0 and b∗�t�b�t� ≡ I in (11)
the result is equivalent to the Cameron–Martin ap-
proach. For consistency we need a function γ̃�u� =
Ut�u� +U∗t �u�: The differential equation for U∗t �u�
is

�13�

dU∗t �u�
du

= Q�u� −
(
Ut�u� +U∗t �u�

)
a∗�u�

− 1
2

(
Ut�u� +U∗t �u�

)

· b�u�b∗�u�
(
Ut�u� +U∗t �u�

)
;
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For γ̃�u� the Riccati equation is

�14�
dγ̃�u�
du

= 2Q�u� − a�u�γ̃�u� − γ̃�u�a∗�u�

− γ̃�u�b�u�b∗�u�γ̃�u�
with boundary condition γ̃�t� = 0: Now Myers’s re-
sult can be written

�15�

E

[
exp

(
−
∫ t

0

[
µ0�u� +Y∗uQ�u�Yu

]
du

)∣∣∣Y0

]

= exp
[
−
∫ t

0
µ0�u�du+ 1

2Y
∗
0γ̃�0�Y0

+ 1
2 tr
∫ t

0
γ̃�u�b�u�b∗�u�du

]
:

Equations (14) and (15) generalize (7) and (6) and
more realistically describe hazard, and conditional
survival, functions.

4. GENERAL RESULTS

A different approach is required for nonquadratic
hazards calculating a marginal survival function.

4.1 Likelihoods for General Hazards When Only
Survival Data Is Observed

Yashin (1985) gives a general formula for mar-
ginal survival functions.

Proposition 3. If Y = �Yu�; u ≥ 0, is a random
process and µ�Y;u� is a nonnegative functional sat-
isfying measurability conditions such that, for t ≥ 0;

�16� E
∫ t

0
µ�Y;u�du <∞;

then

�17�
E

[
exp

(
−
∫ t

0
µ�Y;u�du

)]

= exp
(
−
∫ t

0
E�µ�Y;u��T > u�du

)
;

where T is related to Yu by

�18� P�T > t�Ys; s ≤ t� = exp
(
−
∫ t

0
µ�Y;u�du

)
:

The relation of the observed and conditional haz-
ards is

�19� µ̄�t� = E
(
µ�Y; t��T > t

)
:

The random hazard µ�Y; t� may depend on ei-
ther the current value of Y [e.g., µ�Yt; t�; or the
trajectory of Y up to t [e.g., µ�Yt

0; t�, where Yt
0 =

�Ys; 0 ≤ s ≤ t�].

Remark. Equations similar to (17) and (19)
are used to analyze populations where risk hetero-
geneity is “fixed” (e.g., Vaupel and Yashin, 1985).
Proposition 3 shows the relation of observed and
conditional hazards holds for both fixed and stochas-
tically changing “frailty.” Formulas (17) and (19)
are “natural” parameterizations of a marginal fail-
ure distribution if the probabilistic properties of Y
are known.

4.2 Survival Functions for Data with Observed
and Unobserved Covariates

When some covariates are observed �Xt� and oth-
ers are not �Yt�; a likelihood can be constructed
if the form of the survival function, conditional on
Xt, is known. A fundamental result for analyzing
longitudinal studies where both Xt and Yt are in-
fluential is the following.

Proposition 4. Let Xt and Yt be components of
a stochastic process influencing a hazard µ�X;Y; t�;
satisfying measurability conditions, and let

E
∫ t

0
µ�X;Y;u�du <∞;

where T is associated with Xu and Yu by

P�T > t�Xs;Ys; s ≤ t� = exp
(
−
∫ t

0
µ�X;Y;u�du

)
:

If the trajectories of X are observed to t; then

�20� P�T > t�Xt
0� = exp

(
−
∫ t

0
µ̄�Xu

0 ; u�du
)
;

where

�21� µ̄
(
Xt

0; t
)
= E

(
µ�X;Y; t��Xt

0; T > t
)
:

To prove that (20) provides the correct formula for
averaged with respect to µ�Yu; u�; define

µ̄
(
Xt

0; t
)
= f

(
t�Xt

0

)

P
(
T > t�Xt

0

) = E
[
f�t�Xt

0;Y
t
0��Xt

0

]

P
(
T > t�Xt

0

) ;

where f�t�Xt
0 � and f�t�Xt

0 ;Y
t
0� are probability den-

sity functions of T given Xt
0 and Xt

0 ;Y
t
0 �Xt

0 =
�Xs; 0 ≤ s ≤ t�; �Yt

0 ; 0 ≤ s ≤ t��: Representing
f�t�Xt

0 ;Y
t
0 � in terms of µ�X;Y; t�,

µ̄�Xt
0 ; t� =

E�µ�X;Y; t�P�T > t�Xt
0 ;Y

t
0 �
∣∣Xt

0 �
P
(
T > t�Xt

0

)

= E�µ�X;Y; t�I�T > t��X
t
0 �

P�T > t�Xt
0 �

= E�µ�X;Y; t��Xt
0 ; T > t�;
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Q.E.D. Equation (17) is a special case of (20) when
there are no Xt.

5. THE MARTINGALE FORM OF
THE MWY APPROACH

The Cameron–Martin approach is limited by the
terminal boundary conditions in equations (7) and
(12). Woodbury and Manton’s (1977) diffusion pro-
cess model with randomly changing covariates and
a quadratic hazard used initial conditions and mar-
tingale techniques. Yashin (1985) proved the Gauss-
ian property of P�Y ≤ y�T > t� and the following
proposition.

Proposition 5. Let the k-dimensional process
Yt satisfy

�22� dYt =
[
a0�t� + a1�t�Yt

]
dt+ b�t�dWt;

where Y0 is a vector of Gaussian random variables
with a k-element vector of means m0 and a k × k
variance–covariance matrix γ0: The matrix Q�u� is
a symmetric nonnegative-definite matrix whose ele-
ments satisfy (5). Then

E

[
exp

{
−
∫ t

0
�Y∗uQ�u�Yu�du

}]

= exp
{
−
∫ t

0

(
m∗uQ�u�mu + tr

[
Q�u�γu

])
du

}
;

(23)

wheremu and γu are solutions of ordinary nonlinear
differential equations:

�24� dmt

dt
= a0�t� + a1�t�mt − 2γtQ�t�mt;

�25�
dγt
dt
= a1�t�γt + γt a∗1�t�

+ b�t�b∗�t� − 2γtQ�t�γt;

with initial conditions m0 and γ0; and where mt is
a k-element vector and γt is a k× k matrix.

Equation (22) includes random, deterministi-
cally changing and fixed covariates as special cases.
Equations (24) and (25) can be solved by numerical
methods for ordinary differential equations if a0�t�,
a1�t�, b�t� and Q�t� are known (e.g., Runge–Kutta).
Parameter estimation is discussed in Section 7.
These equations resemble Kalman-filter extrapola-
tion equations (Liptser and Shiryayev, 1977) except
for terms representing selection, that is, a probabil-
ity of loss from the population that is a function of
state variable values (Yashin, 1985). Note (23)–(25)

can be used to calculate marginal survival functions
if T and Y0 are known (Section 3.2).

6. RETROSPECTIVE PROJECTIONS OF
COVARIATE TRAJECTORIES

The evaluation of past covariate values is impor-
tant when events did not occur at the expected rate
or when covariates were unobserved. For example,
asbestos exposure and mesothelioma risks mea-
sured for shipyard workers and heating and insula-
tion workers (Selikoff, 1981) can be used to evaluate
exposure for occupations where it was not measured
(e.g., construction workers). This problem arises for
agents with effects evident long after exposure
and for left censoring, for example, when a supple-
mentary sample is drawn to represent the popu-
lation reaching a criterion age in an inter-survey
period.

Unobserved covariate trajectories can be retro-
spectively assessed to see if they affected events if
the hazard function, its parameter values and prob-
abilistic properties of covariates are known from
ancillary information. Retrospective analyses re-
quire using “smoothing” (conditional expectations
for different order moments) equations. Liptser
and Shiryayev (1977) discuss smoothing equations
for continuous diffusion processes; Khametov and
Yashin (1983) used them for multivariate point
processes with observed trajectories.

“Filter” equations (24) and (25) are used to calcu-
late smoothing equations, that is, conditional expec-
tations (Yashin and Manton, 1994),

�26�

m�s; t� = E�Ys�T > t�;
012�t; s� = E

(
�Yt −mt�
·
[
Ys −m�s; t�

]∗�T > t
)
;

022�s; t� = E
([
Ys −m�s; t�

]

·
[
Ys −m�s; t�

]∗�T > t
)
;

021�t��s; t� = E
([
Ys −m�s; t�

]

· �Yt −mt�∗�T > t
)
:

Proposition 6. For T and Y = �Yt�t≥0 defined
by (5) and (22), the forward smoothing equations
(i.e., fixed s; increasing t) satisfy

�27� m�s; t� =ms − 2
∫ t
s
021�s; t�Q�u�ms du;

�28�
012�t; s� = γs +

∫ t
s
a�u�012�u; s�du

− 2
∫ t
s
γuQ�u�012�s; u�du;
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�29�
021�s; t� = γs +

∫ t
s
021�s; u�a∗�u�du

− 2
∫ t
s
021�s; u�Q�u�γu du;

�30� 022�s; t�=γs − 2
∫ t

0
012�s; u�Q�u�021�u; s�du;

where mu and γu satisfy (24) and (25).

Proposition 7. For T and Y = �Yt�t≥0; the
backward smoothing equations (t fixed, decreasing
s) satisfy the following:

�31�

d

ds
m�s; t� = a0�s� + a�s�m�s; t�

+ b�s�b∗�s�γ−1
s

(
m�s; t� −m�s�

)
;

m�t; t� =mty

�32�

d

ds
021�s; t� = a�s�021�s; t�

+ b�s�b∗�s�γ−1
s 021�s; t�;
021�t; t� = γty

�33�

d

ds
012�t; s� = 012�t; s�a∗�s�

+ 012�t; s�γ−1
s b�s�b∗�s�;

012�t; t� = γty

d

ds
022�s; t�

= a�s�022�s; t� + 022�s; t�a∗�s�
− b�s�b∗�s� + b�s�b∗�s�γ−1

s 022�s; t�
+ 022�s; t�γ−1

s b�s�b∗�s�; 022�t; t� = γt:

(34)

“Backward” equations estimate past covariate
values generated by a stochastic process. “Forward”
equations update parameters as new data becomes
available.

7. MWY APPLICATIONS TO PARTIALLY
OBSERVED COVARIATES

There are several ways a process in a longitu-
dinal study may be imperfectly or incompletely ob-
served. Measurements may be right censored by loss
to follow-up, end of study or mortality. In left cen-
soring, there are differences between censored and
uncensored cases not described by covariates mea-
sured at study entry. To adjust for such informa-
tion loss, a model relating the event of censoring to
the available data is needed. Wu and Carroll (1988)

modeled right censoring as a function of the ini-
tial value and slope of a latent covariate in a linear
random effects model. For longitudinal data, Diggle
and Kenward (1994) combined a multivariate linear
model of observed covariate changes with a logistic
regression describing the dependence of censoring
on Yt: The quadratic hazard model not only deals
with censoring but also with information lost as co-
variates change between measurements. To repre-
sent covariates whose changes are partly observed,
we define Z�t�; an n-dimensional process measured
a finite number (say K) of times.

7.1 Continuously Changing Stochastic Covariates
Observed at Discrete Times

Suppose mortality is a quadratic function of Z�t�;
that is,

�35� µ
(
Z�t�; t

)
= µ0�t� +Z∗�t�Q�t�Z�t�;

where Q�t� satisfies (5) and Z�t� satisfies

�36� dZ�t� =
(
a0�t� + a1�t�Z�t�

)
dt+ b�t�dWt;

where a0�t� is an n-dimensional vector function of
t with bounded elements for any t ≥ 0, b�t� is a
bounded n × r matrix and Wt is an r-dimensional
Wiener process independent of Z�0�: For Z�t� mea-
sured at t1; t2; : : : ; tk; Yashin, Manton and Stallard
(1986a, b) examined the conditional survival func-
tion

�37� S
(
t�ẑ�t�

)
= P

(
T > t� ẑ�t�

)
;

where

�38�
ẑ�t� =

(
z�t1�; z�t2�; : : : ; z�tp�t��

)
;

tp�t� = sup
{
tjx tj < t

}
;

with z�ti� the value of Z�t� observed at time ti: Be-
tween observations

�39� µ̂
(
ẑ�t�t

)
= − ∂

∂t
ln S

(
t�ẑ�t�

)
;

where µ̂�ẑ�ti�; t� is the right-continuous mortal-
ity rate for S�t�ẑ�t��: Yashin, Manton and Stallard
(1986a,b) showed that the relation of µ̂�ẑ�t�; t� to
ẑ�t� can be expressed as functions of the conditional
means m�t� and covariances γ�t�; that is,

�40�
µ̂
(
ẑ�t�t

)
=m∗�t�Q�t�m�t�
+ tr

(
Q�t�γ�t�

)
+ µ0�t�;

where equations for m�t� and γ�t� for intervals tj ≤
t < tj+1 are

�41� dm�t�
dt

= a0�t�+a1�t�m�t�−2γ�t�Q�t�m�t�;
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and

�42�
dγ�t�
dt
= a1�t�γ�t� + γ�t�a∗1�t�

+ b�t�b∗�t� − 2γ�t�Q�t�γ�t�;
with initial conditions m�tj� = z�tj�, γ�tj� = 0y (40)
is a special case of (21) where Xt

0 = ẑ�t�:
The hazard µ̂�ẑ�t�; t� is used in the likelihood

L =
N∏
i=1

µ̂
(
τi; ẑi�τi�

)δi exp
(
−
∫ τi

0
µ̂
(
u; ẑi�u�

)
du

)

·
ki∏
j=1

f
(
zi�tj��ẑi�tj−1�

)
;

(43)

where f�zi�tj��ẑi�tj−1� is the Gaussian density of
zi�tj� conditional on prior observations, ẑ�tj−1� and
τi, i = 1;2; : : : ;N, death times; δi = �0;1� indicates
right censoring.

Equations (40), (41) and (42) permit (43) to be
written

L =
u∏
i=1

µ̂
[
τi;mi

(
τi; β; ẑi�τi�

)
; γ�τi; β�; Q�τi; β�

]δi

· exp
{
−
∫ τi

0
µ̂
(
u;mi�u;β; ẑi�u�

)
;

γ
(
�u;β�;Q�u;β�

)
du

}

·
ki∏
j=1

�2π�−n/2
∣∣γi�tj−; β�

∣∣− 1
2

· exp
{
− 1

2

[
zi�tj� −mi�tj−; β�

]
∗

γ−1�tj−; β�
[
zi�tj� −mi�tj−; β�

]}
;

(44)

where β is a vector of unknown parameters in (41)–
(43), and m�tj−; β�, and γ�tj−; β� are left-hand lim-
its of m�t; β� and γ�t; β� when t ↑ tj: In (44), τi is
known—or adjusted for censoring.

8. EMPIRICAL EXAMPLES: LONGITUDINAL
SURVEYS AND POPULATION STUDIES

The likelihood in (44) cannot be optimized using
standard algorithms since m�t; b� and γ�t; β� are
not explicit functions of β: However, modified pro-
cedures (e.g., based on Newton’s method) can be
used. Below we use an iterative maximization pro-
cedure where the differential equations (41) and
(42) are solved at each iteration with parameter
values taken equal to the current value of param-
eter estimates. The calculation of the information
matrix is complicated because it involves the par-
tial derivatives of m�t; β� and β�t; β� with respect

to components of β: The derivatives are solutions to
differential equations produced from (41) and (42)
by differentiating both parts with respect to βi with
zero initial conditions at each observation inter-
val. For each individual these equations are solved
once for the optimal parameter values determined
by (44).

To illustrate the application of the MWY ap-
proach to data, where both covariate dynamics
and the times to failure, T; are measured, we re-
view analyses of (a) the 34-year Framingham Heart
Study follow-up and (b) the 1982, 1984 and 1989
NLTCS. In both, survival, conditional on covariates,
is analyzed to ages by which much of the popu-
lation has died. Although the measured variables
Z�t� are information rich, unobserved variables
still may have important age-related effects on
mortality. The age dependence of the hazard is rep-
resented by (35), where time (age) effects factor into
an exponential term

µ�Z+�t�; t� =
(
Z+∗�t�Q+Z+�t�

)
eθt:

where Q is a constant matrix of hazard coefficient
and µ0 is a constant mortality rate.

Equation (45) can be viewed as generalizing a
Gompertz hazard, ηeθt; where η depends on Z�t�:
The exponential term eθt is assumed to represent
the age-related influence of unobserved [i.e., other
than Z�t�] variables. In this form the proportional-
ity, or scale, factor η is generalized to be a quadratic
function of a multivariate stochastic process Z�t�
with both deterministic and random components.
Since Z�t� represents age-related changes in the
observed covariate processes, the value of θ in (45)
characterizes how much remains to be learned
about the age dependence of unobserved risk fac-
tor dynamics on survival, that is, estimates of θ
in (45) are generally expected to be smaller than
when θ is conditionally estimated on the informa-
tion in Z�t�: In theory, this is because if all of the
age-related covariates could be measured, and at
frequent intervals, the estimate of θ could go to 0.0.
In practice, in most studies of such complex sys-
tems as humans, only a limited number of factors
associated with aging can be measured. Conse-
quently, the θ will likely retain a significant effect.
If θ is significant, then it implies that the hazard
coefficients in (45) are age dependent, that is, that
Q · eθt = Q�t�: Also, in interpreting the results of
the analysis the coefficients of the stochastic dy-
namic equation describing the changes in Z�t� can
be of substantive interest.

In addition, one might ask whether an alternate
specification of the age effect is possible. That is,
could the unobserved variable effect be generated
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by a failure process like the Weibull. The selection
of the exponential form here was based on theoret-
ical arguments that suggest that overall mortality
at late ages, especially if adjusted for stochastic risk
differentials, can be explained by a Gompertz-type
process (e.g., Strehler, 1977; Strehler and Mildvan,
1960; Sacher and Trucco, 1962). Although others
have argued for a Weibull-type failure model (e.g.,
Rosenberg et al., 1973) the Gompertz model has
received more empirical support, for example, it s
ability to describe adult mortality across human
populations and over animal species (e.g., Finch
1990; Finch and Pike, 1996). Thus, this is one
area where theoretical arguments and ancillary
information about latent processes are important.

8.1 The Framingham Heart Study

We first apply the MWY model to data where ob-
servations are made at fixed intervals of the same
length. If intervals are short, and the population
not elderly, logistic or Cox regression can be applied
assuming events in each interval are generated con-
ditionally independently of events in other intervals
(e.g., Wu and Ware, 1979), that is, when covariate
dynamics between measurements do not strongly
affect outcomes. Those procedures are not applica-
ble if time- or age-dependent unobserved covariates
influence the time to failure.

In the 34-year Framingham follow-up, 10 risk fac-
tors [i.e., pulse pressure (in millimeters of mercury),
the difference of systolic and diastolic blood pres-
sure (BP), diastolic BP (in millimeters of mercury),
body mass index (weight in kilograms divided by
height in meters squared), cholesterol (milligrams
per deciliter), blood glucose (mg%), hematocrit (%),
vital capacity index (VCI, centiliters divided by
height in meters squared), smoking (cigarettes per
day), left ventricular hypertrophy, ventricular rate]
were measured biennially—in addition to age, sex
and date of death. In the analysis of dynamics, a
linear autoregressive process was estimated where
each of the 10 risk factors at time t+1 was assumed
to be a function of their values at t; a constant and
a term representing age at t: These 10 equations
were estimated from 16 pairs of measurements of
the risk factors made over 34 years. Some risk fac-
tors (e.g., body mass index) were quite stable (i.e.,
dominated by the autoregressive effect); others (e.g.,
ventricular rate) had high degrees of variability.
Certain covariates show strong age trends (e.g., vi-
tal capacity index declined strongly with age) while
others showed strong gender differences. Other fac-
tors were strongly influenced by other risk factors
over time (e.g., blood glucose at t+ 1 was positively
related to body mass index at t).

Risk factors in epidemiological studies often have
U- or J-shaped relations to mortality, for exam-
ple, both very low and high blood pressures are
positively related to the risk of death (e.g., Witte-
man et al., 1994; Manton, Stallard, Woodbury and
Dowd, 1994). Thus, it seemed appropriate to use the
quadratic hazard in (45) to approximate the condi-
tional hazard function.

In estimation, it is convenient to augment the vec-
tor of risk factors Z�t� with a 1.0. Thus the �k+ 1�-
element vector Z+�t� can then be used to define the
hazard matrix,

Q+ =



µ0

c

2
c∗

2
Q


;

where µ0 is the constant in (45), Q is the matrix of
quadratic coefficients in (45) and c represents linear
coefficients adjusting the location of Z�t� to reflect
the location of the point of minimum risk in the
risk factor space. Thus, the matrix Q+ has dimen-
sion �k+ 1� × �k+ 1�, where µ0 represents the null
hypothesis of constant mortality, c is a k-element
vector of linear terms and Q is k × k: With this
generalization of Q the quadratic hazard can be ex-
pressed

µ
(
Z+�t�; t

)
=
(
Z+∗�t�Q+Z+�t�

)
eθt:

In the example, the likelihood in (44) is used. Pa-
rameters estimated include those of a linear process
describing temporal and age changes in the risk fac-
tors, diffusion, hazard coefficients and θ—the age-
related effect of unobserved variables. The vector
and matrix coefficients a0�t�, a1�t� and b�t� are as-
sumed constant, that is, a0; a1; b; Q+ is assumed
positive definite and symmetric with constant en-
tries. Further details of estimation and interpreta-
tion of results are discussed in Manton and Stallard
(1988).

The model’s fit to mortality outcomes [conditional
on the realized outcome of Z�t�], the size of θ; its
standard error and the reduction of the size of θ due
to the introduction of observed risk factors into the
hazard function are presented in Table 1.

In Table 1 we present log likelihood ratio approx-
imations to χ2. The null hypothesis against which
χ2 is initially assessed is that mortality is constant
(i.e., mortality can be described by µ0). First, we
tested the improvement in χ2 when a Gompertz
function is estimated, that is, one additional pa-
rameter, θ, is entered in the mortality equation.
The Gompertz improved the fit of male mortality by
1350.4 χ2 points with one degree of freedom. This
is 62.1% of the maximum χ2 achievable (line 4 in
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Table 1
Chi-squared values associated with three different models of total mortality functions for the 34-year follow-up of the Framingham

Heart Study

Model Male χ2 χ2/χ2
4 Females χ2 χ2/χ2

4

1. Standard Gompertz 1350.4 62.1% 1406.1 68.7%
�θ = 9:4%± 0:18%� �θ = 10:0%± 0:19%�

2. Effects of covariate �ẑt�
�θ = 0:0� 1518.8 69.8% 1445.5 70.6%

3. Effect of q; net of ẑt 656.0 30.2% 602.3 29.4%
�θ = 8:1%± 0:22%� �θ = 8:1%± 0:23%�

4. Full process (representing
effects of both θ and ẑt) 2174.8 100.0% 2047.8% 100.0%

Table 1) and is highly significant. For females the
χ2 for the same model was 1406.1 for one degree of
freedom, or 68.7% of the χ2 for the complete model.
The percent increase in mortality per year of life �θ�
is 9.4% for males and 10.0% for females; both esti-
mates have a high degree of precision. Thus θ has
a highly significant effect for both genders.

If the effects represented by θ can be described
by the Z�t�, then covariate interactions over time,
which covariates best predict risk, which change
rapidly or how optimal covariate interventions
might be designed, can be explicitly examined. Con-
sequently, we conducted a second test where we
estimate the coefficients in the quadratic function
for the 10 risk factors with θ = 0.0, that is, an as-
sumption that there is no age effect independent of
Z�t�. The change over the null hypothesis is 1518.8
(69.8% of the total) χ2 points for 65 degrees of free-
dom (i.e., the upper triangle of the 11 × 11, Q+

matrix; there are 10 risk factors and a term rep-
resenting the constant) for males; and 1445.5 χ2

points for females for 65 degrees of freedom (70.6%
of the total). Thus the covariates, and their dynam-
ics, significantly predict survival by themselves.
Note that in this example a0, a1 and b describ-
ing the age dynamics of Z were fixed at the levels
estimated by the maximum likelihood procedures.

Third, we determined if there is a significant ef-
fect of θ on mortality beyond that explained by the
quadratic function of the 10 risk factors and their
dynamics. This could be viewed as a test of whether
the hazard function can be described by Q+—or
whether the hazard coefficients are age dependent
[i.e., Q+�t� = eθt:]

Line 3 in Table 1 shows θ improved the fit over
using only the 10 risk factors in the quadratic haz-
ard function by 656.0 χ2 points with one degree of
freedom—or 30.2% of the total. For females the ef-
fect attributable to θ, net of the 10 risk factors,
is 602.3 χ2 points with one degree of freedom—or
29.4% of the total. Ideally (i.e., all observed covari-
ates are informative about the aging process) all age

variation in mortality would be accounted for by the
10 risk factors so that θ’s net effect would be negli-
gible. However, with χ2 changes of 656.0 and 602.3
(one degree of freedom), the effects of unobserved
processes associated with age are potent even after
controlling for the dynamics of the observed covari-
ate processes. Thus, the hazard matrix is age de-
pendent [i.e., Q+�t��: Estimation procedures which
do not represent the effect of those age-related un-
observed variables will produce coefficient estimates
in Q+ which can be biased in complex ways.

The 10 risk factors did reduce the effect of the
unobserved variables represented by θ from 9.4% to
8.1% for males; and from 10.0% to 8.1% for females.
Thus, the mortality doubling time, conditional on
the 10 risk factors, increased from 7.7 to 8.9 years
(13.5%) for males and from 7.3 to 8.9 years (18.0%)
for females.

In evaluating the effects of specific observed co-
variates on mortality, one can start by examining
specific sets of coefficients in Q+�t�: In Q+�t�; the
diagonals represent the quadratic effects of each ob-
served variable. The product of the constant times
each covariate represents the linear effects of the co-
variates. The product of each risk factor with each
other represents the pairwise interactions of the co-
variates. In this example, the dominant effects in
the Q+�t� are the 10 quadratic terms. In addition,
certain interaction terms (e.g., ventricular rate ×
left ventricular hypertrophy) had large effects on
mortality. Some of the interaction effects were neg-
ative, suggesting that the effect of one risk factor on
mortality varied over the level of a second risk factor
(blood glucose in mg% and hematocrit). There were
also significant gender differences in the effects of
specific coefficients; for example, the quadratic effect
of hematocrit was larger for males than females.
The age increase in the effects of some risk fac-
tors was large enough that mortality selection could
cause the population mean and variance of some
risk factors (e.g., cholesterol) to decline at advanced
ages (Manton, Woodbury, and Tolley, 1994).
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8.2 Application to the 1982, 1984 and 1989 NLTCS

The NLTCS is a series of large longitudinal sur-
veys done in 1982, 1984 and 1989 (overall N =
30,308) designed to assess temporal changes in
chronic disability in the U.S. elderly population.
Chronic disability was assessed using the same set
of questions in 1982, 1984 and 1989. The sample
in each survey was drawn from lists of Medicare
enrolled persons. Details of the sampling proce-
dure are presented in Manton, Corder and Stallard
(1993).

The NLTCS data poses some analytic compli-
cations not found in the Framingham data. First,
the measures of disability are discrete responses
to questions about the ability to perform 27 activi-
ties (e.g., eating, dressing, bathing, moving around
inside). To translate the 27 discrete activity mea-
sures into a smaller set of continuous dimensions of
function/dysfunction a multivariate procedure de-
signed for discrete variables was used (Woodbury,
Manton and Tolley, 1996). This procedure was used
to reduce the dimensionality of the measurements,
rather than principal components, because it was
explicitly designed for discrete measures. After the
multivariate analysis, the effects of the 27 measure-
ments of activity on mortality could be represented
by continuously scaled scores on the 7 disability
dimensions defined by the procedure which were
constrained to a convex space in estimation (Man-
ton et al., 1994). In addition, the dynamic equations
described the changes in those scores over time.

One of the seven disability scores represents the
level of complete functioning. The other six scores
represent the degree and type of disability. If the
loss of function is related to the risk of death, then a
nonzero score on any of the six disability dimensions
indicates an increased risk of death. Thus the scores
influence a multidimensional convex hazard func-
tion which we approximated by a time-dependent
quadratic hazard function, Q+�t�; except that a sep-
arate constant variable is not introduced because
of the convexity constraints imposed by the mul-
tivariate analysis (Manton, Woodbury and Tolley,
1994). The quadratic hazard for the survival analy-
sis therefore has a well-defined origin (i.e., point of
minimum mortality) corresponding precisely to the
value of 1.0 on the first nondisabled dimension or
score.

To adjust for the truncation of the variation of
scores by mortality and the convexity constraints
when using the parameter estimates to calculate life
table functions, a special matrix rescaling procedure
was used (Manton, Stallard and Singer, 1994). The
rescaling procedure is a dynamic, multidimensional

generalization of normalizing functions applied to
the error distribution for a discrete dependent vari-
able (Woodbury, Manton and Tolley, 1996).

The second score (the first disability dimension)
represents the degree to which a person has mod-
erate physical but no cognitive impairments. The
score on the second disability dimension represents
mild cognitive but no physical impairment. The
score on the third disability dimension indicates
loss of the physical ability to live independently
(e.g., the ability to do laundry, grocery shopping etc.
without help). The score on the fourth disability
dimension indicates loss of the ability to maintain
basic physical functions (e.g., the ability to bath,
eat, dress without help). The score on the fifth dis-
ability dimension represents the degree of physical
frailty (e.g., limitations on the ability to perform
basic physical movements; use of hands, legs). The
final score indicates disability so severe and com-
plete that institutional care is needed (Manton et
al., 1994).

A second difference from the Framingham exam-
ple was that modeling the rate at which the pro-
cesses change, and were measured, is more complex
in the NLTCS. Since the intervals between NLTCS’s
are not equal (i.e., 1982 to 1984 is two years; 1984
to 1989 is five years) the time dependence of dis-
ability score changes must be parameterized to
combine data on covariate dynamics from different
length intervals. This is difficult to do in logistic or
Cox regression because of the location dependence
of the hazard function (Pekkanen et al., 1992). The
NLTCS population is elderly (i.e., all persons are
65+) and mortality risks, and the number of di-
mensions and degree of disability, tend to increase
with age. The Cox model does not have parame-
ters describing covariate’s age and time-dependent
rates of change, subject to random perturbation
(Law, Wald and Thompson, 1994; Law et al., 1994),
within the long (relative to the rate of occurrence
of health events at late ages) and unequal inter-
survey periods. Although the age rate of change of
many traits is known from physiological (e.g., age
dependence of cardiac function; Kasch et al., 1993),
clinical and epidemiological studies, the trajectory
for an individual is unique because of genetic, en-
vironmental, and other influences. Longitudinal
studies show that the dynamics of health variables
are a mix of deterministic trends and stochastic
influences (e.g., Law, Wald and Thompson, 1994;
Law et al., 1994; Manton et al., 1994). Therefore,
modeling individual covariate trajectories and their
influences on survival is important in longitudi-
nal studies when those trajectories are only partly
observed.
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Thus, a stochastic process model of mortality with
observed and unobserved dynamic covariates was
used to analyze the NLTCS data. We assume that
the seven scores representing an individual’s level of
impairment on six sets of activities satisfy stochas-
tic differential equations like (36) where coefficients
a0�t�, a1�t� and b�t� are constant parameters, with
the conditional hazard given by (45), where θ, ele-
ments of the matrix Q+ and a0, a1 and b are esti-
mated using a likelihood like (44).

Estimation, however, is not done with tradi-
tional optimization procedures. Optimization had
to be constrained: to maximize (44) with unequal
intervals the ordinary nonlinear differential equa-
tions (41) and (42) are solved for each iteration. If
(41) and (42) have analytic solutions, then µ̄�t� is
an explicit function of unknown parameters, and
maximization is straightforward. In the most gen-
eral situation, methods such as Runge–Kutta are
needed to solve the differential equations for m and
γ between measurements. For individuals entering
the study, say, in 1989, the values of µ0 are taken
equal to the values of covariates measured for these
individuals in 1989. Values of γ0 are taken equal to
zero. For those who become 65 between 1989 and
1994, µ0 and γ0 are assumed equal to the mean and
covariance matrix of covariates values calculated
for 65-year-old individuals measured in 1989. This
allows us to include, in the likelihood, information
on, for example, persons who became 65 between
1989 and 1994 and died before 1994.

The effect of age and the covariates on mortality
is shown in Table 2.

The same set of hypotheses about model structure
was examined for the NLTCS as was examined for
the Framingham data (Table 1). The first involved
adding the Gompertz parameter θ: The parameter
θ is compared against the null hypothesis that mor-
tality is constant. The θ parameter increased the
likelihood χ2 by 2622.2 points with one degree of
freedom for males; χ2 increased 4966.0 points (line
1 in Table 2) with one degree of freedom for females.

Table 2
Chi-squared values associated with three different models of total mortality for 1982, 1984 and 1989 NLTCS

Model Male χ2 χ2 /χ2
4 Females χ2 χ2 /χ2

4

1. Standard Gompertz 2622.2 54.2% 4966.0 59.6%
�θ = 8:2%± 0:11%� �θ = 9:1%± 0:09%�

2. Effects of covariate �ẑt�
�θ = 0:0� 3821.5 79.0% 6550.5 87.4%

3. Effect of θ; net of ẑt 1016.4 21.0% 943.3 12.6%
�θ = 5:3%± 0:12%� �θ = 4:8%± 0:11%�

4. Full process (representing
effects of both θ and ẑt) 4837.9 100.0% 7493.8% 100.0%

The θ-estimates were 8.2% for males, 9.1% for fe-
males.

With θ set to 0.0 and the disability covariates en-
tered in a quadratic hazard function, a χ2 of 3821.5
points with 27 degrees of freedom (a Q+ matrix
with the scores as seven covariates) was produced
for males; a χ2 of 6550.5 points with 27 degrees of
freedom was produced for females. The first and sec-
ond models are not nested, but the inclusion of the
disability scores produce a much higher χ2 than us-
ing only θ: Note that when testing this hypothesis
we kept parameters a0, a1 and b describing the dy-
namics of Z+ at the levels estimated by maximum
likelihood procedures.

We examined the effect of θ, net of the disability
scores, by examining differences between the model
with risk factors with θ = 0:0 and the model with
both covariates and θ: The net χ2 increment due
to the addition of the single parameter θ is large
(i.e., 1016.4 χ2 points with one degree of freedom
for males; 943.3 χ2 points with one degree of free-
dom for females), although proportionately smaller
than in Framingham. The declines in θ due to the
introduction of the disability scores were larger, that
is, from 8.2 to 5.3% for males and from 9.1 to 4.8%
for females. Thus, the seven disability scores in the
NLTCS data are more informative about age-related
mortality changes than the 10 risk factors in the
Framingham data even though the length of time
between risk factor measurements was larger.

In the matrix of hazard coefficients there were
large differences in the mortality risk of specific
disability dimensions. The nondisabled dimension
always had the lowest mortality risk. The highly
frail group had the highest mortality. Some of the
disabled groups with intermediate levels of mortal-
ity represented relatively young groups with high
mortality associated with acute cardiopulmonary
problems. These groups tended either to recover
without lasting disability or to die rapidly. The
highest mortality was found for the fifth disabil-
ity dimension, a frail, but not institutionalized,
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Fig. 1. Description of age changes in quadratic hazard functions when covariate information is informative �θ = 8:1%� and highly
informative �θ = 4:8%�:

group. The ratio of the size of the coefficients for
this group to those for the nondisabled group was
about 8 to 1 for both males and females, although
females had baseline mortality about half that of
males. Also of interest was the fact that females
tended to tolerate disability better than males, that
is, the mortality coefficients for scores represent-

ing greater disability were smaller for females than
males.

8.3 General Properties of the Age Dependent
Quadratic Hazard

The dynamic properties of risk in the quadratic
hazard (44) are illustrated in Figure 1.
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In Figure 1 we show the hypothetical mortality for
the quadratic hazard with a one-dimensional covari-
ate process Z�t� for ages 50 and 95. The parameter
θ is 8.1% in the top figure (from the Framingham
Study) and 4.8% in the bottom figure (as estimated
in the NLTCS). The hazard becomes more sensitive
to changes in covariate values with age. The “real”
age trajectory of the hazard is represented by the
dashed line in Figure 1: when covariate Z changes
fromZ1 at age 50 toZ2 at age 95, mortality changes
from level A to level B. These changes in mortal-
ity are higher than for the quadratic hazard with-
out dynamics represented. Not only do increases in
the covariate matter but the deviation of covariates
from the optimal point with age increases risk more
than for the conditional Gompertz—or a quadratic
hazard with constant parameters.

The disability scores reduced age-related uncer-
tainty more than risk factors in Framingham, al-
though the NLTCS intersurvey intervals are longer.
This may be because disability has temporally more
proximate effects on mortality than risk factors. Dis-
ability also predicts risk factor changes very well.
For example, declines in physical activity predict
changes in blood pressure, cholesterol and vascu-
lar tone—as well as end points like stroke (Colanto-
nio, Kasl and Ostfeld, 1992) and cardiovascular dis-
ease. Even so, the effects of age-related unobserved
variables remain significant in the NLTCS so that
methods not adjusting for their effects on mortal-
ity produce biased coefficient estimates for observed
covariates.

The MWY approach can be generalized to the
case where the trajectories of the covariate pro-
cesses may have discrete changes (jumps) in value.
One way to generalize the model to account for
such covariate jumps is described in Yashin (1993).
He proposed modeling the covariate process as a
Gaussian martingale with piecewise continuous
trajectories. An alternate strategy is to extend fil-
tration methods for piecewise continuous stochastic
processes to deal with observations of jumps in co-
variate values (Yashin, 1980). Both approaches can
be used to extend the application of Kalman filters
to stochastic dynamic systems with catastrophic
failures.

9. CONCLUSION

In longitudinal studies, the effects of observed and
unobserved covariates’s evolution over age cannot
be ignored. Logistic or Cox regressions do not ex-
plicitly represent these influences. A stochastic pro-
cess model based on a parametric specification of the
conditional hazard, and randomly changing covari-
ates, is needed. When the conditional hazard is a

quadratic function of covariates, both the Cameron–
Martin procedure (Myers, 1981; Yashin, 1985, 1993)
and the martingale version of the MWY (Woodbury
and Manton, 1977; Yashin, 1980, 1985) procedure
can be used to calculate marginal survival functions.

The martingale version of MWY is a preferable
procedure for several reasons. First, parameter es-
timates can be recursively updated when new mea-
surements are made. Second, covariate dynamics
are better represented (e.g., Woodbury and Manton,
1977; Yashin, 1985; Yashin, Manton and Stal-
lard, 1986a, b) because all data on the covariate’s
evolution in a longitudinal study is used. Third,
knowledge from prior studies can be used to define
probabilistic regularities of the stochastic evolution
of unobserved covariates, for example, by specifying
the conditional survival function from other lon-
gitudinal studies where hazards are estimated as
functions of measured covariates—important be-
cause the marginal survival function is calculated
by averaging the conditional one. Influential vari-
ables can satisfy stochastic differential equations
representing random environmental influences
and describe forces preserving the equilibrium
(homeostasis) of multidimensional, physiological
processes. Thus, knowledge of the structure of the
conditional hazard can be applied when covariates
are unobserved—or partly observed. Thus (a) a
probabilistic description of covariate dynamics with
possibly free parameters and (b) specification of the
conditional survival function given covariates’s tra-
jectories allow the MWY approach to be used in
many longitudinal studies.

This was illustrated by estimating parameters for
two longitudinal studies with different data struc-
tures (i.e., NLTCS and Framingham). The model
performed well in each and demonstrated the pres-
ence of information in the dynamics of observed and
unobserved covariates that standard survival anal-
yses do not utilize. Thus, modeling and estimation
strategies for failure processes with time-varying co-
variates better describe the state dynamics of multi-
variate systems, and their failure, and can improve
the understanding of complex system failure, inter-
ventions in failure processes and forecasts of distri-
butions of times to system failure.
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