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It was a pleasure to read Professor Hall’s paper, which so effectively analyzes
the relative performance of Efron’s many recipes for bootstrap interval construc-
tion, under the assumption that the parameter is a function of vector means. In
this setting, Hall shows that the percentile-# and accelerated bias-corrected
methods tie for first place, the main reason being that one consults “Studentized”
tables, and the other looks up “ordinary” tables, after employing an analytical
correction to adjust the critical points.

I share Hall’s prejudice that computer-intensive methods such as the bootstrap
should not have to appeal to tedious analytic corrections and therefore agree
with his preference of the percentile-¢ over the accelerated bias-corrected method
in the present situation. Because all the bias-corrected methods look up tables
“backwards,” the percentile-t may also be preferred in those nonlinear and
nonsmooth problems where the asymptotic distributions are asymmetric, if we
know how to Studentize. One such problem is discussed in Loh (1984).

On the other hand, I believe that the idea of looking up standard tables using
adjusted levels has intrinsic merit on its own, and I will present a simple way of
doing this which does not look up tables backwards and does not involve difficult
analytic manipulations. It turns out that, under the “smooth” model of Hall,
this method yields one-sided intervals that are second-order equivalent to the
STUD and ABC methods and two-sided intervals that possess coverage errors
which are an order of magnitude smaller than those of all the methods examined
in the paper. Furthermore, it requires no more bootstrap sampling than the rest.

The method I propose has its origin in the “calibrated” method introduced in
Loh (1987), and the basic idea is as follows. Starting with any reasonable interval
procedure, bootstrap its coverage probability #(a). (This is a distinct departure
from the other bootstrap recipes because the latter all call for bootstrapping the
distribution of a statistic.) After the bootstrap estimate #(a) is obtained, a
corrected a* is computed that is then used in place of « in the original formula.
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To illustrate, I will use the normal-theory confidence bound 0AN°m(a) =0+
n~'%6z, as the initial procedure. The method may therefore be literally de-
scribed as “looking up the wrong tables with corrected confidence levels.” I will
use Hall’s notation throughout.

One-sided intervals. An expansion for the coverage probability 7y (a) of
this confidence bound is given in Section 4.5 of the paper and its bootstrap
estimate has the corresponding expansion

Prom(@) = @ = n7V7G)(2,)(2,) + n714(24)$(2,) + O(n7%2).
Let ¥(-) be any strictly increasing unbounded function on the unit interval with
continuous third derivative and define

8, = ¥{7nom(@)} — ¥{a}
= —{n7%\(2,) — n7'Gx(2.) }(2) ¥ (@)
+3n7147(2,)8%(2.)¥" (@) + O,(n™%%)
to be the excess between estimated and true coverage on the y-scale.

Define the adjusted nominal level a* to be the solution of the equation
Y(a*) = Y(a) — §,. Then

o = a+ ¢(2,)[n74)(2,) — n7H{dxl2.) + G2(2a)#(2) V" (@) /(@) }]

+0,(n=%?)
and
2 = 2o+ n7V2G(2,) — n7Y{dx(2.) + 41(2)(2.)¥"(a) A (@) — 32.47(24) )
+0,(n=%2).

This yields the adjusted confidence bound 0up g1 (@) = 0 norea( @*), which has the
expansion

0+ n=12%[z, + n"%(2,) — n7Gy(2,)
+n7 Y1z, — ¢(2,)¥"(a) /¥ (@)} 4¥(2,)] + Ol(n7?).

Therefore, éADJ1(¢)(a) is second-order equivalent to gryp(a) and fypc(@), and
the interval (— 0, Op(y)(@)] has coverage -

Taon(@) = @ — 17 @z {al(2.) + (8(z)¥" (@) /W(@) = 2.)a(2.)}
+ uqza] o(z,) + O(n=3?).

(1)
It follows that the one-sided normal-theory interval with « adjusted to a* has
coverage error of the same order as that of the ABC and STUD methods.

Note that if y(a) = ® Y(a) = z,, then ¢(2,)¥"(a)/Y'(a) — 2, =0 and (1)
reduces to

Tapare-n(@) = & = 1 {qu(2)ai(20) + gz} b(2,) + O(n~%).
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Note also that except for terms of order n~! and higher, the value of z,. is equal
to the one-term Edgeworth-corrected critical point studied in Hall (1983, 1986).

EXAMPLE 1. NONPARAMETRIC MEAN. For the nonparametric estimation of
the mean of a distribution, expansion (1) simplifies to

WADJl@)(“) =a- n_1[72{22a/3 + (‘1’(2«)‘1/"(“)/4"(41) - za)(223 + 1)/6}
+2z,(k — 3v%/2)] (222 + 1)(2,)/6 + O(n™3/2).
If we choose Y to be the function )
(2) y(a) = arctan{V2 @~ ()},
which is the solution of the equation
9{(2.) + {9(2)¥" (@) /¥ (@) — 2.} qi(2,) = 0,
then Tap sy arctang/zo-1)(®) = Tsrun(@) + O(n™¥?) and uparctanyze-—11(@) =

fsrup(@) + O,(n72).

ExXAMPLE 2. EXPONENTIAL MEAN. In the parametric estimation of the ex-
ponential mean, .

WADJl(np)(a) =a- (9"')_1[(22«% + 1).{‘15(2.1)%""(“)/4’/(“) - za} + 4za]
X (222 + 1)¢(z,) + O(n=37%).

The order n~! term vanishes if ¢ is chosen to be the function in (2). Thus the
coverage error of éADJl(mdm(ﬁQ-l)) is an order of magnitude smaller than that

of fpc.
Two-sided intervals. The equal-tailed two-sided interval

[éADJl(\p)(a)! éADJl(qa)(l - “)]

has coverage error of order n~!, which is the same order as that of the
equal-tailed two-sided STUD, HYB, BACK, BC and ABC intervals.

Another way to obtain a calibrated two-sided interval is to adjust directly the
value of « in the two-sided normal-theory interval [0y, (@), fnom(1 — @)]. The
formulas in Section 4.5 of the paper imply that

"‘fNorm(:l - a) - ﬁNorm(a) =1-2a +’ 2n_1‘i2(zl—a)¢(zl—a) + Op(n_z)'

Now let ¢ be any strictly increasing unbounded function on (0, 1) with continu-
ous second derivative and define

6, = ‘p{ﬁNorm(l — @) = Fnom(@)} — ¥{1 — 24}
=2n7'45(21_4)9(2,_)¥'(1 — 20) + O,(n7?).
Let the adjusted level be 1 — 2a**, where (1 — 2a**) = y(1 — 2a) — §,. Then
a** = a +n7Gy(2_0)8(21-4) + Oy(n72).
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TABLE 1
Length and coverage of two-sided 95% intervals in the nonparametric estimation of a mean.

Method $(2;_ ) (length) t(2,_,) (coverage error)
ADJ1(arctan{y2 ®~'}) —0.14x + 1.96y2 + 3.35 —2.84k + 4.25y2
ADJ1(® 1) —0.14x + 0.064y2 + 3.35 —2.84k + 2.36y2
ADJ2(y) —0.14x + 2.12y% + 3.35 0

Because §, is an odd polynomial and z, = —z,_,, we have for all ¢,

2y = 2, — 7 Gy(2,) + Oy(n72).
Therefore, if we define éADJz(¢)(a) = Onom(@**),
Drossp(@) = 6+ 0752, — n7,(2,)] + O,(n"?)
and the interval

(3) [éADJ2(¢)(a)’ éADJ2(¢)(1 - “)]

has coverage probability 1 — 2a + O(n~2%), which incurs an error of a smaller
order than that of any of the intervals considered in the paper. The length of (3)
exceeds that of the corresponding normal-theory interval by the amount
—2n"%%8qy(2,_,) + 0,(n7?).

REMARK. Two-term Edgeworth-corrected statistics like those in Hall (1983)
or Abramovitch and Singh (1985) can also achieve the same order of improve-
ment in the coverage probability of two-sided intervals as 6,pjs,). The expan-
sion for z,.. however implies that a one-term correction suffices, if that term is
chosen appropriately.

EXAMPLE 1 (continued). Table 1 supplements Hall’s Table 4.1 and shows the
differences in length and coverage errors of the proposed intervals for the
nonparametric estimation of the mean when a = 0.025. Because q,(x) vanishes
when y = 0, ADJ2 and the “ideal” interval Stud are equal in length to order n~2
when F is symmetric.

EXAMPLE 2 (continued). Table 2 supplements Hall’s Table 4.2 for the para-
metric estimation of an exponential mean. It turns out that when v is defined by

TABLE 2
Length and coverage of two-sided 95% intervals in the parametric estimation
of an exponential mean.

Method 8(2,_,) (length) t(2, _ o) (coverage error)

ADJ1(arctan{y2 ®~'}) 3.64 0
ADJ2(y) 4.29 0
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(2), é\ADle)(a) is third-order equivalent to both fyyp(a) and ,p(a) in the
sense that their expansions match up to and including the term of order n=3/2
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My major comment concerns the relative importance of the approximation of
the critical points and of coverage error. It appears to me that much greater
emphasis should be placed on the accuracy of the approximation of the bootstrap
critical points to the theoretical points. The theoretical critical points based on 6
should have been chosen as the best ones, in the nontechnical sense that they are
thought to be better than any others available and the interval based on these
has exact coverage a. Then, because we are not, in fact, able to find these critical
points, we need an approximation; this can be provided by the bootstrap. Then
we need to examine first the closeness of the approximating confidence interval
to the theoretical one which we would use if we could. Finally, the coverage error
for the approximation can be examined.

The point is more strongly made with reference to bootstrap simulations,
which are not directly referred to here, the assumption being in this work that
the number of simulations B, say, is very large. There is a discussion of them in
Hall (1986), where it is shown that even, for small B, say 19 for a 95% one-side
interval, the coverage error is of the same order as if we simulated an infinite
number of times. However, the accuracy of the approximation to the simulated
critical point in the Studentized case is of order n~/2B~!/2 compared to an
accuracy for the infinitely resampled bootstrap of order n~3/2. So B must be at
least of size n? to make these approximations comparable. The reason for the
accuracy of the coverage is that an averaging over all possible bootstrap simula-
tions of size B has taken place in its calculation. Thus the particular approxima-
tion based on B simulations, compared to the real bootstrap approximation, may
be gravely in error, although an average of these errors, taken over an inap-
propriate set, is small. I believe that in this case it is apparent that the accuracy



