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Likelihood Based Frequentist Inference
When Data Are Missing at Random
M. G. Kenward and G. Molenberghs

Abstract. One of the most often quoted results from the original work
of Rubin and Little on the classification of missing value processes is the
validity of likelihood based inferences under missing at random (MAR)
mechanisms. Although the sense in which this result holds was precisely
defined by Rubin, and explored by him in later work, it appears to be
now used by some authors in a general and rather imprecise way, partic-
ularly with respect to the use of frequentist modes of inference. In this
paper an exposition is given of likelihood based frequentist inference un-
der an MAR mechanism that shows in particular which aspects of such
inference cannot be separated from consideration of the missing value
mechanism. The development is illustrated with three simple setups: a
bivariate binary outcome, a bivariate Gaussian outcome and a two-stage
sequential procedure with Gaussian outcome and with real longitudinal
examples, involving both categorical and continuous outcomes. In partic-
ular, it is shown that the classical expected information matrix is biased
and the use of the observed information matrix is recommended.

Key words and phrases: Dropout, expected information matrix, likeli-
hood function, likelihood ratio, longitudinal data, observed information
matrix, sequential methods.

1. INTRODUCTION

For over two decades, following the pioneering
work of Rubin (1976) and Little (1976), there has
been a growing literature on the problem of analyz-
ing incomplete data. This is particularly relevant
for longitudinal data where partially observed se-
quences, especially due to dropout (a patient leaves
the study at some time after which no more mea-
surements are taken), are very common. Much of
this work is based on the classification of missing
data mechanisms, described by Little and Rubin
(1987). They define missing completely at random
(MCAR) to be a process in which the probability
of dropout is completely independent of the mea-
surement process. A process is termed missing at
random (MAR) if the probability of dropout is con-
ditionally independent of the unobserved measure-
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ments given the observed measurements. Processes
that are neither MCAR nor MAR are called non-
ignorable (NI), in which the probability of dropout
depends on unobserved measurements. The devel-
opment of analyses under an NI process presents
problems that we do not address here.

Following the original work of Rubin and Little,
there has evolved a general view that “likelihood
methods” that ignore the missing value mechanism
are valid under an MAR process, where likelihood
is interpreted in a frequentist sense. This statement
needs careful qualification, however, and it is the
purpose of this paper to provide an exposition of
the precise sense in which frequentist methods of
inference are justified under MAR processes.

Rubin (1976) has shown that MAR (and param-
eter distinctness) is necessary and sufficient to
ensure validity of direct-likelihood inference when
ignoring the process that causes missing data. Here,
direct-likelihood inference is defined as an “infer-
ence that results solely from ratios of the likelihood
function for various values of the parameter,” in
agreement with the definition in Edwards (1972).
In the concluding section of the same paper, Rubin
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remarks:

One might argue, however, that this
apparent simplicity of likelihood and
Bayesian inference really buries the im-
portant issues . : : : likelihood inferences
are at times surrounded with references
to the sampling distributions of likelihood
statistics. Thus, practically, when there
is the possibility of missing data, some
interpretations of Bayesian and likeli-
hood inference face the same restrictions
as sampling distribution inference. The
inescapable conclusion seems to be that
when dealing with real data, the practis-
ing statistician should explicitly consider
the process that causes missing data far
more often than he does.

In essence, the problem from a frequentist point of
view is that of identifying and using the appropriate
sampling distribution. This is obviously relevant for
determining distributions of test statistics, expected
values of the information matrix and measures of
precision.

Little and Rubin (1987) discuss several aspects
of this problem and propose using the observed
information matrix to circumvent problems associ-
ated with the determination of the correct expected
information matrix. Laird (1988) makes a similar
point in the context of incomplete longitudinal data
analysis.

In a variety of settings, several authors have reex-
pressed this preference for the observed information
matrix and derived methods to compute it: Meng
and Rubin (1991), the supplemented EM algorithm;
Baker (1992), composite link models; Fitzmaurice,
Laird and Lipsitz (1994), incomplete longitudinal
binary data; and Jennrich and Schluchter (1986).
A group of authors has used the observed informa-
tion matrix, without reference to the problems asso-
ciated with the expected information: Louis (1982),
Meilijson (1989) and Kenward, Lesaffre and Molen-
berghs (1994).

However, others, while claiming validity of analy-
sis under MAR mechanisms, have used expected in-
formation matrices, and other measures of precision
that do not account for the missingness mechanism
(Murray and Findlay, 1988; Patel, 1991). A num-
ber of references is given in Baker (1992). The ex-
pected information in these papers is wrong because
the expectation is taken under MCAR, in which the
missing value mechanism is independent of the dis-
tribution of the outcome data. It is clear that the
problem as identified in the initial work of Rubin
(1976) is not fully appreciated in the more recent

literature. An exception to this is Heitjan’s (1994)
clear restatement of the problem.

A recent exchange of correspondence (Diggle,
1992; Heitjan, 1993; and Diggle, 1993) indicates
a genuine interest in these issues and suggests
a need for clarification. In Section 2 we sketch a
general framework of likelihood inference under
an MAR process. The difference between the ex-
pected information matrix with and without taking
the missing data mechanism into account is eluci-
dated and the relevance of this for Wald and score
statistics is discussed. In particular, the use of the
observed information matrix is recommended. Ana-
lytic and numerical illustrations of this difference
are provided in Section 3 using as examples, bi-
variate binary and bivariate Gaussian data, and a
simple group sequential setting. In Section 4 three
real longitudinal examples are used for practical
illustration.

2. INFORMATION AND SAMPLING
DISTRIBUTIONS

Let the vector random variable Y correspond to
the complete set of measurements on an individual
and let R be the associated missing value indicator.
For a particular realization of this pair �y; r� the
elements of r take the values 1 and 0 indicating,
respectively, whether the corresponding values of y
are observed or not. Let �yobs;ymis� denote the par-
tition of y into the respective sets of observed and
missing data. We assume that the joint distribution
of �Y;R� is regular in the sense of Cox and Hinkley
(1974, page 281).

We are concerned here with the sampling distri-
butions of certain statistics under MCAR and MAR
mechanisms. These mechanisms were described in
the Introduction and can be defined more formally
as follows (Little and Rubin, 1987). Under an MCAR
mechanism P�R = r � y� = P�R = r� and the joint
distribution of the observed data partitions in an
obvious way:

f�yobs; r� = f�yobs�f�r�:

Under an MAR mechanism P�R = r � y� = P�R =
r � yobs� and again the joint distribution of the ob-
served data, and hence the likelihood, can be parti-
tioned,

f�yobs; r� = f�yobsyu�f�r � yobsyb�

for parameter vectors u and b. In terms of the log-
likelihood function we have

`�u;byyobs; r� = `1�uyyobs� + `2�by r�:(1)
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Unless otherwise stated it is assumed that u and b
are distinct (the assumption of separability). As de-
scribed in the Introduction, this partition of the like-
lihood has, with important exceptions, been taken
for granted to mean that, under an MAR mecha-
nism, likelihood methods based on `1�·� alone are
valid for inferences about u even when interpreted in
the broad frequentist sense. We now consider more
precisely the sense in which the different elements
of the frequentist likelihood methodology can be re-
garded as valid in general under the MAR mech-
anism. It is now well known that such inferences
are valid under an MCAR mechanism (Rubin, 1976,
Section 6).

First we note that under the MAR mechanism r is
not an ancillary statistic for u in the extended sense
of Cox and Hinkley (1974, page 35). Hence we are
not justified in restricting the sample space from
that associated with the pair �Y;R�. In considering
the properties of frequentist procedures below we
therefore define the appropriate sampling distribu-
tions to be that determined by this pair. We call this
the unconditional sampling framework. By work-
ing within this framework we do need to consider
the missing value mechanism. We shall be compar-
ing this with the sampling distribution that would
apply if r were fixed by design, that is, if we re-
peatedly sampled using the distribution f�yobsyu�.
If this sampling distribution were appropriate, such
as in the MCAR case, this would lead directly to the
use of `1�·� as a basis for inference. We call this the
naive sampling framework. Little (1976), in a com-
ment on the paper by Rubin (1976), mentions ex-
plicitly the role played by the nonresponse pattern.
He argues: “For sampling based inferences, a first
crucial question concerns when it is justified to con-
dition on the observed pattern, that is on the event
R = r . : : :A natural condition is that R should be
ancillary . : : :Otherwise the pattern on its own car-
ries at least some information about θ, which should
in principle be used.”

Certain elements of the frequentist methodology
can be justified immediately from (1). The maxi-
mum likelihood estimator obtained from maximiz-
ing `1�uyyobs� alone is identical to that obtained
from maximizing the complete log-likelihood func-
tion. Similarly the maximum likelihood estimator of
b is functionally independent of u and so any max-
imum likelihood ratio concerning u, with common
b, will involve `1�·� only. Because these statistics
are identical whether derived from `1�·� or the com-
plete log-likelihood it follows at once that they have
the required properties under the naive sampling
framework. See, for example, Rubin (1976), Little
(1976) and Little and Rubin (1987, Section 5.2).

An important element of likelihood-based fre-
quentist inference is the derivation measures of
precision of the maximum likelihood estimators
from the information. For this either the observed
information iO can be used, where

iO�θj; θk� = −
∂2`�·�
∂θj∂θk

;

or the expected information iE, where

iE�θj; θk� = E�iO�θj; θk��:(2)

The argument above justifying the use of the
maximum likelihood estimators from `1�uyyobs�
applies equally well to the use of the inverse of
the observed information derived from `1�·� as an
estimate of the asymptotic variance–covariance
matrix of these estimators. This has been pointed
out by Little and Rubin (1987, Section 8.2.2) and
Laird (1988, page 307). In addition there are other
reasons for preferring the observed information
matrix (see, e.g., Efron and Hinkley, 1978). Given
the relative ease with which the observed infor-
mation matrix can be calculated, using numerical
differentiation if necessary, its use in missing data
problems should be the rule rather than the excep-
tion.

The use of the expected information matrix is
more problematical. The expectation in (2) needs to
be taken over the unconditional sampling distribu-
tion (the unconditional information iU) and conse-
quently the use of the naive sampling framework
(producing the naive information iN) can lead to in-
consistent estimates of precision. In the next sec-
tion we give three examples of the bias resulting
from the use of the naive framework. It is possi-
ble, however, as we show below, to calculate the un-
conditional information by taking expectations over
the appropriate distribution and so correct this bias.
Although this added complication is generally un-
necessary in practice, given the availability of the
observed information, it does allow a direct exam-
ination of the effect of ignoring the missing value
mechanism on the expected information.

More formally, it can be shown that, under
the usual regularity conditions, the maximum
likelihood estimator is asymptotically normally
distributed around the true parameter and with
variance–covariance matrix the inverse of the un-
conditional expected information. This is immediate
from Welsh (1996, page 197, Corollary 4.6), with
the Fisher information properly calculated over the
unconditional space.

This leaves us with two options: the observed in-
formation matrix and the unconditional expected in-
formation matrix. While the first one is standard
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and routinely implemented in statistical packages,
the second one is not and has the further disad-
vantage that it requires correct specification of the
MAR missingness mechanism. Thus, practically, the
observed information matrix is the only choice.

As part of the process of frequentist inference we
also need to consider the sampling distribution of
the test statistics. Provided that use is made of the
likelihood ratio, or Wald score statistics based on
the observed information, then reference to a null
asymptotic χ2 distribution will be appropriate be-
cause this is derived from the implicit use of the
unconditional sampling framework. Only in those
situations in which the sampling distribution is ex-
plicitly constructed must care be taken to ensure
that the unconditional framework is used; that is,
account must be taken of the missing data mecha-
nism.

3. ILLUSTRATION

3.1 Bivariate Binary Data

Suppose that each member of the pair of obser-
vations �Yi1;Yi2�, from unit i, i = 1; : : : ; n, is a bi-
nary random variable, with associated probabilities
P�Yi1 = 1� = λ and P�Yi2 = 1� = θ: It is assumed
that an MAR mechanism is operating with respect
to the second observation; that is, the probability of
Yi2 being missing depends on Yi1 alone. It follows
that Yi1 is always observed. We want to compare
the naive information iN with the unconditional in-
formation iU for this setup. We begin by assuming
that Yi1 and Yi2 are independent. The joint distri-
bution of Yi1, Yi2 and Ri can then be partitioned
as follows: f�yi1; yi2; ri� = f�yi1�f�yi2�f�ri � yi1�.
It follows at once that the observed information for
θ can be expressed

iO�θ; θ�=
1
θ2

m∑
i=1

yi2+
1

�1− θ�2
(
m−

m∑
i=1

yi2

)
;(3)

where m denotes the number of observations ob-
served on the second occasion. The other elements
of the information matrix are not relevant to the
development.

The naive information is obtained from (3) by tak-
ing expectations over the joint distribution of m in-
dependent binary random variables with parameter
θ; that is, we take expectations over the observed
pattern of observations but not conditional on r,
the realization of the random variable R associ-
ated with the occurrence of that particular pattern.
Hence from (3) we get iN�θ; θ� =mθ−1�1− θ�−1.

The unconditional information is derived in two
steps. First we obtain the conditional expectation of

(3) with respect to Y � R. For this we need

EY�ri=1�Yi2� = P�Yi2 = 1 � ri = 1�

= P�Yi2 = 1� = θ;

because of the independence of �Yi1;Ri� and
Yi2 under the MAR mechanism. It follows that
EY�R�iO�θ; θ�� = mθ−1�1 − θ�−1 for m the number
of observations on the second occasion. We are now
treating m as the realization of a random variable
M, over which we take expectations to obtain the
unconditional information. Setting π = P�Ri = 1�
we have

iU�θ; θ� = ER

(
m

1
θ�1− θ�

)
= ER�m�
θ�1− θ� =

nπ

θ�1− θ� :

Replacing π by the estimate m/n it can be seen that
in practice the naive and unconditional informa-
tion are equivalent and sampling based inferences
that use the naive information are valid. Under
independence, the data are observed at random
(OAR) and the result above is just a manifestation
of the general validity of sampling based methods
under the combination of MAR and OAR, or equiv-
alently MCAR, as pointed out by Heitjan (1994,
page 706).

We now introduce dependence between Yi1 and
Yi2. This can be expressed through the conditional
success probabilities of Yi2x θ1=P�Yi2=1 � yi1=1�
and θ0 = P�Yi2 = 1 � yi1 = 0�.

The off-diagonal elements of the observed infor-
mation matrix are zero, so we need consider only
the information for one of θ0 and θ1 to contrast the
naive and unconditional forms of the expected infor-
mation. For θ1 the observed information reads

iO�θ1; θ1� =
1

θ2
1

m∑
i=1

yi1yi2

+ 1
�1− θ1�2

m∑
i=1

yi1�1− yi2�:
(4)

For the naive information it follows at once, taking
expectations in (4),

iN�θ1; θ1� =
mλ

θ1�1− θ1�
:(5)

For the unconditional information we need to con-
sider first the conditional expectations over Y � R.
Define η0 = P�Ri = 1 � yi1 = 0� and η1 = P�Ri =
1 � yi1 = 1�. It follows that P�Ri = 1� = η =
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Table 2

Bivariate binary datax diagonal of the information matrix (naive, unconditional, and simulated). Sample size is

n= 1,000 (500 replications)

Naive iN�·; ·� Uncond. iU�·; ·� Simulated îO�·; ·�

Model l u1 u0 l u1 u0 l u1 u0

1 4000 1333 1333 4000 2000 667 4004 2001 678
2 4000 1333 1333 4000 667 2000 4004 672 2014
3 5333 573 1719 5333 417 1875 5349 420 1879
4 5333 469 1406 5333 625 1250 5348 631 1259

λη1 + �1− λ�η0: We then have

EY�R�Yi2� = P�Yi2 = 1 � ri = 1�

= λθ1η1 + �1− λ�θ0η0

λη1 + �1− λ�η0
;

EY�R�Yi1Yi2� = P�Yi1 = 1;Yi2 = 1 � ri = 1�

= λθ1η1

λη1 + �1− λ�η0

= λθ1η1

η
;

and similarly for EY�R�Yi1�1 − Yi2��. Combining
these with (4) we get

EY�R�iO�θ1; θ1�� =
mλη1

ηθ1�1− θ1�
:(6)

We now take expectations over R. Noting that
ER�m� = nη we have

iU�θ1; θ1� =
nλη1

θ1�1− θ1�
;(7)

with a similar expression for iU�θ0; θ0�.
We are now in a position to consider the conditions

under which the naive and unconditional expecta-
tions are equivalent. From (5) and (7), it can be seen
that conditions for ER�iN�θ1; θ1�� = iU�θ1; θ1� and
ER�iN�θ0; θ0�� = iU�θ0; θ0� are ER�m/n� = η1 =
η0 and hence η = η1 = η0, the requirement for
an MCAR mechanism to operate. It follows, as ex-
pected, that the MCAR mechanism is both a neces-
sary and sufficient condition for the equivalence of
the two forms of information.

These findings are illustrated with some numeri-
cal results. It is necessary to consider only the diag-
onal elements of iN and iU because the off-diagonal
elements are all zero. We take a sample of size
n = 1;000 and consider various settings for the pa-
rameters (as shown in Table 1). We performed a
simulation run of 500 replicates for each setting.
Results are presented in Table 2. The simulations
agree very closely with the unconditional informa-
tion. Although not reported here, simulation runs
with larger sample sizes produced similar results

Table 1
Bivariate binary datax parameter settings

Model l u1 u0 h1 h0

1 0.50 0.25 0.75 0.75 0.25
2 0.50 0.25 0.75 0.25 0.75
3 0.25 0.40 0.60 0.40 0.60
4 0.25 0.40 0.60 0.60 0.40

with improved agreement between theoretical and
simulated values.

To illustrate the point that basing the computa-
tion of test statistics on either the observed informa-
tion matrix or the unconditional expectation is suf-
ficient to obtain valid inference, we consider three
Wald test statistics. The null hypotheses H01–H03
are that each of the three parameters λ, θ1 and θ0
are equal to the true value. The four parameter set-
tings displayed in Table 1 are revisited (Table 3)
under both the unconditional sampling framework
(i.e., with m, the number of complete cases, varying
at random), as well as under a few naive frame-
works, where the value of m is considered fixed
at three possible values: (1) at its expected value,
(2) at about two standard deviations below its ex-
pected value, (3) at a value well below the mini-
mal m observed under the unconditional sampling
scheme. Should the correct reference distribution
be χ2 with one degree of freedom, then the cover-
age probability, for 500 replicates, has probability
interval �93:05y96:95�. Clearly, the values obtained
under the unconditional framework are in agree-
ment. Combining all 12 coverages leads to 94:88,
well within the interval �94:44y95:56�. In fact, the
first naive framework, where m equals its expected
value, shows an only slightly increased dispersion.
However, suspicion is raised for the second naive
framework, while the third one is dramatically dif-
ferent. As expected, the behavior of hypothesis tests
concerning θ1 and θ0 is much less affected by the
choice of sampling framework. These conclusions
are supported by QQ plots for the Wald test statis-
tics against the quantiles of a χ2 reference distribu-
tion.
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Table 3
Bivariate binary datax coverage probabilities �×1;000� for Wald test statistics. Sample size is n = 1;000 �500 replications�. The null
hypotheses are H01x λ̂=λ; H02x θ̂1= θ1; H03x θ̂0= θ0. For the naive sampling frameworks, m denotes the fixed number of complete cases

Uncond. Naive(1) Naive(2) Naive(3)

Model H01 H02 H03 m H01 H02 H03 m H01 H02 H03 m H01 H02 H03

1 946 944 948 500 968 964 928 470 884 958 954 400 68 952 942
2 946 948 954 500 972 932 956 470 894 942 962 400 54 962 950
3 954 936 956 550 938 942 940 520 952 938 954 450 822 940 960
4 954 942 958 540 960 966 936 420 944 936 958 350 778 954 944

3.2 Bivariate Gaussian Data

Little and Rubin (1987) state: “If the data
are MCAR, the expected information matrix of
θ = �µ;6� represented as a vector” is block diag-
onal. “The observed information matrix, which is
calculated and inverted at each iteration of the
Newton–Raphson algorithm, is not block diagonal
with respect to µ and 6, so this simplification does
not occur if standard errors are based on this ma-
trix. On the other hand, the standard errors based
on the observed information matrix are more con-
ditional and thus valid when the data are MAR
but not MCAR, and hence should be preferable
to those based on [the expected information] in
applications.”

Suppose now that we have n independent pairs of
observations �Yi1;Yi2� each with a bivariate Gaus-
sian distribution with mean vector m = �µ1; µ2�T
and variance–covariance matrix

S =
(
σ11 σ12

σ12 σ22

)
:

It is assumed that m complete pairs, and only the
first member �Yi1� of the remaining pairs, are ob-
served. The log-likelihood can be expressed as the
sum of the log-likelihoods for the complete and in-
complete pairs:

` =
m∑
i=1

lnf�yi1; yi2 � µ1; µ2; σ11; σ12; σ22�

+
n∑

i=m+1

lnf�yi1 � µ1; σ11�;

which, in the Gaussian setting, has kernel

` = −n−m
2

lnσ11 −
m

2
ln � 6 �

− 1
2σ11

n∑
i=m+1

�yi1 − µ1�2

−1
2

m∑
i=1

(
yi1−µ1

yi2−µ2

)T(
σ11 σ12

σ12 σ22

)−1(
yi1−µ1

yi2−µ2

)
:

Straightforward differentiation produces the el-
ements of the observed information matrix that
relate to m:

iO�m;m� = �n−m�
(
σ−1

11 0

0 0

)
+mS−1

and

iO�µj; σkl�

=





n∑
i=m+1

yi1 − µ1

σ2
11

+
m∑
i=1

eT1 S−1E11S−1
(
yi1−µ1

yi2−µ2

)
;

j = k = l = 1;
m∑
i=1

eTj S−1EklS
−1
(
yi1−µ1

yi2−µ2

)
; otherwise,

(8)

for

e1 =
(

1

0

)
; e2 =

(
0

1

)
;

E11 =
(

1 0

0 0

)
; E12 =

(
0 1

1 0

)

and

E22 =
(

0 0

0 1

)
:

For the naive information we just take expecta-
tions of these quantities over �Yi1;Yi2�T ∼N�m;S�
for i = 1; : : : ;m and Yi1 ∼ N�µ1; σ11� for i =
m+ 1; : : : ; n. It follows at once that the cross-terms
linking the mean and variance–covariance parame-
ters vanish, establishing the familiar orthogonality
property of these sets of parameters in the Gaus-
sian setting. We now examine the behavior of the
expected information under the actual sampling
process implied by the MAR mechanism.

We need to consider first the conditional expecta-
tion of these quantities given the occurrence of R,
the dropout pattern. Because �Y;R� enters the ex-
pression for iU�m;m� only through m, the naive and
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unconditional information matrices for m are effec-
tively equivalent. However, we show now that this
is not true for the cross-term elements of the infor-
mation matrices. Define αj = E�Yi1 � ri = j� − µ1.
For the conditional expectation of Yi2 we have

EY�R�Yi2�

= E�Yi2 � ri = 1�

=
∫ {
yi2

∫
f�yi2 � yi1�dyi2

}
f�yi1 � ri = 1�dyi1

= µ2 − σ12σ
−1
11 µ1

+ σ12

σ11P�ri = 1�
∫
yi1f�yi1; ri = 1�dyi1

= µ2 + σ12σ
−1
11 �E�Yi1 � ri = 1� − µ1�

or

EY�R�Yi2 − µ2� = βα1

for β = σ12σ
−1
11 . Hence

EY�R

{(
Yi1 − µ1

Yi2 − µ2

)}
= α1

(
1

β

)
:

Noting that

S−1
(

1

β

)
=
(
σ−1

11

0

)
= σ−1

11 e1;

we then have, from (8),

EY�R�iO�µj; σkl��

=





�n−m� α0

σ2
11

+m α1

σ11
eT1 S−1E11e1;

j = k = l = 1;

m
α1

σ11
eTj S−1Ekle1; otherwise.

Finally, taking expectations over R, we get the fol-
lowing for the cross-terms of the unconditional in-
formation matrix:

iU�m; σ11� =
n

σ11

{�1− π�α0

σ11

(
1

0

)

+ πα1

σ11σ22 − σ2
12

(
σ22

−σ12

)}
;

(9)

iU�m; σ12� =
nπα1

σ11σ22 − σ2
12

(−β
1

)
;(10)

iU�m; σ22� =
(

0

0

)
;(11)

for π = P�ri = 1�. In contrast to the naive infor-
mation these cross-terms do not all vanish, and
the orthogonality of mean and variance–covariance
parameters is lost under the MAR mechanism.
One implication of this is that, although the in-
formation relating to the linear model parameters
alone is not affected by the move from an MCAR
to an MAR mechanism, the asymptotic variance–
covariance matrix is affected due to the induced
nonorthogonality and therefore the dropout mecha-
nism cannot be regarded as ignorable as far as the
estimation of precision of the linear model param-
eters is concerned. It can also be shown that the
expected information for the variance–covariance
parameters is not equivalent under the MCAR and
MAR dropout mechanisms, but the expressions are
rather more involved. Assuming that π is nonzero,
it can be seen that the necessary and sufficient con-
dition for the terms in (9) and (10) to be equal to
zero is that α0 = α1 = 0, the condition defining, as
expected, an MCAR mechanism.

We now illustrate these findings with a few
numerical results. The off-diagonal unconditional
information elements (9)–(11) are computed for
sample size n = 1;000, mean vector �0;0�T and two
covariance matrices: (1) σ11 = σ22 = 1 and corre-
lation ρ = σ12 = 0:5, and (2) σ11 = 2, σ33 = 3 and
ρ = 0:5 leading to σ12 =

√
6/2. Further, two MAR

dropout mechanisms are considered. They are both
of the logistic form

P�r1 = 1�yi1� =
exp�γ0 + γ1yi1�

1+ exp�γ0 + γ1yi1�
:

We choose γ0 = 0 and (a) γ1 = 1 or (b) γ1 = −∞. The
latter mechanism implies ri = 1 if yi1 ≥ 0 and ri =
0 otherwise. Both dropout mechanisms yield π =
0:5. In all cases α1 = −α0, with α1 in the four possi-
ble combinations of covariance and dropout parame-
ters: (1a) 0.4132, (1b) 0.7263, (2a)

√
2/π, (2b) 2/

√
π.

Numerical values for (9)–(11) are presented in Ta-
ble 4, as well as the average from the observed infor-
mation matrices in a simulation with 500 replicates.

Obviously, these elements are far from zero, as
would be found with the naive estimator. They are
of the same order of magnitude as the upper left
block of the information matrix (pertaining to the
mean parameters), which are

(
1166:67 −333:33

−333:33 666:67

)
:

We performed a limited simulation study to verify
the coverage probability for the Wald tests under the
unconditional and a selection of conditional frame-
works. (See Table 5.) The hypotheses considered are
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Table 4
Bivariate normal datax computed and simulated values for the off-diagonal block of the unconditional information matrix. Sample size is
n = 1;000 �500 replications�. The true model has zero mean vector. Two true covariances S and two dropout parameters γ1 are considered

Parameters Unconditional iU�m; ·� Simulated îO�m; ·�

S g1 s11 s12 s22 s11 s12 s22

1 0.5 1 −68.87 137.75 0.00 −69.36 137.95 −0.04
0.5 1 137.75 −275.49 0.00 137.88 −276.83 −0.04

2
√

6/2 1 −30.26 49.42 0.00 −30.21 49.54 0.04√
6/2 3 49.42 −80.70 0.00 49.52 −81.31 0.06

1 0.5 −∞ 132.98 −265.96 0.00 135.67 −267.66 0.16
0.5 1 −265.96 531.92 0.00 −267.73 537.58 −0.02

2
√

6/2 −∞ 47.02 −76.78 0.00 49.52 −78.73 −0.02√
6/2 3 −476.78 125.38 0.00 −78.58 126.91 0.02

Table 5
Bivariate normal datax true values are as in the third model of
Table 4. Coverage probabilities �×1;000� for Wald test statistics.
Sample size is n = 1;000 �500 replications�. The null hypothe-
ses are H04x µ1 = 0; H05x µ2 = 0; H06x µ1 = µ2 = 0. For
the naive sampling frameworks, m denotes the fixed number of

complete cases

Hypothesis Uncond. m 5 500 m 5 450 m 5 400

H04 933 996 187 0
H05 953 952 913 830
H06 952 992 338 0

H04x µ1 = 0, H05x µ2 = 0 and H06x µ1 = µ2 = 0.
The simulations have been restriced to the first co-
variance matrix used in Table 4 and to the sec-
ond dropout mechanism �γ1 = −∞). The coverages
for the unconditional framework are in good agree-
ment with a χ2 reference distribution; the first naive
framework (500 complete cases) leads to a conser-
vative procedure, whereas the second and the third
lead to extreme liberal behavior that is most marked
for hypotheses H04 and H06. This is to be expected,
because by fixingm = 500, the proportion of positive
first outcomes is constrained to be equal to its pre-
dicted value. This has the effect of reducing the vari-
ability of µ̂1. The second and the third frameworks
also supress the variability, but introduce bias at the
same time. The comparative insensitivity of the be-
havior of test for H05 to the sampling framework is
because µ1 has only an indirect influence through
the correlation between the outcomes on both oc-
casions. It should be noted that due to numerical
problems, not all simulations led to 500 succesful
estimations. On average, 489 convergences were ob-
served, the lowest value being 460 for H05 in the
first naive sampling frame.

3.3 Sampling with a Stopping Rule

Suppose that n i.i.d. N�µ;1� observations y1; : : : ;
yn are collected and, if the sample fails to sat-

isfy a given stopping rule, a further n observations
yn+1; : : : ; y2n are collected, with the same distribu-
tion. This represents a very simple form of a group
sequential trial (Armitage, 1975). As in the previous
examples the final sample size N is a random vari-
able, but in this case taking only one of two values:
n or 2n. The aim is to estimate µ, and the naive ap-
proach leads to the estimator µ̂ =N−1�N

i=1 yi with
corresponding information iN�µ� = N. It is well
known that this naive estimator is biased: denot-
ing the probability of stopping by π = P�N = n�,
it can be shown that E�µ̂� = π�µ0 − µ�/2 + µ for
µ0 = E�n−1�n

i=1Yi �N = n�.
An alternative estimator that uses all the infor-

mation is based on the joint distribution of the �Yi�
and N. Using the pattern-mixture decomposition of
the joint distribution f�y1; : : : ; yN �N�f�N� we get
the kernel of the log-likelihood function

`�µ� = −1
2

N∑
i=1

�yi − µ�2 +
(

2− N
n

)
lnπ

+
(
N

n
− 1

)
ln�1− π�:

For a given stopping rule this can be evaluated. Sup-
pose that the rule is to stop if

�n
i=1Yi < 0. Then

π = 8�−√nµ� and

`�µ� = −1
2

N∑
i=1

�yi − µ�2 +
(

2− N
n

)
ln�8�−√nµ��

+
(
N

n
− 1

)
ln�8�√nµ��;

with associated score function

∂`

∂µ
=

N∑
i=1

�yi −µ�+
φ�√nµ�√

n

{
N− n
8�√nµ� −

2n−N
8�−√nµ�

}
:
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The observed information is then

iO�µ� = −
∂2l

∂µ2

=N−φ′�√nµ�
{
N− n
8�√nµ� −

2n−N
8�−√nµ�

}

+φ2�√nµ�
{
N− n
82�√nµ� +

2n−N
82�−√nµ�

}
;

where φ′ = ∂φ/∂µ. The data enter this expresssion
only through the sample size N, so to obtain the
expected information it is necessary only to take
expectations with respect to N. Given P�N = 2n� =
8�√nµ�, it follows that E�N� = n�1 + 8�√nµ��.
Hence

iU�µ� = n�1+8�
√
nµ�� + nφ2�√nµ�

8�√nµ�8�−√nµ� :

The stopping rule setup explored here is an exam-
ple of an MAR process in which the parameters of
the response and missing value mechanism are not
separable. As expected we have seen that the naive
and unconditional information do not coincide. Al-
though the naive ML estimator remains consistent
even when separability does not hold, as pointed
out by Diggle (1992), the asymptotic framework re-
quired in this setting for this consistency (n → ∞)
is of little value from a practical viewpoint.

To illustrate these findings numerically, we con-
sidered an experiment with n = 100 and µ = 0. This
leads to iU = 100�1:5+2/π� = 213:66. The naive in-
formation on the other hand is merely the expecta-
tion of the sample size: iN = 150. After 5,000 runs,
we found for the naive estimator 149:96, and 212:51
for the unconditional one. The unweighted average
of the sample means was −0:0203, while a weighted
average (weighted by the sample size to correct for
the smaller information contents when early stop-
ping occurred) is −0:0002. A small negative bias is
to be expected, because in the experiments where
the stopping rule was applied, small outcomes are
favored.

4. EXAMPLES

In this section, the points made above are illus-
trated using three real longitudinal examples, two
with a categorical response and one with a continu-
ous response.

The first example is a multicenter study involv-
ing 315 patients that were treated by fluvoxamine
for psychiatric symptoms described as possibly re-
sulting from a dysregulation of serotonine in the

brain. The data are discussed in Molenberghs and
Lesaffre (1994). After recruitment to the study, the
patient was assessed at four visits. The therapeu-
tic effect and the extent of side effects were scored
at each visit on an ordinal scale. The side-effect re-
sponse is coded as (1) none, (2) not interfering with
functionality, (3) interfering significantly with func-
tionality, (4) side-effects surpasse the therapeutic
effect. Similarly, the effect of therapy is recorded on
a four-point ordinal scale: (1) no improvement or
worsening; (2) minimal improvement; (3) moderate
improvement, (4) important improvement. Thus,
a side effect occurs if new symptoms occur, while
there is therapeutic effect if old symptoms disap-
pear. We have 299 patients who have at least one
measurement, including 242 completers. An impor-
tant covariate is previous duration of the disease. In
a previous analysis of these data evidence was found
for an MAR process operating on the side-effects
outcome in the sense that there was clear depen-
dence of dropout on previous side-effect measure-
ment, while for therapeutic effect there was little
evidence for a dependence of dropout on the pre-
vious measurement, even though there was some
dependence on the current, possibly unobserved,
measurement (Molenberghs, Kenward and Lesaf-
fre, 1997). In conclusion, the mechanism for side
effects is at least MAR, whereas an MCAR mecha-
nism can be formulated that is consistent with the
therapeutic outcome.

We will first study two dichotomized versions (cat-
egory 1 versus higher categories 2, 3 and 4; and cat-
egories 1 and 2 versus 3 and 4) of side effects and
therapeutic effects at the first and the last mea-
surement occasions. The data are shown in Table 6;
the analysis is shown in Table 7. The model of Sec-
tion 3.1 is fitted to all four tables, which is partic-
ularly illustrative because naive and unconditional
standard error estimates for λ (the success prob-
ability at the first occasion) coincide, concentrating
potential differences between both estimators in the
parameters θ0 and θ1 (the conditional success prob-
abilities at the last occasion, given failure or suc-
cess at the first occasion, respectively). For the first
analysis of side effects, there are only small differ-
ences and inference at a common significance level
is unaffected. This is different in setting 2. Indeed,
the naive significance probability for H0x θ0 = 0:5
is 0.0319, while the unconditional version is 0.1306.
Note that θ1 is substantially different from θ0 and,
more important, that the missingness probabilities
η1 and η0 are very different. For therapeutic effect,
neither of the two settings leads to differences in
standard errors of any importance.
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Table 6
Psychiatric studyx dichotomized outcome at first and last measurement occasions

Setting Outcome Dichot. (0, 0) (0, 1) (1, 0) (1, 1) (0, *) (1, *)

1 Side 1/234 89 13 57 65 26 49
2 Side 12/34 203 5 14 2 48 27
3 Ther. 1/234 11 1 124 88 7 68
4 Ther. 12/34 77 9 119 19 28 47

Table 7
Psychiatric studyx analysis of the data in Table 6. Parameter estimates �naive standard errors; unconditional standard errors� are shown

Side Side Ther. Ther.
Par. 1/234 12/34 1/234 12/34

λ 0.572(0.029; 0.029) 0.144(0.020; 0.020) 0.937(0.014; 0.014) 0.619(0.028; 0.028)
θ1 0.533(0.044; 0.045) 0.125(0.058; 0.083) 0.415(0.034; 0.034) 0.138(0.029; 0.029)
θ0 0.128(0.034; 0.033) 0.024(0.011; 0.011) 0.083(0.073; 0.080) 0.105(0.033; 0.033)
η1 0.714 0.372 0.757 0.746
η0 0.797 0.813 0.632 0.754

The analysis considered above is based on a
simple Markov-type model. It concentrates the
discrepancy between the naive and robust frame-
works in the conditional probabilities θj (j = 0;1).
Marginal models do not have this feature. As an il-
lustration, we analyze side effects at the first, the
second and the fourth measurement occasion, on a
three-category scale (with original categories 3 and
4 combined). A trivariate odds ratio model (Molen-
berghs and Lesaffre, 1994) is adopted. Briefly,
marginal cumulative logits for each outcome are
combined with global marginal log odds ratios for
the pairwise and third-order interactions in or-
der to specify the joint distribution. Note that this
model falls outside the regular exponential family.
Generally, one might expect larger differences be-
tween observed and naive expected information for
nonexponential family models. The marginal log-
its are assumed to depend on duration, whereas
the log odds ratios are assumed constant. Molen-
berghs, Kenward and Lesaffre (1997) observed that
dropout in the side effects outcome depends both
on the previous measurement as well as on the
value of duration. We analyzed the set of 222 com-
plete cases as well as all available data. Table 8
reports on the value of the (naive and uncondi-
tional) Wald statistic for a number of hypotheses.
Although not spectacular, the differences between
naive expected and observed information based
tests is larger for the MAR analysis than for the
complete case analysis. In particular, the P-value
for the hypothesis of no duration effect (MAR)
changes from 0.0049 with the naive expected in-
formation to 0.0110 with the observed information.
In this example it was seen consistently that
in MAR analyses the observed information yielded
smaller test statistics than the naive expected infor-

mation. For completers only analyses, this was not
always the case.

In the previous study of moderate size, for which
there existed some preliminary evidence for an MAR
mechanism in the side effects, differences appeared
between inferences based on observed and naive ex-
pected information. Woolson and Clarke (1984) ana-
lyzed data from the Muscatine Coronary Risk Factor
Study, a longitudinal study of coronary risk factors
in 4,856 school children (1971–1981). These authors
analyzed classifications of the children as obese ver-
sus not obese made in 1977, 1979 and 1981. Apart
from the outcome, the sex of the child and the age
stratum (8, 10, 12 or 14) were recorded. All possible
missing value patterns occur. There is no evidence
that the missing data mechanism would be more
complex than MCAR. We have fitted an odds ratio
model, with the logit of each measurement depend-
ing on sex and age (linear trend). Categorization of
age gave very similar results. Table 9 presents the
Wald test statistics: the differences between statis-
tics in the completers’ analysis are very small. Al-
though differences are slightly larger in the MAR
analyses, there is no qualititative difference in the
inference based on these tests.

We will now consider a relatively small example
with a continuous response, analyzed in Crépeau,
Koziol, Reid and Yuh (1985). Fifty-four rats were
divided into five treatment groups corresponding
to exposure to increasing doses of halothane (0%,
0.25%, 0.5%, 1% and 2%). The groups were of sizes
11, 10, 11, 11 and 11 rats, respectively. Follow-
ing an induced heart attack in each rat the blood
pressure was recorded on nine unequally spaced oc-
casions. A number of rats died during the course of
the experiment, including all rats from group 5 (2%
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Table 8
Psychiatric studyx side effects at times 1; 2 and 4. Wald test statistics for the completers only and for an MAR analysis

Compl. cases MAR

Hypothesis df Expect. Obs. Expect. Obs.

Common duration effect 2 1.36 1.19 2.54 2.44
No duration effect 3 2.98 2.54 12.90 11.13
Common two-way association 2 10.70 9.99 11.48 9.13
Intercepts equal across times 4 28.73 28.83 34.96 33.44
Common difference between intercepts 2 0.16 0.16 2.07 1.48
Linear trend in first intercept 1 0.0099 0.0099 0.16 0.18
Linear trend in second intercept 1 0.020 0.018 1.15 0.85
Linear trend in both intercepts 2 0.034 0.033 1.18 0.91

Table 9
Muscatine Coronary Risk Factor Studyx Wald test statistics for the completers only and for an MAR analysis

Compl. cases MAR

Hypothesis df Expect. Obs. Expect. Obs.

Common sex effect 2 5.55 5.54 1.50 1.49
No sex effect 3 5.56 5.55 6.84 6.82
Common age effect 2 22.20 21.37 40.03 38.59
No age effect 3 22.40 21.66 46.17 45.39
Common two-way association 2 15.99 16.08 17.26 16.63
Common intercept across time 2 22.27 21.72 45.55 45.56
Linear trend in intercepts 1 0.10 0.10 2.16 2.09

halothane). Following the original authors we omit
this group from the analysis, leaving 43 rats, of
which 23 survived the experiment. Examination of
the data from these four groups does not provide
any evidence of an MAR dropout process, although
this observation must be considered in the light of
the small sample size. A Gaussian multivariate lin-
ear model with an unconstrained covariance matrix
was fitted to the data. There was very little evidence
of a treament-by-time interaction and the following
results are based on the use of a model with additive
effects for treatment and time. The Wald statistics
for the treatment main effect on three degrees of
freedom are equal to 46.95 and 30.82, respectively
using the naive expected and observed information
matrices. Although leading to the same qualitative
conclusions the figures are notably discrepant. A
first reaction may be to attribute this difference
to the incompleteness of the data. However, the
lack of evidence for an MAR process together with
the relatively small sample size points to another
cause. The equivalent analysis of the 24 completers
produces Wald statistics of 45.34 and 26.35, re-
spectively. That is, the effect can be attributed to
a combination of small sample variation and possi-
ble model misspecification. A theoretical reason for
this difference might be that the expected value of
the off-diagonal block of the information matrix of
the maximum likelihood estimates (describing co-
variance between mean and covariance parameters)

has expectation zero but is likely to depart from this
in small samples. As a consequence, the variances of
the estimated treatment effects will be higher when
derived from the observed information, thereby re-
ducing the Wald statistic. To summarize, this exam-
ple provides an illustration of an alternative source
of discrepancy between the naive expected and ob-
served information matrices, which is likely to be
associated with the use, in smaller samples, of co-
variance matrices with many parameters.

5. CONCLUDING REMARKS

The literature overview in the Introduction
indicates an early awareness of problems with con-
ventional likelihood based frequentist inference in
the MAR setting. Specifically, several authors point
to the use of the observed information matrix as
a way to circumvent issues with the expected in-
formation matrix. In spite of this, it seems that
a broad awareness of this problem has dimin-
ished while the number of methods formulated to
deal with the MAR situation has risen dramat-
ically in recent years. We therefore feel that a
restatement and exposition of this important prob-
lem is timely. Three easily accessible and simply
formulated settings have been used to illumi-
nate the issues while a number of real examples
have been used to explore the implications in
practice. The different status of the observed in-
formation and the conventional expected informa-
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tion (called the naive information in this work) has
been clearly shown by contrasting both with the ex-
pected information, where the expectation takes the
missingness pattern into account (referred to as the
unconditional information).

We can conclude from this that, provided the ob-
served information matrix is used, conventional
likelihood based frequentist inference is applicable
in the MAR setting.
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