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LOWER RATE OF CONVERGENCE FOR LOCATING
A MAXIMUM OF A FUNCTION!

By Hunc CHEN
State University of New York, Stony Brook

The problem is considered of estimating the point of global maximum of
a function f belonging to a class F of functions on [—1,1], based on
estimates of function values at points selected possibly during the experimen-
tation. If p is odd and greater than 1, K is a positive constant and F
contains enough functions with pth derivatives bounded by K, then we prove
that, under additional weak regularity conditions, the lower rate of conver-
gence is n-(P=1/Cp),

1. Introduction. The problem of designing an experiment to search for the
location of a maximum of a function has been studied in stochastic approxima-
tion beginning with Kiefer and Wolfowitz (KW) (1952). A recent monograph is
Nevelson and Hasminskii (1973). The stochastic approximation methods ap-
proximate a point of local maximum. Fabian (1967) described a modified KW
procedure with convergence rate k, = n~(?~D/P for a class of functions with
bounded pth derivatives, p an odd number.

The problem of locating a point of global maximum is treated in the response
surface methodology of Box and Wilson (1951), in Nadaraya (1964) and Devroye
(1978). Chen (1984) described a two-stage estimator, with rate of convergence
n~1/3, for estimating a point of global maximum within a class of functions with
bounded third derivatives.

The question whether the convergence rates obtained are the best possible has
been open (for almost 30 years). We shall show here that, indeed, the conver-
gence rate k, cannot be improved for F containing enough functions with
bounded pth derivatives.

Section 2 is preparatory. Condition 2.1 concerns the family F considered.
Condition 2.3 is close to Cramér type conditions on densities in asymptotic
considerations.

Definitions 2.4 and 2.5 specify the estimates considered.

Section 3 has the main result in Theorem 3.1. Remark 3.2 shows how the
result can be extended to domains other than [ —1,1].

The result and the proof are close to those in Stone (1980, 1982). We treat a
more specific case of the location of a maximum but allow for the design to
depend on the observations; that is needed to include stochastic approximations.

2. Assumptions.

CONDITION 2.1. p is odd and greater than 1, k,, = n=(?~D/@P) and §, is a
positive number. F is a family of functions on [—1,1]. For each f in F, x(f)is
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a point of global maximum of f. For each é € [0, §,] and every n = 1,2,..., the
function

(2.1) fos(x) = —x% + 28n~2 arctan(n/®”(x — 8k,,))
isin F.

REMARK 2.2. Notice that

(2.2) |fns = frol < 870~
and that

(2.3) X(fn0) =0,  x(fns) = 8k,
since

1 (x) = —2x + 28k, arctan’(n/@P)(x — 8k,,)).

For all 8 sufficiently small, f/5 < —1 and |f{’| < 1. In particular, such f,, are
concave with a unique maximum.

CONDITION 2.3. p is a measure on the o-algebra of all Borel subsets of R,,.
For each x and ¢ (i.e., each x in [0,1] and ¢ in R), g(-, x, t) is a probability
density with respect to p. For all y, x, ¢, g(y, x,t) > 0. For each y and x in R,
the derivatives g'(y, x, t) and g”(y, x, t) with respect to ¢ exist for all ¢£. With
! = log g, we have, for all y, x, t,

(24) lg"(y,x,t) <A(y,x), |I"(y,x,t)| <B(y,x)
with functions A and B satisfying
(2.5) JA( %) du <K, [B(-,x)a(-, %, ) dp< K

for a number K and all x, ¢.

DEFINITION 2.4. By a design we mean a rule that associates with each f in
F two sequences (X, ) and (Y,,) of random variables, with the range of each X,
a subset of [—1,1] and such that the conditional distribution of X,, given
X,...., X, 1, Yy,...,Y,_, does not depend on f, and each Y, has a conditional
density with respect to p, given X,,..., X, Yi,...,Y,, equal to g(-, X,,, f(X,,)).

We shall write Z, for (X,,,Y,) and £, for (Z,...,Z,).

DEFINITION 2.5. By an estimate T we mean a pair (2,(T,)) where 2 is a
design and T, Ty, ... are random variables with each T}, a function of Z,.

NOTATION 2.6. A design 9 and an f in F determine the distribution P, ; of
(Z,). Since an estimate T specifies a design we will write also Py, ; for P, ;.

3. The results.

THEOREM 3.1. Under Conditions 2.1 and 2.3, for every number n € (0,1)
there exists a ¢ > 0 such that, for all n and every estimate T,

(3.1) inf P, (1T, — x(1)] 2 ex,} 2.
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ProOF. Let n be a positive integer and 5 a positive number smaller than 1.
Set
(3.2) C=7(K+VK), ¢&e=(01-17)/10, &=2¢

and choose §, positive but small enough [cf. (2.4)] that f,; has a unique
maximum at §, for every n and every & < §, (cf. Remark 2.2) and such that

(3.3) 8, < min{é,, £3/C}.
Consider an estimate (2,(T,)) and a § in (0, §,] and set
f(x) = —x2, fn=ln,s
Denote P, ; by F, and P, ; by P, and denote by F,,, P, the distribution of

0om»
%,, under P, and Pl, respectlvely The density of P, Wlth respect to P, is
(3’4) Ln.= ]._Ilg(Yt’ Xi’ f(Xl) + Tni)/g()’i’ Xi’ f(Xl))
i
with
(3-5) Tni = fn(Xi) - f(Xi)-

Indeed, if (3.4) is true for n changed to m — 1, then L,,_, is also a density of
Z,,_,, X,, under the two probability distributions, because the conditional distri-
bution of X,,, given Z,,_,, is the same in the two cases. Then it is easy to see
that (3.4) also holds for n replaced by m. Thus (3.4) holds.

Set I, = log L, and use Condition 2.3 to obtain

(3.6) lL,=W,+2,

with

(3-7) W, = f ”'nil'(Yi, X, f(Xi))
and -

(3.8) 2, <} ¥ w2B(Y, X)

i=1

By a standard argument [e.g., Fabian and Hannan (1985), Lemma 9.2.1 and the
proof of Theorem 9.2.4], Condition 2.3 implies that the conditional expectation
given Z,_,, X,, of I'(Y,, X,, f(X})) is 0 and that of B(Y,, X,) is at most K [see
(2.5)]. By (2.2) we have

(3.9) |7, < 8wn~1/2

and thus

(3.10) EW, =0, E)\Z, < 8°Kn?
and

(3.11) EW? < §%n°K.

Hence, E;|l,| < C§ with C as in (3.2) and the Markov inequality and (3.3) give

P{-e<l,<g}21-¢.
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This implies [cf. (3.2)]

(3.12) P{l-e<L,<1+¢>1-c¢.
It is then easy to see that, for any event A,
(3.13) P(A) — 26 < P(A) < P(A) + 2.
Next choose an integer m such that

1
(3.14) —1<°

set t;=(i/m)8, for i =0,...,m and use the preceding results for & = ¢,
i=1,..., m. Denote now P, and f, corresponding to § = ¢, by P, and f,;.
Consider a statistical method ¢ based on Z, and with the range {0,1,..., m}
and with a; = P{¢ # i}. We obtain, using (3.13) twice,
a;= Y P{o=j}= X (1-q;) —4e
Ji J*i

and thus La; > m — 4¢ and

a= i=gr’1f1.{mai_ —— — 4e.
This and (3.2) and (3.14) give
(3.15) a>.
Construct a particular ¢ such that {¢ =i} D {|T, — x(f.;)| < cx,} with
(3.16) c=t/3.

Note that x(f,) = it;n"3. If (3.1) does not hold, it follows that a <7, a
contradiction to (3.15). This proves (3.1) for ¢ as in (3.16). O

REMARK 3.2. In Theorem 3.1, the domain [ —1,1] of the functions in F can
be replaced by another bounded interval I. It can be easily changed to the
infinite intervals I by choosing f in F to have restrictions to I — [—2,2]
independent of f. The result can be extended to functions on I* by choosing F
such that Theorem 3.1 applies to the sections f(-,0,...,0) of f in F.
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