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CHARACTERIZATIONS OF POPULATIONS USING
REGRESSION PROPERTIES!
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In the present work, we study characterizations of populations obtained
" by using regression properties of one statistic on another. We extend some
of the results of Lukacs and Laha by considering the cubic regression (poly-
nomial regression of order 3) of a cubic statistic S on a linear one L. This
assumption of cubic regression is used to derive a third order non-linear
differential equation in the characteristic function A(z) of a set of n inde-
pendently and identically distributed random variables. The coefficients in
this differential equation represent certain fixed relationships between the
coefficients of the statistic S and the regression coefficients. For appropriate
choices of the coefficients in the fundamental differential equation, the
resulting equation can be solved to yield the characteristic function of a
particular distribution. In this way, we are able to obtain a series of charac-
terization theorems for each of a variety of populations including Normal,
Gamma, Binomial, Poisson, Geometric and several others. Moreover, all
of the results obtained by Lukacs and Laha for characterizing populations
using quadratic and constant regression are shown to be special cases of
the theorems obtained in the present work.

Finally, in the last section, we present an outline of a technique which
can be used to study any general r < mth order polynomial regression of
any mth order statistic on a linear one. The approach used to generate the
mth order differential equation is indicated and a method for determining
the appropriate conditions on the coefficients is discussed.

1. Introduction. In the present work, we study characterizations of popula-
tions by using regression properties of one statistic on another. In particular,
a series of results is obtained by considering the cubic regression (polynomial
regression of order 3) of a cubic statistic S on a linear one L.

This assumption of cubic regression is used to derive a third order non-linear
differential equation in the characteristic function A(r) of a set of n independently
and identically distributed random variables. The coefficients in this differential
equation represent certain fixed relationships between the coefficients of the sta-
tistic S and the regression coefficients. For appropriate choices of the coefficients
in the fundamental differential equation, the resulting equation can be solved
to yield the characteristic function of a particular distribution. In this way,
we are able to characterize a variety of populations including Normal, Gamma,
Binomial, Poisson, Geometric, and several others. Moreover, all of the results
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CHARACTERIZATIONS USING REGRESSION PROPERTIES 115

obtained by Lukacs and Laha for characterizing populations using quadratic
and constant regression are shown to be special cases of the theorems obtained
in the present work.

Finally, in the last section, we present an outline of a technique which can
be used to study any general r < mth order polynomial regression of any mth
degree statistic on a linear one. A method for determining the appropriate con-
ditions on the coefficients of the resulting mth order differential equation is also
discussed.

2. Derivation of the fundamental differential equation. Let X and Y be two
stochastic variables. For convenience, we denote the conditional expectation
of X fora given value of Y = y, E(X/Y = y), by E(X/Y). We assume that these
stochastic variables, as well as all others to be considered throughout the follow-
ing discussions, are non-degenerate. If the conditional moment E(X]Y) exists,
we can define polynomial regression of X on Y in the following manner.

DEFINITION. X has polynomial regression of order m on Y if
EX[Y) =B+ BY + BY + --- + 8,7, ae.

where the 8, (j=0,1, ..., m) are real constants, known as the regression
coefficients.

In particular, we considera sample X, - - -, X, of independently and identically
distributed stochastic variables from a population with distribution function
F(x) and assume that all moments up to third order exist. We define

L=X+ - +X,,

S = 2ikmGim X; X Xy + 5000 XX, + 33, ¢, X,
where a;,,,, b;, and ¢; (forall j, k, m = 1, ..., n) are real constants. We assume
that § has cubic regression on L and study some problems where a suitable
choice of the statistic S, given in terms of some relations between the coefficients
%im» by, and ¢; of S and the regression coefficients §,, 8,, 8, and B;, determines
the population uniquely. These characterizations arise as solutions of a funda-
mental differential equation in the characteristic function of the population.

The assumption of cubic regression for the statistics S on L leads to the

relation

E(S/L) = By + B.L + B,L* + B,L* a.e.

By a result of Laha and Lukacs (1960), a necessary and sufficient condition for
this to hold true is

(1) E(Se***) = B E(e"") + B,E(Le*") + B,E(L%*) + B, E(I"%) .
If we substitute the assumed forms for S and L, the left-hand side is

E(Se'tL) =‘ZJ.',W Qm E(X; X, X, €1) + 2k Din E(X; X, et) + 225 ¢; E(X;ettL)
=E + E, +E,.
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Since X, - - -, X, are independently and identically distributed stochastic vari-
ables, we introduce their characteristic function
h(t) = E(e¥*X)

and its derivatives and thus obtain

Ey = 2050555 h 7 + 3@ + @4y + @) (=) (=R
+ Ziskrm Qim(— 0 PR
= AR iAW AR

where
Ay = 2054555
Ay = 2lier (@55 + Qa5 + auy5)
Ay = 2liskem Yikm -

In a similar manner, we find
E, = —BW'h* — By(Hyh?
E, = —iCHh*1,

where
B, = 3;b;;
B, = Zj*k bjk
C = Zj cj .

Proceeding in the same way, we evaluate the terms on the right-hand side of
equation (1) to obtain
BoB(e") = Boh,
BE(Le*ty = —inB KA1,
B.E(L?*L) = —nB,h"h" — n(n — 1)B,(K')*h"~2,
BsE(L*e*t) = inBh"""h*~* + 3in(n — 1)Bh" W' h*—2
+ in(n — 1)(n — 2)By(K')*h"—3.

We substitute the above results into (1) and simultaneously divide each ex-
pression by 4", for convenience. This is possible because the characteristic func-
tion A(f) is nonzero in some neighborhood of the origin, by an application of
the Intermediate Value Theorem. As a consequence, we obtain

i(nfy — A)(H"'[h) + i[3n(n — 1)5 — A,](h"[K)(H'[h)
+ f[n(n — 1)(n — 2)B; — AJ(H'[h)* + (B, — nf,)(h"[h)
+ [B, — n(n — 1)BJ(W'[h)* + i(C — nBy)(K[h) + = 0.
If we introduce the substitution

g(t) = log, (1)
and then set

f) =9g'@,
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the above differential equation reduces to

i(nfy — A)f" + i[3n’B; — 34, — A]f'f
+ i[n*B; — A, — Ay — A)f* + (B, — np,) f!
+ B+ B, —n*B)f* + i(C —nB)f + B=0.

Alternatively, for convenience in the sequel, we will write this as

) id, f" + idy f'f + idy f* + d, f' + dy f* + idyf +dy =0,

where we have put

d, = npy — 4,

d, = 3n’8, — 34, — A4,

dy = By — A, — A, — 4,
(3) d, = B, — np,

dy= B, + B, — n*B,

dy = C — np,

d, =B,

In the following section, we solve this fundamental differential equation (2)
subject to particular sets of relations between the coefficients d; and so charac-
terize a number of different populations.

For future reference, we evaluate the initial conditions on the functions A(?),
g(t) and f(¢). To begin,

h(0) = E(€"%)]em = 1
H(0) = iE(Xe*X)|,_, = ip
H'(0) = —E(X%6%)|, o = —a* — 4,
where p and ¢® are the mean and the variance of the population, respectively.
Consequently,

(4) 90)=0, g0 =ix, ¢"0)= —d
fO) =ix,  fY0)= —o".
3. Characterizations of populations. In this section, we develop a series

of characterizations for many well-known populations, beginning with the
normal.

THEOREM 1. Given a simple random sample X,, - - -, X, from a population with
finite third moment, suppose
dy=d, =0
d, = d%d,

de = 02d2 .
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Then, if any one of the following sets of conditions hold,
(a) d,=0, dy,=0, d+0,
(b) d4,=0, dy+0, d=0,
(c) d,+0, d,=0, d=0,
d) d4,=0, dy+0, d +0,
(¢) d,#0, dy=0, d+0,
f) d,+0, d,+ 0, d =0,

a necessary and sufficient condition for S to have cubic regression on L is that the
population be normal.

Proor. The proofs of cases (a), (b), (c) and (e) follow readily as solutions of
relatively simple differential equations and hence will be omitted.

(d) If we impose these conditions, the fundamental differential equation (2)
reduces to

"+ aff + aaf =0,
where
a= (12/t11 .
We can reduce this equation to a first order non-linear differential equation by

letting y = f’ = df/dt. Hence, we obtain

y;’,—]{ = (—oaf) + (—af)y

an Abel differential equation of the second kind, as given by Murphy (1960).
Let

y=u(f) + § (—af)df = u(f) — af*,
so that the differential equation becomes
udu = Laf*du — o'af df .
An integrating factor for this equation is exp(—u/s?), which yields
taf* =u+ a* + ¢, exp(u/a®) .

We now apply the initial conditions (4) to determine u(f) = y(f) + }af? at
t = 0. This gives

u(iz) = f'(0) + $a(ip) = —o* — hast.
Evaluating the integrated expression above at t = 0, we find
—dap? = (—0® — Lap®) + o + ¢ exp (u(ip)/d®) ,
which implies that ¢, = 0 and hence

u=1laf* —o*.
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As a result,
Therefore, if we integrate with respect to ¢ and apply the initial conditions (4),
we obtain

f= —ad +ip,
which therefore leads to
h(t) = exp(iut — Lo’t?),
the characteristic function of the normal population.
(f) In this case, the fundamental differential equation is

(ff 4+ o®(d,f +d)=0.
Consequently, either

ff4+=0 or id,f +d,=0.
The latter possibility implies
f=idJjd, = in,
using the initial conditions (4). This leads to

h(t) = exp(ipt),
the characteristic function of a degenerate distribution. However, since the
stochastic variables studied are assumed to be non-degenerate, this case is im-
possible. Hence,

which easily leads to the characteristic function of the normal distribution.
Moreover, in each of the six cases (a)—(f), the converse is obtained by direct
substitution.
If, in the statistic S originally considered in Section 2, we put a;,, = 0 (for
allj, k, m =1, ..., n) then the cubic statistic S reduces to a quadratic statistic

- Q= 2iubuX; X + 2, ¢, X; .
Furthermore, putting 8; = 0, the regression of Q on L assumes the quadratic
form
E(QIL) = By + BL + B, L*.

Moreover, the fundamental differential equation (2) becomes
(B — nBy)f" + (By + B, — n’B,) f* + i(C — nf)f + B, =0.

Then, Theorem 1 given by Laha and Lukacs (1960) in their study of quadratic
regression is a special case of part (c) of the above theorem.

In addition, if we let 8, = B, = 0, we find that Theorem 6.2.1 of Lukacs and
Laha (1964) is also a special case of the above.

Obviously, it is also possible to obtain additional results by considering any
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statistic S of degree s < 3 which has polynomial regression on L of order
m< s.

We next consider the Gamma distribution and obtain characterizations for
it in terms of cubic regression for the statistic S on L.

THEOREM 2. Given a simple random sample X,, - - -, X, from a population with
finite third moment and nonzero mean, suppose
dg=d, =0

d, = — (/o)
20'd, + o*pPd, + p'd, = 0.
Then if any one of the following sets of conditions holds,
(a) d,=0, d,=0, d,=0, d,+0,
(b) d,#0, d,=0, d;+ 0, d =0,
(c) =0, d,+ 0, d,+0, d =0,
d) d4,+#0, d,+0, d, =0, d=0,
(&) d= —(fo)dy = —(pfo)dy %0, d =0,
a necessary and sufficient condition for S to have cubic regression on L is that the
population be Gamma.
Proor. (a) The fundamental differential equation now becomes
) =)
Since f is nonzero (otherwise, (f) would be a constant and hence not a charac-
teristic function),

—1/f = () + ¢,
From the initial conditions (4) and a further integration, we find
9(0) = (¢[0%) log(inf[a* + ip])

h(t) = (1 — 02,

and accordingly,
where
0=dlu, A= pfd®.

This is the characteristic function of the Gamma distribution.
(b) The fundamental differential equation becomes

=2
Multiplying both sides of this equation by f’ and integrating, we apply the in-
itial conditions (4) to find
()= (@) f*
Taking the positive square root, we obtain
=@

which is the same differential equation solved in part (a), equation (5).
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It is worth noting that the positive square root is essential here, since the
alternate equation f’ = —(¢*/%)f* does not satisfy the initial conditions.
(e) The fundamental differential equation becomes

"= @) + (@) f

As in Theorem 1d, we let y = f” and so obtain

yg = () + (@) -y -

An integrating factor for this differential equation is

M(f,y) =y — (@[e))f*.

Integrating the resulting equation and using the initial conditions (4), we find

Y3 = (Y2 + (@) f°16 = [y — (o[ Py + (/1) f*2] = 0.
Since the second factor cannot be zero (otherwise the initial conditions are not
satisfied), we are once more led to equation (5) whose solution is the charac-
teristic function of the Gamma population.

The proofs of cases (c) and (d) follow easily, as do the converses in each of
the five cases.

As in the discussion following Theorem 1, it is possible to obtain a series of
corollaries by considering any statistic S of degree s < 3 which has polynomial
regression on L of order m < 5. In particular, Theorem 4 of Laha and Lukacs
(1960) and Theorem 6.2.2 of Lukacs and Laha (1964) are special cases of part
(a).

Some characterizations for the Binomial and Negative Binomial distributions
are also possible using the property of cubic regression for S on L.

THEOREM 3. Given a simple random sample X,, - - -, X, from a population with
finite third moment, suppose
d,=0.

Then, if any one of the following sets of conditions holds for some p ¢ (0, 1),
(@) d=dy,=d, =0, d, = (plp)ds = —dy # 0,
(b) d=d,=d, =0, d, = (u/p)dy = dy + 0,
(c) dy=dy,=d, =0, d, = $ptd,/(p — 0*) =d, + 0,

a necessary and sufficient condition for S to have cubic regression on L is that the
population be Binomial.

Proor. In each case, the proof follows readily from the solution of a rela-
tively simple differential equation. Moreover, the converses follow easily.
As a special case of the above, we have Laha and Lukacs’ (1960) Theorem 3.

THEOREM 4. Given a simple random sample X,, - - -, X, from a population with
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finite third moment, suppose
d,=0.

Then, if either one of the following sets of conditions holds, for some pe (0, 1),

(a) d1=d2=d3=0, d4:—p‘ud5/(1—p)=—de¢0,

(b) di=d,=d,=0, dy= —ppd;J(1 — p) =dy# 0,
a necessary and sufficient condition for S to have cubic regression on L is that the
population be Negative Binomial.

Proor. The proofs of both cases, as well as that of the converses, are im-
mediate and hence are omitted.

As before, the above result contains Laha and Lukacs’ (1960) Theorem 3, as
a special case.

Several characterizations for the Geometric Distribution are easily obtained
as special cases of those of the Negative Binomial Distribution.

THEOREM 5. Given a sample random sample X, - - ., X, from a population with
finite third moment and nonzero mean, suppose
d,=0.

Then, if either one of the following sets of conditions holds,
@) d=d,=d, =0, d,=—dy=—d;+ 0,
(b) dy=d,=d, =0, d,=—d,=d,+0,
a necessary and sufficient condition for S to have cubic regression on L is that the

population be Geometric.

Our next result will involve a characterization for the Poisson-type distribu-
tion whose characteristic function is given by

(6) h(t) = exp[A(eit — 1) + ivr],
where 2 > 0, p # 0, and v are three real constants. The mean and variance
for this distribution are given by
p=pA+v, g’ = ph.
In particular, if v = 0, we have 2 = #/p = o*/p? and the above characteristic
function reduces to

™ k(1) = exp(#/o)(e* — 1)].

In addition, in the special case where p = 1, we have 2 = p = ¢? and the charac-
teristic function reduces to the characteristic function of the usual Poisson
distribution.

THEOREM 6. Given a simple random sample X,, - - ., X, from a population with
finite third moment, suppose

dy=dy=dy=d,=d, = 0.
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Then, if the following condition holds for some nonzero real constant p,
d{ = pdl #: 0 3

a necessary and sufficient condition for S to have cubic regression on L is that the
population be Poisson-type with characteristic function given by equation (6).

Proor. Under the hypotheses, the fundamental differential equation (2)
becomes

fII _ ipf, = 0 .
If we integrate this and apply the initial conditions, we find
f'—ipf:pp—o”,
which in turn may be solved to yield
f = i(@lp)e + i(p — o*fp) .
Consequently, we are led to
h = exp[(@*/o)(e* — 1) + i(u — o*/o)1] -

Thus, for 2 = ¢*/p*and v = ¢ — ¢*/p = p — pA, we have the characteristic func-
tion of the Poisson-type distribution given in (6).

As usual, the converse follows immediately.

The following theorem involves characterizations of the Poisson-type distri-
bution whose characteristic function is given in (7).

THEOREM 7. Given a simple random sample X, --., X, from a population with
finite third moment and nonzero mean, suppose

dy=d,=0.
Then, if any one of the following sets of conditions holds for some nonzero constant p,
(a) dy=d,=d, =0, dy= —pd, +0,
b) d=d,=d;, =0, dy = pd, + 0,
© dh=d=0, (&) = (u)d, +dy+0,

a necessary and sufficient condition for S to have cubic regression on L is that the
population be Poisson-type with characteristic function given by equation .

Proor. The proofs of cases (a) and (b) follow readily from relatively simple
differential equations whose solutions lead to the Poisson-type characteristic
function in (7).

(c) The fundamental differential equation (2) may now be written as

[ = idjd)f + [(o")1) — (o] u)(dijd)]f = 0.

If we put a = d,/d,, the solution to this equation can readily be found to be

f= Aeiazt/,u + Bei(a—az/;z)t .
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From the initial conditions on f and f” we determine
A= ip s B=0.
Consequently, we are led to

h = exp[(u/o)(e® — 1)],

the characteristic function of the Poisson-type distribution given in (7) with
p =y

In each case, the converse follows immediately.

As in the previous theorems, the above result contains, as special cases, Laha
and Lukacs’ (1960) Theorem 2 and Lukacs and Laha’s (1964) Theorem 6.2.4.

Our final result involves characterizations for a distribution whose charac-
teristic function has the form

8) h(t) = e'™[cosh at + ibsinh at]™",
where a, b, m and r are real constants and r > 0, a == 0. This distribution was

originally studied by Laha and Lukacs (1960).

THEOREM 8. Given a simple random sample X,, - - -, X, from a population with
finite third moment, suppose that any one of the following sets of conditions holds,
@) dy=d,=d; =0, d+0, d, +0, d,+ 0,
d-d, <0, di + 4d,-d, < 0,
(b) di=d,=d, =0, d,+ 0, d+0, dy + 0,
d,-d; <0, dl + 4d;-d, < 0,
(c) dy=d,=dy=d,=0, d+0, d,+0,
o’d, + ipid, — pd, + 0, d-d, <0,
d} + 4dy(d’d, + sp*d, — pd,) < 0.
Then a necessary and sufficient condition for S to have cubic regression on L is that
the population have the characteristic function of the form in equation (8).

Proor. (a) Under the hypotheses, the fundamental differential equation (2)
now becomes ‘
df + df* + idyf +d,=0.
That is,
[T = (=dJd)(f + }ids|dy) — K],
where
K = —(di 4 4dd,)/4d? = 0.

We introduce the substitution f = iy so that the above differential equation may
be rewritten as

dy .
O T idjdy TR dld)dr.
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We now let
y + idg/d; = Ktan @,

so that the above equation becomes
di|K = —(id,/d,) dr .

Integrating this equation with respect to ¢, we obtain

%) (1/K) tan™ [(1/K)(y + }dsd;)] = —(idy/d )t + ¢, ,
where, from the intial conditions,
(10) ¢, = (1/K) tan™* [(1/K)(p + }d,/d;)] .

We now write (9) as
(/KXY + $do/d;) = tan K[(—id,/d,)t 4 ¢]

_ tan (—iKdyt/d,) + tan (Kc,)
"1 — tan (—iKdy/d,) - tan (Kc,)

However, if we introduce the value of ¢, from (10) and use the fact that tan (iz) =
itanh (z). we find
UKy 4 1d 1y — —itanh (Kdgtjd) + (1/K)(p + 3dsfdy)
IO+ 39 = i1 7K) e + 3y tanb (Refd)

For simplicity, we introduce
b = (1 + 3dy/dy)/K
and use the relation f = iy to write

sinh (Kd,t/d,) + ib cosh (Kd,t/d,)

— —Llid/d K
f= A K oo (Kdgjd,y + b sinh (Kdyd,

This latter equation may easily be integrated with respect to # and hence leads to
h = exp[—3i(d,/d;)t] - [cosh (Kd;t/d,) 4 ibsinh (Kd,t/d, )]/ ,

which is a characteristic function of the form given in (8).

(b) and (c). The proofs of these two parts follow readily from the above
proof.

In each of the three cases, the converse is immediate.

Moreover, as before, the above theorem contains as a special case Laha and
Lukacs’ (1960) Theorem 5.

4. General polynomial regression. We note in conclusion that the method
utilized throughout the present work can be generalized to a study of polynomial
regression of order m for an mth order statistic on a linear one. This assump-
tion leads to an mth order non-linear differential equation in the characteristic
function, A(f). The solutions of this differential equation subject to various con-
ditions on its coefficients yield a series of characterizations for the different dis-
tributions. We now outline the method for obtaining these conditions. Given
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the characteristic function of the particular distribution of interest, we substitute
it into the fundamental differential equation. For some distributions, the result-
ing expression will be a polynomial in ¢ (for example, for the Normal and the
Gamma distributions); for some others, (such as the Binomial, Negative Binomial,
Poisson and Geometric distributions), the expression will be a polynomial in
e**'; and so forth. Since 7, and accordingly e*‘, is arbitrary, these polynomials
are identically zero if, and only if, all of their coefficients are zero. It is pre-
cisely these zero conditions which yield the required relationships between the
coefficients of the fundamental differential equation.

Finally, as consequences of the results thus obtained, it is possible, as in the
cubic case, to derive characterizations based on polynomial regression of any
order r < m.
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