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SMALL SAMPLE EFFECTS IN TIME SERIES ANALYSIS: A
NEW ASYMPTOTIC THEORY AND A NEW ESTIMATE!

BY RAINER DAHLHAUS

Universitdt Essen

To estimate the parameters of a stationary process, Whittle (1953)
introduced an approximation to the Gaussian likelihood function. Although
the Whittle estimate is asymptotically efficient, the small sample behavior
may be poor if the spectrum of the process contains peaks. We introduce a
mathematical model that covers such small sample effects. We prove that the
exact maximum likelihood estimate is still optimal in this model, whereas the
Whittle estimate and the conditional likelihood estimate are not. Further-
more, we introduce tapered Whittle estimates and prove that these estimates
have the same optimality properties as exact maximum likelihood estimates.

1. Introduction. Consider a real-valued stationary process X(¢), ¢ € Z with
mean 0 and spectral density fys(A), A € II := (—=, 7], depending on a vector of
unknown parameters § € ® c R”. If 6 has to be estimated from a sample

= (X, ..., Xp_,) a natural approach is to maximize the likelihood function,
or to minimize —1/7 log likelihood function, which, in the Gaussian case, takes
the form

1 1 _1
(11) 2.(0) = Elog(2'rr) + logdet Br(fg) + TXQ'BT( fo) " Xr,

2T
where B,( f ) is the Toeplitz matrix of f,
(1.2) Br() = { [ f(a)exp(ia(r - 5)) daf .
II r,s=0,...,T-1

Unfortunately, the preceding function, especially Br( fy) ., is difficult to calcu-
late. One way to handle these difficulties is to approximate Bp(fy)~! by
Br({472fs} ~1) [cf. Shaman (1975, 1976)]. Together with the Szegé identity [see
Grenander and Szego (1958), Section 5.2],

1
. YT _ = .
Jim det Br(f) 2'n'exp( 5o /nlogf()\)d)\),

this leads to the likelihood approximation suggested by Whittle (1953, 1954). We
will call this approximation of Z,(6) the Whittle function. It is

(1.3) 2¥0)=— f{log4w2f0(>\)+fT((>\))}d>\, I =(-mx],
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where I()A) is the periodogram,
2

1 T-1
I(\) = 20T Y X,exp(—iAt)| .
t=0

A treatise on Whittle estimates may be found in Dzhaparidze and Yaglom
(1983), and the approximation of Z,(0) by #}(8) is studied in Coursol and
Dacunha-Castelle (1982). Let us denote by #, the maximum likelihood estimate
and by 91‘ the Whittle estimate, i.e.,- the estimates obtained by minimizing
Zr(0) and Z(0), respectively.

Asymptotically, both estimates are Fisher efficient and therefore regarded as
equivalent [cf. Dzhaparidze and Yaglom (1983), Theorem 5.5]. However, in the
small sample situation the Whittle estimate may be bad. For example, for
autoregressive processes the Whittle estimate is identical to the Yule-Walker
estimate [cf. Dzhaparidze and Yaglom (1983), Example 5.1], and it is known [cf.
Priestley (1981), page 351] that Yule—-Walker estimates are rather bad for short
time series or if a root of the corresponding characteristic equation is close to the
unit circle. Although this small sample behavior of the Whittle estimate is
known from Monte Carlo studies, it has never been described theoretically.
Furthermore, the question arises whether the Whittle estimate can be improved.
Both problems are discussed in this paper. '

Minimizing the Whittle function .#¥(#) may also be interpreted as a minimi-
zation of the information divergence between fy(A) and I.(A) [cf. Parzen (1983),
Section 3], i.e., as the search for that function f,(A) that approximates the
nonparametric estimate I(A) best. In order to improve the estimate, we there-
fore could try to replace I,(A) in (1.3) by a better nonparametric estimate. Apart
from the nonconsistency, which is of no importance for the Whittle estimate, the
periodogram has another important disadvantage, which is called the leakage
effect.

Consider the bias of the periodogram. We obtain

(14) EI;(N) = fnf(h — a)Ky(a) da,

where
Kp(a) = (27T)  'sin?(Ta,/2) /sin®(a/2)

is the Fejér kernel. The Fejér kernel has side peaks of magnitude O(T™!) at
frequencies @ = 27(s + 1/2)/T with 0 < ¢ < a < 7. If in the preceding convolu-
tion such a side peak is multiplied with a strong peak of f this may result in an
expectation that is too large, i.e., the spectrum is overestimated. The result is
that other lower peaks are superimposed and possibly not discovered. A nice
example of the leakage effect may be found in Bloomfield (1976), Sections 5.2 and
5.3, who analyzed the variable star data. Due to the fact that £}Y(9) is the
information divergence between I(A) and fy(A) the leakage effect seems to
transfer to the parameter estimate 0.

To avoid the leakage effect, we suggest the following estimation procedure
adapted from nonparametric spectral density estimation. Instead of the ordinary
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periodogram we use a tapered version of the periodogram, i.e., we multiply the
process X, with a data taper h, 7, t =0,..., T — 1. We therefore define

2

T-1
Ir(A) = {27H, 1) | L by 7 XPexp(—iAt)|,
t=0
where

T-1
Hk,T = E hf,T;’ ke Ny,

t=0
and replace the ordinary periodogram in (1.3) by this tapered version. The data
taper normally has a maximum at ¢ = [T/2] and decreases as ¢ tends to 0 or
T — 1. As in (1.4), the expectation of the tapered periodogram is the convolution
of the true spectral density with a kernel, but the tapered kernel has a faster rate
of convergence to 0 at frequencies a # 0 mod 27 (cp. Lemma 5.4). The use of
data tapers in nonparametric time series was suggested by Tukey (1967).

To demonstrate the advantages of data tapers and to motivate the theoretical
results of this paper, we now present briefly a simulation example for autoregres-
sive processes where the Whittle estimate is identical to the Yule-Walker
estimate [a similar study was presented in' Dahlhaus (1984)].

T = 256 Gaussian observations were generated of an AR(14) process with
characteristic roots z; = g;e”™ and Z,, where

g, =095 A, =05,
q,=095, A, =10,
9;=099, A;=15,
q,= 099, Ay=15,
9;=095, A;=20,
96 =095, Ag=25,
9, =095, X, =25.

In Figure 1 we see the theoretical spectral density (dark line) the classical
Yule-Walker spectral estimate without data taper (dashed line) and the
Yule-Walker spectral estimate with the Tukey—Hanning taper with p = 0.8
(Example 5.2). In Table 1 we have listed the values of the estimation for different
data tapers (see Examples 5.2 and 5.3) and in the last column for the popular
Burg algorithm [the complete algorithm is, e.g., described in Haykin and Kesler
(1979); a computer program may be found in Ulrich and Bishop (1975)]. The last
line contains the values of the weighted sum of squares for the parameter
estimates T(4 — a)2(4 — a), where X is the covariance matrix of the process.
We see that there is considerable leakage without taper, and marked improve-
ment when a taper is applied. Obviously, the use of data tapers in the
Yile-Walker equations solves the classical problem of roots close to the unit
circle. The tapered estimate turned out to be as good as the Burg algorithm (cf.
the more detailed discussion in Section 8).
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F16. 1. Yule- Walker estimates for an AR(14) process.

TABLE 1
Exact and estimated coefficients of an AR(14) process

Polynomial taper Tukey-
True k=2 k=2 k=2 Hanning Burg
coefficient Nontapered p=03 p=08 p=10 p=10 algorithm

a, 1.00 Not estimated
a, 0.86 0.49 0.83 0.83 0.83 0.83 0.96
a, 2.28 1.22 2.52 2.35 2.35 2.35 2.35
ag 1.60 0.72 1.78 1.56 1.56 1.56 1.79
ay, 2.68 041 3.11 2.87 2.89 2.90 2.82
ag 1.20 0.14 1.47 1.26 1.28 1.29 1.51
ag . 256 0.17 291 2.86 291 2.92 2.81
a; 101 0.01 1.18 1.16 1.19 1.19 1.43
ag 2.31 0.04 2.68 2.71 2.75 2.76 2.67
agy 0.97 - 0056 1.28 1.15 1.15 1.14 1.40
a5 1.98 0.02 2.29 2.40 2.42 243 2.39
ay, 1.04 0.08 1.17 1.25 1.26 1.26 145
ay 141 0.00 141 1.70 173 1.74 173
a3 0.56 0.04 0.50 0.68 0.69 0.69 0.77
ay 0.58 0.01 0.46 0.67 0.69 0.69 0.68
o 1.00 80.97 2.00 1.17 1.08 1.06 1.01

T|a - a|% 145.39 26.76 3.59 4.55 4.83 7.89
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The question arises how the previously demonstrated advantage can be
described theoretically. In Dahlhaus (1984) we have proved that tapered Whittle
estimates are asymptotically normal with the same increase of the asymptotic
variance as in the nonparametric case [cf. Brillinger (1981), (5.6.21)]. Thus,
asymptotic results do not describe the effects observed in the small sample
situation. On the other hand, due to extreme technical complexity, exact calcula-
tions for finite T are only possible in very special situations, e.g., for AR(1)
processes. _

To handle these difficulties, we introduce a special asymptotic model that
covers in some sense the small sample situation. We require that the estimates
behave well for an increasing number of processes if the sample size increases.
Consider again (1.4). Since the magnitude of the side peaks of K, (a) for
0 <c¢ < a<pisof order T, the leakage effect disappears asymptotically. To
preserve this small sample effect, we therefore let the magnitude of the main
peak of the spectrum increase with 7' and study the properties of the estimates
concerning the lower peaks of the spectrum. The spectral density of an AR(p)
process is of the form

o2 P
f(A) = 2— I;[ 11— ze™ 2,

where z; are the roots of the process. The simulation indicates that it is quite
easy to estimate the strongest peak, i.e., the roots closest to the unit circle.
Therefore, it is justified to assume that these roots are known, whereas the other
roots have to be estimated. Because of the preceding product form of f, we
therefore assume that the spectral dens1ty is of the form f; = grfs* with a

“strong peak” part g, (whose peaks may increase with T') and a part f, , which
is independent of T' and whose parameter 6, has to be estimated. This estima-
tion model is introduced in Section 2.

In Section 3 we study the behavior of the exact (Gaussian) maximum likeli-
hood estimate for double indexed sequences of processes X{) with spectral
density f, = gr f¢: and prove that the estimate is still asymptotlcally efficient in
the introduced model (Theorem 3.3).

In Section 4 we consider the conditional likelihood estimate and prove that
this estimate may even be inconsistent in the introduced model.

In Section 5 we introduce data tapers, classify them and prove a fundamental
inequality for the Fourier transform of data tapers.

In Section 6 we study the behavior of tapered Whittle estimates for the same
sequences of processes X7’ and prove that a suitable choice of the data taper
also leads to an efficient estimate of the parameter 6, (Theorem 6.3).

In Section 7 we consider the classical nontapered Whittle estimate. We prove
that the estimate may even be inconsistent in the assumed model (Theorem 7.1).
Furthermore, we prove that the same holds if strong troughs (values close to
0—caused, e.g., by MA roots close to the unit circle) are present in the spectrum
(Theorem 7.2). This effect is called the trough effect. It is of special importance
because of the widespread practice of taking differences to remove trends in the
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data. Furthermore, we prove that data tapers may reduce not only the bias but
also the variance and moreover the cumulants of all order of the estimate
(Theorem 7.3).

In Appendix 1 we prove a central limit theorem for time-series statistics and
in Appendix 2 we state some results on Toeplitz matrices.

The approach of this paper to handle small sample effects is new. Data tapers
for Whittle estimates and Yule-Walker estimates were suggested in Dahlhaus
(1984). Their importance goes far beyond the scope of this paper. Their use
improves, for example, the classical order estimation criteria and the properties
of Whittle estimates as starting values in a Newton-Raphson iteration to
determine exact maximum likelihood estimates. Furthermore, the use of data
tapers removes the so-called edge effect of parameter estimates for spatial
processes [Dahlhaus and Kiinsch (1987)]. Further applications will be considered
in forthcoming papers. Pukkila (1979) considered data tapers for similar esti-
mates and made some numerical calculations for an AR(2) process.

A key role in our calculations is played by the following function. Let L :
R - R, T € R, be the periodic extension (with period 27) of

Li(a) =T, la| <1/T,
=1/la|, 1/T< |a| <.

The function L,(a) is used to describe the properties of data tapers, to describe
spectral densities with strong peaks or troughs and as a tool for handling the
cumulants of time-series statistics. For the latter purpose it was introduced and
discussed in Dahlhaus (1983). It allows the treatment of the cumulants of
time-series statistics under extremely weak conditions on the cumulant spectra
(e.g., integrability conditions), and is therefore an important tool in difficult
situations (e.g., if processes are long-range dependent). The properties of L
needed in this paper are summarized in Lemma Al.l.

We further use cumulants and cumulant spectra of stationary processes. For
the definitions and the basic properties we refer to Brillinger (1981), Section 2.3,
especially Theorem 2.3.2.

2. The estimation model. In this section we introduce the estimation
model. As mentioned previously we have T observations X{7,..., X{), of a
stationary process X ") with second-order spectrum f, o (Y) = &, T(y)f2 oY)
where f,% is bounded and independent of T, whereas g, 1 is a known function
with strong peaks or troughs whose magnitude may increase with T. This model
may also be interpreted in the following way: Suppose we are interested in the
process Y, , with spectral density f5*,, but we only observe a filtered version

X%, where the squared transfer function of the linear filter is &2, 7(\). With a
v1ew to the discussion in the Introduction, we include all g, 7, which are the
spectral density of an ARMA process whose roots are up to 1/T close to the unit
circle (cf. Theorem 2.4).

We now set down the assumptions on the parameter set ® and on f5*,. The
assumptions on g,  are stated in Definition 2.2.
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ASSUMPTION 2.1.

(a) Let © be a compact subset of R” such that Y, 4, 0 € O, is a family of strictly
stationary processes with spectral densities f5*, (uniformly bounded from
above and below) and fourth-order spectra f*,. Suppose that f*,(A) and
d/36; f5*4(A) are continuous on ©® X IT and 6, # 6, unphes fs*e, # f39, On 2
set of positive Lebesgue measure. (Note that Y, 4, is not the observed
process.)

(b) Suppose, in addition to (a), that 32/36; 3; f;*4()\) is continuous on © X II.

(c) Let §,€Int®,0 < ¢, < f¥(A) and f2,, e L1p,‘ with k, € (0, 1]

(d) Let f4 0, € Llpxoy i €., |f4 0(“1: A9, a3) f4 0(B1: B2s B3)| <KY -lla - :Bil"oy
where a, = —a, —ay, — a3, B,= —B, — B, — Bs.

(e) Let s,,8,€ Ny, C>1 and XD € Z(fgy, f,C, T, 51, 8;) (defined in
Definition 2.2) be a sequence of stationary processes (observed).

® Suppose that 0 is the maximum likelihood estimate [obtained by minimiz-
ing Z;(0)], and that ;. exists uniquely and lies in Int ©.

(g) Suppose that 91 is the Whittle estimate [obtained by minimizing £;*(9)]
and that 91' exists uniquely and lies in Int ©.

We now define the set Z'(f;*y, fi¥s,, C, T, 51, ;) from part (e) of the preceding
assumption, i.e., we set down the conditions on g, y. For r;, r, €Ny, r; + r, > 1,
N eIl p € II™ and s,, s, € N, we define

Ti

b(Ts a, ﬁs xy P 81, 82) = Z Z |B|kl+k2LT(}\j1 ta+ :B)leT(p'j2 + a)k29

j‘--l k.=0
i=1,2 ki +ky>1

ifs; +s,2>1,

and (
(T,a,B,\,p,8,8,) =0, ifs;, +s,=0.

DEFINITION 22. Let C> 1, 5,8, € N, and f*(y) with0 < C% < f* < C?
and fX*(v;, Y2, 7s) < C* be second- and fourth-order spectra. We define by
Z(fx, f¥, C,T,s,s,) the set of all processes

Xt = Z asy;—s’
where Y, is a stationary process with mean 0 whose moments of all order exist
and whose kth-order cumulant spectrum f2 fulfills f* < C* for all y € R*"!
and all k£ > 2, and the transfer function A(A) = X2 __a.exp(i\s) fulfills the
following condition: ‘
There exist r,r, ENg, + 21 and N =(A,...,A,) €
I, p = (pys .- -5 By,) € I1" such that

}A(a +B) _
A(a)

where r, r,, N\ and p may depend on T. In this case we
assume that r(T') and r,(T') are bounded in T.

@.1) 1’ < CB(T,a, B Ny by 510 53),
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Our g, ; from the preceding now is equal to |Ap(a)|?, where Ap(a) fulfills
(2.1) for all T. g, 7 thus may have peaks at all A; of multiplicity less equal s,
and troughs at all p; of multiplicity less equal s,. This is made precise in
Theorem 2.4, where g, r is an ARMA spectral density.

REMARK 2.3. When dealing with parametric estimation the correct point of
view clearly is to regard the parametric model only as an approximation to a
(possibly nonparametric) spectral density. In this case the true spectral density
is not in the class of models considered. All results of this paper remain valid in
this case if one assumes that the true spectral density of the process X™ is of
the form g, rf;* with a sufficiently smooth f;*. The limit theorems 3.3 and 6.2
then take a similar form as described in Findley (1985), (2.11), where also further
references can be found. In order not to complicate the already technical
presentation of this paper, we omit this generalization.

THEOREM 24. LetC* >1,8 > 0, s,, 8, € N, and Y, be a stationary process
with mean 0 and kth-order cumulant spectrum ¥, where 0 < C*~2 < f* < C*?
and f* < C** for all k > 2. Let further X\ for all T € N be defined by

P q
.E ajTXt(z‘} =X birY;-js
Jj=0 Jj=0
Where Zf_oajTeiaj = H}’-l(]‘ - quer"eia) with 0< qj S 1 - I/T and #{AJT:
Ap — | <8} <s, forallv€Il, and LI_obre* =T17.,(1 — gjre*re'*) with
0<q/r<1-1/T and #{p;r: |u;r — v| <8} < s, for all v € I1. Then there
exists a C independent of T such that

Xt(T) € ﬂ'( f2*9 f4*9 C: T9 sl: 32),
forall T € N.

PrOOF. X{T) can be represented as X = X2 ,c.rY,_, with

0 ) HZ-l(l - (I/;Tei(""7+a))
Ar(e) = sgocs’rem - 1—[f-l(l - qkil‘ei()"'ﬁa)) ’

Using the relations

(2.2) ) {ﬁlx]} -1= Y Jl(x;-1), forx;eR,

M+g

and

1 —pei(“+B)
(2.3) 1 - pei® -1< 4|B|L1/(l—p)(a)’

fOl'aua,BEIRandO <p<l,

we obtain

Ar(a +

M_l SBle+B1+Bz,

Ar(a)
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with
B, = by H {4|B|LT(>‘1‘T +a+ B)}
Mc(1,...,p} JEM
M=o
and

B, = E H {4|.3|LT(M,T “)}-

Nc(l ..... q) JEN
#*92

By using Lemma Al.1(f) and the relation x*y’ < x**!+ y**{ x 5> 0, we
obtain

IB)| < K Z Z 1BMLr(A;r+ o+ ,8)

h=1k=1
and
r 8o &
1B) <K Y, ¥ |B*Ly(p;r+ ),

Jo=1ky=1

which implies the result. O

In the following sections we consider different parameter estimates 6, of 6,
based on observations X{P,..., X{7, with spectral density g, rf*s, and in-
vestigate the validity of a central limit theorem for 6. If g, does not depend
on T this is the ordinary CLT. If the ordinary CLT holds for two estimates 0
and 0’ and the extended CLT (with g, ; dependent on T') only holds for say
0 this difference between the two estimates may formally be termed “small
sample effect.” The reason why this difference really reflects what happens in
small samples has been explained in the Introduction.

This is the main purpose of the preceding model. Furthermore, we mentioned
at the beginning of this section the situation that a process is observed through a
linear filter with transfer function that has sharp peaks and troughs. A special
example of such a linear filter is the situation where we form differences of the
observed process to remove polynomial trends. This procedure causes a trough at
A = 0. The same holds if we remove a seasonal component by the s-step
difference filter [cf. Priestley (1981), Section 7.7]. Furthermore, the model is of
importance for the study of long-range dependence. In the context of long-range
dependence, it-is normally assumed that the spectrum has a singularity of the
form |A| ~!*¢ in the neighborhood of 0 [cf. Rosenblatt (1985), Section III.5]. Our
model includes spectral densities of the form |1 — (1 — 1/T)e®™|~25f*(A). Al-
though this spectrum is bounded by KT2¢, its shape for large T is even more
dramatic since it is approximately of the form |A/2|~2%f#*(\) for small A. This
admits a stronger long-range dependence than the usually considered model, and
the following results should also be seen with a view to this application.

3. Maximum likelihood estimates. In this section we prove that the
maximum likelihood estimate @, is efficient under Assumption 2.1 if the pro-



SMALL SAMPLE EFFECTS IN TIME SERIES ANALYSIS 817

cess X{T) [and the process Y, from Assumption 2.1(a) and Definition 2.2] are
Gaussian. In the proofs we make strong use of Lemmas A2.2 and A2.3.
We set XT = (X(ST)P (] Xé'{)l)l’ fo = f2, 0, T and B() = BT( f2, 0,1‘)-
THEOREM 3.1. Suppose that Assumptions 2.1(a), (c), (e) and (f) hold. Then
51‘ —p .

Proor. The method of proof is taken from Walker (1964), Section 2. We
start by proving that for all 8, € © there exists a constant c(6,) > 0 with

(8.1) Tﬁ_{I:oEoo{gr(01) —~Zr(6p)} = c(6y).
We obtain
(32) E,{2r(8,) — 2r(6,)} = logdet(BolBoo)‘ 2Ttr{B,,oB,,l - I}.

Let Ayr,..., App be the elgenvalues of By B, '. Since these are also the eigenval-
ues of BI/ZB 'B;/? we get from Lemma A2.2 that A7l <11B§/?By,'By/?| < K
umformly in _] and T. By a Taylor expansion of logdet(I + tA) around t=0we
now obtain that there exists a 7 € [0,1] such that (3.2) is equal to

1 T Ap—1 2 17 1
. jT _ _ 2 — _ -1 _ 2
4T E ( ) = KT,E(A"T 1) = Kzl(BoBi ~ 1))

Theorem A2.3 implies that this tends to

1 1 + T(AjT - 1)
1 fz",‘oo(}\) 1 2d}\ 0
e ) () 2 elfy).
Furthermore, we have
Tli_?:ovaroo{-?T(ol) - Zr(6,)}

= T oo 2T2| 1/2(301 )Bl/2
-_— o | p12p-1 d 12 * .
< Th_{I:o 972 = Boo/ ‘ByyBp 26, fowr Bo(,)B / (Wlth IO @)
Ké
< lim — = 0,
T— o0

by using Lemmas A2.1(d) and (1) and A2.2. Using Lemma A2.1(j) and (k), we
obtain with a mean value § € 0,

- 21(8) —z’T(ol)

d d
5 T (- [tr{Bo IBT( = fo)} - X'B;‘BT(ﬁfo)BJIX}.

1-1
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Lemmas A2.1(d), (g) and (h) and A2.2 now imply, with Uy(4,) = {6, € ©:
0, — 6,] < 8},

1

“sup | Zp(6,) - Lr(6)] < KS{I + —X’Bg)IX}.
b, € Up(6y) T

Furthermore, E,(1/T)X'B;'X =1 and var,(1/T)X'B; 'X = 2/T. It follows

with (3.1) that there exists for all 6, # 6, a c(8,) > 0 with

lim P, (02 inf | #1(6;) = Z2(6o) = c(6, )/4)

T— o0

21- Th_?:opoo(gT(ol) _-?T(oo) < 0(01)/2)

- Jlim B[ sup [ 2r(8,) — £r(6))] > (6,)/4)
T=o N6, Up(oy)

3 1’
for sufficiently small 8. As in Walker (1964) this implies the result. O

In the following lemma we calculate the limit of the Fisher information
matrix. Let

1 (8. )\
(8.3) r(8);= Efn( ’ﬁln fzfo(a))(ﬁln f2f»o("‘)) da.

LeEMMA 3.2. Suppose that Assumptions 2.1(a) and (e) hold and X is
Gaussian. Then I'(0) = lim,_, (1/T)I'x(0) where T';. is the Fisher information
matrix.

ProoF. Direct calculation gives [cf. Dzhaparidze and Yaglom (1983)]
_PT(o) _tl'{Bo 'Br(Vfy)Bi 'Br(Vfy))}

@4 T

1
= o5tt(Bi'Br(fy v In £3£) By 'Br(fy v In f3%)},

which, by using Theorem A2.3, tends to I'(8). O

THEOREM 3.3. Suppose that Assumptions 2.1(a)-(c), (e) and (f) hold and
XD is Gaussian. Then

VT (6 — 8,) » 40, T(6,) 7).
PrOOF. We use the usual proof technique with the mean-value theorem.
Define
32
36,96,5

d
o= | — 25, =
V& ( 30ig0)i-1,...,p and v g0

i, j=1,...,pP
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Then
Vgr(éT)i - vZr(6y); = Z Vzgr(o(l)) (01' - 90),',
J=1
with |8 — 8,| < |y — 6,). Since VZ(0;) = 0 and 87 —p 6, it is sufficient to
prove
(@) by —p b= V2'?T(0T) - v(6,) -p0

(ii) v22r(6,) =p T(6,),

(iif) T2 vL1(6,) = #(0,T(6,)).
We only sketch the proofs.

(i) We obtain with Lemma A2.1(j) and (k),

1
v (0) = - —tr{Bo_IBT(Vfo)Bo'lBT(Vfo)}
2T

1
+ ﬁtr{Bo_lBT(V 2fo)}
(3.5) ,
+ TXTBO_IBT(Vfo)Bo—lBT(Vfo)Bﬁ_IXT

1
- _TXTBO_IBT(VZfo)Bo_IXT'

Let & > 0. Choose & > 0 such that |6, — §,| < & implies supxenlv 2fxe(N) —

V24 (M| < & To estimate the difference v2%,(6,) — v %Zr(6,), we have to
consider the preceding four terms separately. The difference of the two second
terms is

Elitr{ (v*h,) (B - B;, )BT(szol)l/z}

1
+ 5mte{ B 2Br(V %, = 9%, ) B,
which, by Lemmas A2.1(d) and (g) and A2.2, is less than
K| B(*(B;* - B;,!)Bi*| + Ke.

The first expression is less than K8 by using Lemma A2.1(m). The difference of
the two last terms in (3.5) is by Lemma A2.1(h) less than

K—T—xrBo X | By BB (v 2, ) Bi; - B;;'Br(v*h,)B;;' ) Bi/?

The matrix norm is small by the same methods as used previously. Similar
estimations also hold for the first and third terms in (3.5). Since

1
E—X;B; Xy =1
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this implies (i).
(ii) By using var(X;AX) = 2|SV2ASV?2, where £ = EX,;X}, EXp =0,
we obtain with Lemma A2.2 var v 2%,(,),; < KT~ . Furthermore,

1
Ev221(9y) = 5tr{ By 'Br(V1y,) B, 'Br(vhy,) ),
2T

which (cp. Lemma 3.2) tends to I'(6,).
(iii) We obtain T'/2E v.%#(6,) = 0 and

1
Teov(v-27(8,),, V1(8y);) = 5tr{Bi Br(Vho,) Bi; Be(Vo,)} = ().

Since the process is Gaussian the product theorem for cumulants [Brillinger
(1981), Theorem 2.3.2] implies

Tl/2CUHI(V$T(00)il, ceey V"?T(eo)i,)

= lT—t/z(_l)ll

2 ;] Lo

(Jrseees Jn)
permutation of

(Yyeees i)

! 3
kI:[l {Bo' Br(;@—i;f%)ﬂ,

which, by using Lemmas A2.1(g) and (d) and A2.2 is bounded by KT~%2*1, This
implies (iii). O

Thus, the maximum likelihood estimate is still optimal in the model of
Assumption 2.1. In the following sections we study several other estimates.

4. Conditional likelihood estimates. One way to overcome numerical dif-
ficulties in calculating the exact maximum likelihood estimate is to choose
adequate approximations to the inverse By( f;) ~'. Suppose the observed process
admits an autoregressive representation

o0
Y ay(s)X,_,=¢, withe,~4°(0,0%0)).

8=0
Then one may choose the approximation
By ( fo)—l = 02(0)—11)1'(0) Dr(6),
where D (0) is the upper triangular matrix of order T whose (m, n)-entry,

m < n, is ag(n — m). Thus, 5;- is the value that minimizes

X7 Dr(8) Dr(6) X7

25(0) = Flog(2m0%(0)) + ﬂ«vlw

Ljung and Caines (1979) have proved that f; is Fisher efficient. However, with
the model of Section 2 we now prove that 6% is worse than 6.
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THEOREM 4.1. There exists a parametric model such that Assumptions
2.1(a)-(e) are fulfilled (with arbitrary s, and s,) and 0f is not a consistent
estimate of 6.

ProOF. We define the sequence X7’ as the Gaussian AR(1) process with
characteristic root py=1-—1/T and innovation variance 6, ie., with the
spectral density

0

f2,0,T(>‘) = é‘;ll _Prei}‘lmz-

From Theorem 2.4 we get
0
Xt(T) (S .@"(-2—;,0, C, T, 81 §2),

for some C > 0 and all s,, s, € N. We assume that p, is known and 6 has to be
estimated. Straightforward calculation gives

3 1 171 1) 1752
0 = {1 + (1 - —T—)pi}',_,: EO XM — 2(1 - -T-)pT'T" EO XX

and therefore

E5°—0+l—ﬁ——0+l+O(T‘l) i
TN r1—p2 0 2 '

Thus, 6% is worse than @ (cf. Theorem 3.3). The same holds for the classical
Whittle estimate 8§, which is studied in more detail in Section 7.

5. Data tapers. In order to investigate tapered Whittle estimates, we
need some properties of data tapers. For a sequence of data tapers h, 5, ¢ =
0,...,T—1; T € N, we define

T-1
H{D(a) = Y h¥ exp(—iat), Hp(a)=H{"(a) and H, r=H(0).
t=0

DEFINITION 5.1. Let £ € N, and « € [0,1/2). Suppose &, 7 = hy(t/T) is a
sequence of data tapers with Ap(x) =0 for all x & [0,1) that fulfills the
following conditions.

(i) hy is (kB — 1)-times continuously differentiable (in the case k=1 we
assume continuity and in the case £ = 0 we make no assumption).
(ii) There exists a finite set Pr = {p,p, ..., p,r) such that h; is (k + 1)-times
differentiable in all x & Pr.
(iii) Let

81 = im hgz)(y) - lim hﬁn”)(y)-
yipir ytpjir
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There exists a ¢ > 0 such that X7_,s/ > ¢ for all T € N.
(iv) Hy r ~ T and

D{® == sup |h{P(x)| + sup |p¥+D(x)| < KT*, with k € [0,1/2).

xGT

Then we say that the taper (the sequence of tapers) is of degree (%, k).
In the nontapered case &, 7 = Xxo,1/(¢/T) the degree therefore is (0, 0).

ExAMPLE 5.2 (Tukey—Hanning taper). A certain proportion of the data is
tapered with a cosine bell, i.e.,

h(x) = (1/2)[1 - cos(27x/p)],  x € [0,0/2),
-1, x € [p/2,1/2],
=h,(1-x), x € (1/2,1].
Thus, A, is continuously differentiable and 3-times differentiable in x ¢ P =
{0,0/2,1 — p/2,1}. We obtain |h®(x)| < 473/p? for x ¢ P, which means that
the taper h,,=h(t/T) with p fixed has degree (2,0). If we choose, e.g.,
p=pp=T "3, h”.—h (t/T) is of degree (2,x) with h, (x) = x¢,1(%),
which will lead to efficient Whlttle estimates (see Theorem 6. 3)

ExAMPLE 5.3 (Polynomial taper). The function
h(x) = 4k(x/p)" (1 = x/p)*,  x€[0,0/2),
=1, x€[p/2,1/2],
=h,(1-x), x € (1/2,1],
is (k — 1)-times continuously differentiable and (k + 1)-times differentiable in
x & P={0,p/2,1 — p/2,1}. Thus, the taper h, r = h(t/T), where p is fixed,
has degree (k,0). Furthermore, we have supxﬁplh‘ )(x)| <Kp™! 0<l<2k,

with K independent of p. Thus, if, e.g., p = pp = T~*/**1), the taper h, ; =
h, (t/T) has degree (k, k) and h, (x) = X, 1,(%)-

We now prove a fundamental inequality for data tapers.

LEMMA 54 Let k € Ny, k €[0,1/2) and (h, 7)r<n be a sequence of data
tapers of degree (k, k). Then there exists a constant K € R such that for all
a€Rand T €N,

(5.1) |Hy () |[/HYE < KT+ 2Ly (o),

ProoF. We consider the case 2 > 1 (in the case k£ = 0 the result follows
easily by summation by parts). Let D, (h, r) be the lth difference sequence of
h, i€, Do (b, 1) = by, Dy (hy 1) = DI ,dPesr, 1) = Dyoy (B, p) forl > 1.
We have D, ,(t ) =0if m < land D, (th) = 11, I, m € N. Since Definition 5.1(i)
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implies A(0) = hr(1) = 0 we obtain by repeated summation by parts

T-1
(52)  Hp(a) = [exp(ia) 1] ** ¥ Dy, (h, r)exp(—iat).
t=—k-1
There are at most (k + 2)r intervals [¢/T,(¢ + k +1)/T), t=—-k—-1,...,
T — 1, that contain a point x € P;. For those ¢ we obtain with a Taylor
expansion

Dy_y i Besjr) = T—(k—l)hge—l)( Hj) + O(T"’ sup [h&’”(x)l),

T x & Pp
for j=0,1,2,
which implies
Dy, hyr) = OT7* sup [H(2)]).
xePT
For the other ¢ we also obtain with a Taylor expansion
Dk+1,t(ht,T) = O(TT(’HD sup |h¥e+l)(x)|)
x&Pp
and therefore
Lo(a k+1 1
|Hp(a)| < KT(T—ZD}"), if |a — 27l > —T-,for allle Z.
If there exists a / with |a — 27l| < 1/T we obtain
LT(a)k+1
|Hr(a)| < T sup |hp(x)| < K——=—DfP
x€[0,1)

and therefore relation (5.1). O

The lemma implies |Hp(a)|/H}/Z = O(T *71/2**) for all a # 0 mod2w.
Therefore, the convergence rate to 0 at these a increases with k.

For all further calculations we only need property (5.1), which we therefore
could alternatively take as the definition of the degree (%, ). This would also
include other tapers [e.g., the Kolmogorov—Zhurbenko taper—cf. Zhurbenko
(1980), (2.10)].

In practical situations we do not want to drop the first observation X
completely, which would happen by using the taper h,r= hp(¢/T) with
h(0) = 0. One therefore chooses in practice the taper k, 7 = hp((t + 1/2)/T),
which also fulfills (5.1).

6. Tapered Whittle estimates. In this section we prove that a suitable
choice of the data taper leads to efficient Whittle estimates. The technical details
of the calculations are given in Appendix 1.
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If ¢: IT — C is an integrable function and X{© € &(f*, f*,C,T,s,, s,)is a
sequence of stationary processes with spectral density f,  we define

Ir(9) = [ o(N) ijT((AA)) d\

and

J(9) = [#(N) .

THEOREM 6.1. Suppose that Assumptions 2.1(a), (c), () and (g) hold. If the
data taper has degree (k, k) with k > max{s, + s, — 1,8, 8,} and k < ky/2,
where k, € (0,1], then

97’ —p 00.

PrOOF. By using Lemmas Al.3(a) and Al.4(a) the result follows analogously
to the proof of Theorem 3.1. We omit the details. O

We now investigate the Fisher eﬁimency of 9 In addition to I'(@) [cp. (3.3)]
we define B(0) by

1 a
B0y = 52 [ | 30 ot
(6.1) f4f0(a1’ —a,, a2)

d
( 60 F R f2 o(az)) fzfo("‘l)fzfo(az)

THEOREM 6.2. Suppose that Assumptions 2.1(a)-(e) and (g) hold. If the
data taper has degree (k,«x) with k > max{s, + s, — 1, 8,, 8,} and k < ky/4,
where k, € (0,1], then

7T(0; - ) ~M(o,{u T ) (X0) + Bo)T()” )

da.

Proor. As in the proof of Theorem 3.3 we obtain

v ove(8;), - vee,), = f vie(09),; (67— 6,),,

J=1

with 8§ — 6,)| < |8, — 6,|. Using Lemmas A1.3(a) and Al.4(a) and the continu-
ity properties of f,*y, it follows that

1 1
V(0 = i s ey i) — I g ey i) + T) =5 T(8)

and
vieH(09) — v22(6,) =5 0
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Furthermore, we have v.¢(0,) = 0 and
1 1
VT 200) = VT (| g tite, V1) = I o i, 15
which, by Theorem Al.2, tends weakly to

m(o, { i ﬂ”-}(rwo) + B(8,)

-0 Hp

Thus, the theorem is proved. O

If we choose a taper h, ; with limy_, (TH, 7/H3 1) = 1 (e.g., the taper from
Example 5.3), we obtain for the limit covariance I'(6,)~X(T(8,) + B(6,))T(6,) %,
or, in the Gaussian case, I'(6,) "7, i.e., the estimate is efficient.

THEOREM 6.3. Suppose that Assumptions 2.1(a)—(e) and (g) hold. Let
XM € Z(f3,0,C, T, 51, 5,) be a sequence of stationary Gaussian processes
and h,; be a data taper of degree (k, k) with k > max{s, + s, — 1, 8,, S5},
k < Kko/4 and timy_, (TH, 7/HZ ) = 1. Then 8y, is Fisher efficient.

REMARK 6.4. All results of this section remain valid if the integral in the
Whittle likelihood £ is replaced by the corresponding sum over the Fourier
frequencies 27s/T, s = 0,..., T — 1, which can be calculated efficiently by using
the fast-Fourier algorithm. The proofs (especially the proof of Theorem Al.2) are
nearly the same as for the preceding results. The main property needed for the
modification is Lemma A1l.1.(i).

Thus, tapered Whittle estimates, with a suitable choice of the taper, have the
same optimality properties as maximum likelihood estimates.

7. Nontapered Whittle estimates. In this section we consider the classical
nontapered Whittle estimate (or, more generally, the situation where the degree
of the applied taper is too low). A treatment of the classical Whittle estimate
may be found, for example, in Dzhaparidze and Yaglom (1983). Consistency and
efficiency in the “normal” case (where the spectral density is bounded from
above and below) also follow from our Theorems 6.1 and 6.2 with s, = s, = 0.

We now show in this section that the nontapered estimate also may even be
inconsistent if there are sharp peaks or troughs in the spectrum. We first
consider the case where peaks are present.

THEOREM 7.1. Lets, > 0 and s, < 1. Suppose that the applied data taper is
of degree (k,«) with k <s,. Then there exists a parametric model such that
Assumptions 2.1(a)—(e) and (g) are fulfilled and the Whittle estimate 0, is not a
consistent estimate of 6. :

PrOOF. We define the sequence X as the Gaussian AR(% + 1) process
with (k& + 1)-times the characteristic root pr=1—1/T and innovation
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variance 0, i.e., with the spectral density
(/] .
o2 (A) = 511 = pre?|xkeD,

Since & + 1 < s, we obtain from Theorem 2.4 X{™) € Z(6/27,0,C, T, s,, s,) for
a C > 1. We assume that p, is known and the innovation variance has to be
estimated. Minimizing the Whittle function leads to the estimate

0, _ 0,
0, = JT(E), whereas 6§, = J(g)
We first note that
(7.1) Ll/(l-p)()\)2 <|1-pe??< 27’2L1/(1—p)(}‘)2,

for all 0 < p < 1 and all A € II. Elementary calcul;a.tion now gives

k+1

fo,r(A + a) 2cos(A + a)sin’(a/2) — sin(A + a)sina
POV L= pre o

=1+ {4pTcos()\ + az)sin2(§)}k+l %:ifz’T(}\ + a)

2k+1 ]
+O( Y lalLpy(A + a)’).

J=1
Using the same arguments as in Lemma A1.3, we therefore obtain
EaT -6, = {4PT}k+l{2"H2,T} !

X f sin?**%(a/2)cos** (A + a)f, r(A + )| Hp(a) |* dadA

+0(T? 'og?T).
Using (5.2), the first term is equal to
(7.2) FOH;} [ fo2()eos™h dA T Duvrbor):
t=—k—1
(7.1) implies

0, (1 k1 /4 2k+2 2k+2
jﬂfZ,T(A)cosk“AdAz—w-(g) [ Ly (A2 g\ — —[ Lp(A)**2 g

> KT2k+1
Let s;, p; and D§.") be as in Definition 5.1 and A%(x) be the “jump

;,functlon” of h(x), ie, hi(x) =X s; TX [y, co)(®) and hf(x) = h¥(x) —
h3(x) on (—1,2)\ Pj. Using the Taylor expansion of degree £ — 2 and integra-



SMALL SAMPLE EFFECTS IN TIME SERIES ANALYSIS L 827

tion by parts, we obtain for y, y, € (—1,2),

k=1 R(3) . hi(%)
he(3) = T = (r=2)+ S (7= 2)" + Oy — %l 'DAP)
AT !

S;r S;r
+ Z 'I;JT(y_yo)k"‘ Z “];JT(y_PjT)k~

pir<x 7° Yospir<y 7

Taking this expansion at y,=t/T and y=(s+¢t)/T, s=0,...,k+1, gives
with D, (™) =0 for m </,

D,. 1, t( ht,T) = O(T_(k“)D’s'k))

S;r( S k
+D, 8 Z L‘(_ — DPj ) )
ket (t/TspjTSS/T RO\NT T

s=t
We now assume that T > T,, where py—p;_y 7> (k+2)/Ty, j=2,...,7.
Furthermore, let t;=[p;rT), j=1,..., 1. Then

Vi
)M Dk+1,t(ht,T)2 = O(T*2k_l{p§'k)z + |sz|D§'k)})

t=t;_,+1
2 i k 2
+ —(—:J'—)Z t-%:—ka“,s((% - pjT) X(s>tj)) .
We obtain
Dk+1,s((% _pjT)kX(s>tj))2 = ( tj; ! _I’ﬂ')‘z’c
s=t;—k
and

oo ]

tj 2k
(4]

By considering the cases p;r < (¢; + 1/2)/T and p;r = (¢;+ 1/2)/T, we there-
fore obtain that (7.2) is bounded from below. Therefore, 8, is not consistent. O

The theorem establishes theoretically a parametric leakage effect for the
_classical Whittle estimate (for s, =1, s, =0, k = 0). It explains the small
‘sample behavior of the estimate if peaks are present in the spectrum. We now
prove that the same result holds if the spectrum has troughs.
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THEOREM 7.2. Lets, > 0 and s, < 1. Suppose that the applied data taper is
of degree (k, k) with k < s,. Then there exists a parametric model such that
Assumptions 2.1(a)-(e) and (8) are fulfilled and the Whittle estimate 0 is not a
consistent estimate of 6.

Proor. We consider the MA(k + 1) process with the root p,=1-1/T
and the innovation variance 6 that has to be estimated. Since

forA+a)  J|Hp(a)[
‘/Hz[ f2,7(X) ‘1] 2nH,, 1

fo,r(A) |Hp(a)|”
- '/;12[ fo,r(A + @) - 1] 27Hy 1

we obtain the same result as before. O

dadA

dadA,

Thus, we have also established theoretically another effect for the classical
Whittle estimate, which we call the “trough effect” (if we set s, =0, s, =1,
k = 0). If the process contains troughs the Whittle estimate is inconsistent (in
the situation considered in the preceding proof the innovation variance was
overestimated). This effect is especially important with a view to the usual
taking of differences to remove trends in time-series data. This procedure causes
a value of 0 at A = 0. For our knowledge, this effect has never been described
before. Simulation studies (not presented in this paper) confirmed the problems
arising from taking differences as well as the advantages of data tapers in this
situation.

The preceding results imply that the degree of the data taper (%, ¥) with
k > max{s, + s, — 1, s, 8,} is also necessary for the CLT Theorem 6.2. As far as
we know, it is the first time that the advantage of data tapers for the previous
type of estimates has been established.

However, the preceding theorems do not answer all questions of interest. For
example, the situation of general s, and s, is not easy to handle. It is possible to
prove for certain n = s, + s, that the polynomial taper from Example 5.3 with
k = n — 2 is not sufficient for the estimate to be asymptotically unbiased. Since
these calculations are very technical and the result is not very general we omit
the proof.

We now consider the nontapered case in more detail. In Theorem 6.2 we have
proved a central limit theorem where the additional factor {lim TH, /HZ .},
which is > 1, occurred in the asymptotic variance (this factor is missing in the
CLT for the classical Whittle estimate). For nonparametric estimates we have
the same factor [cf. Brillinger (1981), Section 5.6—note, that the nonparametric
results have always been proved under the assumption that the spectra are
bounded]. It is therefore a common opinion [see, e.g., Brillinger (1981), page 151,
Hannan (1970), page 272, and Priestley (1981), page 562] that tapering may
reduce in many situations the bias while it increases the variance of nonparamet-
ric estimates. However, these considerations presume implicitly that the variance
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of the estimate converges, in the situation where a strong peak in the spectrum is
present and no data taper is applied, to the same limit as in Theorem 6.2 with
TH, r/HZ 7 = 1. In the next theorem we show that this is not true. More
generally, we will consider not only the variance but the cumulants of all order.
We consider for an AR(1) process the behavior of the statistic J;(1). The
following result therefore is essentially of a nonparametric nature. However, in
Theorem 7.1 the Whittle estimate 9 of the innovation variance was equal to
(0o/2m)Jr(1). Therefore, the followmg result also describes the property of the
Whittle estimate. '

THEOREM 7.3. Let X{T be the Gaussian AR(1) process with root p;, where
|1 = pgl = 1/T [thus X € Z(02/27,0,C, T,1,0) fora C > 1 and all 8 > 0].
Suppose that no data taper is applied. Then we obtain for alll € N,
cum,(Jr(1) — J(1))
4m)! -1 21[1/2] 1) okr “1]no2
= (F )@= -p8) a3 (f)or + o(-og'T).

Proor. We consider the case [ > 2 (the case [ = 1 is obtained by similar
arguments). Analogously to the proof of Lemma A1.5, we obtain for cum ;(J;(1))
an expression similar to (A.10), where we have only to sum over all indecompos-
able partitions with |P) =2 (because X{™) is Gaussian). Since ¢ =1 and
fo,r(@) = fo, p(— @), all (I - 1)!12/-1 partitions lead to the same value. Therefore,
we obtain with «,,, = «a,,

cum (Jp(1)) = (2#T) (1 - 1)12!1
fz T(Y,
‘/H"/H’{J 1 fo,r(a;) }

| T ey~ 3)Hn(y, - o) v
L

Using
1 _peia ) ei(y—a) -1
—_— = 1 + ta_—,
1 — pe* Per Ty — pe'”
this is equal to
. l e—i('Yj—'!j) -1
27T) "' (1 - 1)12+1 1+ prei%—————
(27T) (1~ 1) fn,fn,{j[[l Pr Jl_pTe-,,,)

) e!—%i1) — 1
X |1+ pre*y+t ———————

1 - pre"

X

{ [T Hr o, — v,) i (3~ a,.ﬂ)} dvda.

J=1
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Using
el —
pﬂ'“m < K|y — a|Ls(y)

[see (7.1)], |Hy(a)| < KLp(a) and |a|Lp(a) < K, this is equal to

1 o l e —e) 1
(2aT) 'pF(I - 1)!2 f fnl 1 mHT(aj_ )
ei(vj—ﬂju) -1
X WHT(Yj - aj+1)} dyda + O(T'llog2T).

Using (5.2), this is equal to (y,,; = v;)

2\ -1
T-p3(1 — 1)121-} —
T 2m

X E / { l—[ fo, () Dy, t( ¢ T) i(""_yf*’)‘f} dy
t tl=_1
+O(T_1log T), ‘
where h, 1 = x[o1(t/T). Since D, p(h,7)*=1 if t= -1, T—1 and
D, (h, 1)? = 0 otherwise, and

. p¥
— a2
/Hfz,r(a)eXp(lau) da=o 1=k

this is equal to (¢, = ¢,)

T-'p3(1 - 1)122n) (1 - p2) ™" L pIE-=bel + O(T 'og?T).
J=1,...,1

Elementary calculation now gives the result. O

If we set pr =1 — 1/T we obtain

cum,(Jp(1)) = (2)'(1 - 1)v[l}/32]( lk)e—2k + O(T '10g?T).
h k=0

Thus, neither bias nor variance of the estimate tend to 0, and with a view to
Lemmas A1.3 and Al.4 tapering reduces both. Furthermore, we see that even the
higher-order cumulants (I > 3) do not tend to 0, which implies that the limit
distribution of /(1) is not Gaussian. With a view to Lemma Al.5 tapering also
reduces the order of the higher-order cumulants of the statistic.

Theorem 7.3 also shows clearly the relation between the distance of p, from
the unit circle and the rate of convergence.
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8. Concluding remarks. In this paper we have presented a mathematical
model for the investigation of parameter estimates for stationary time series.
Although the model is still an asymptotic one, it reflects up to a certain extent
small sample effects by the requirement that estimates should behave well with
increasing sample size for an increasing number of stationary processes.

By using this model we were able to explain theoretically several small sample
effects: We could distinguish several Fisher efficient estimates (maximum likeli-
hood estimates, conditional likelihood estimates and tapered and nontapered
Whittle estimates), we explained theoretically a parametric leakage effect for the
Whittle estimate and showed that this effect can be removed by applying a data
taper, we found the so far unknown trough effect and we proved contrary to
widespread conjectures that data tapers do not only reduce the bias, but may
also reduce the variance of the estimates.

The theoretical results are in accordance with sirhulation studies. The ad-
vantage is extreme if roots of ARMA processes are close to the unit circle. From
our considerations it is clear that a short sample length with ‘“moderate” roots
has the same effect on the estimates as a larger sample length with roots
extremely close to the unit circle. This is confirmed by simulation studies (not
presented in this paper) where similar results on the advantages of data tapers
were also obtained for very short time series (e.g., with T' = 32).

From the practical point of view we found that using data tapers for Whittle
estimates (which are identical to Yule-Walker estimates in the autoregressive
case), leads to a new powerful estimate. In 100 replications of the simulation
presented in the Introduction the tapered Yule-Walker estimate (with the
Tukey-Hanning taper with p = 1.0) led in 62 (73) cases to a better value of o2
(T(4 — a)Z(d — a)) than the Burg algorithm. In 100 replications with a triple
peak instead of a double peak at A = 1.5 the tapered estimate was better in 28
(51) cases. The best results were obtained in a one-step iterative procedure where
the series was extended to double length with back- and forecasting with the
estimated values and the estimation was repeated afterward. This iterative
tapered estimate was better than Burg’s algorithm in 100 (85) cases out of 100
for the double peak model and in 98 (86) cases for the triple peak model, whereas
back- and forecasting led to no, or only to minor, improvements both for the
nontapered Yule-Walker estimate and for the Burg algorithm.

Tapered Whittle estimates can be used for arbitrary parametric models,
whereas, e.g., the Burg algorithm is a special algorithm for autoregressive
processes. The Whittle estimate can be calculated, e.g., by a Newton—Raphson
procedure. In the special case of autoregressive processes we obtain the estimate
from the Yule-Walker equations where the covariances are calculated with
tapered data. In this case we have the important Durbin-Levinson algorithm
[Durbin (1960)] for these estimates that remains the same as in the nontapered
case since we only have to modify the data.

We finally remark that the methods of this paper can also be applied to
nonparametric estimates. In fact, most of the results are essentially of a nonpara-
metric nature (e.g., Theorems 7.3 and Al.2).
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APPENDIX 1

A central limit theorem. This appendix contains the technical details used
in Section 6. We first list the properties of the function L (a).

LEMMA Al.l. Letk €N and o, 8,7, v, p € R. We obtain with a constant K
independent of T:

(a) Lp(a) is monotone increasing in T and decreasing in a € [0, 7].
() [gLp(a)*da < KT* ! for all k > 1.

(© fgLlr(a)da < K logT.

d) 77! < Lp(a).

© lalLy(e) < K.

() Ly(»)*Lp(p) < Lp((v — 1)/2)*Lp(p) + Lr(v)*Lr((v — 1)/2)"
® Ly(ca) < K Ly(a).

() [uL(y + @)Lp(B — a)da < KL(B + y)log T.

(i) Lp(a) < KL(B) for all a, B with |a — B| < 2x/T.

ProoF. The proofs are straightforward. Some of them may be found in
Dahlhaus (1983). O

We now consider sequences of processes X7 € Z(f*, {* C,T,s,,s;) and
prove a central limit theorem for the statistic J(¢).

There exist numerous central limit theorems for J,(¢) in the literature,
proved under different conditions on ¢, f, and the process X, [see, e.g.,
Ibragimov (1963), Brillinger (1969), Dunsmuir (1979), Hosoya and Taniguchi
(1982) and Dahlhaus (1983)]. However, no results exist if the process XT
depends on T. As we will show, the degree of the data taper plays the central
role for the validity of such a central limit theorem.

THEOREM Al2. Let XD € #(f¥, ¥ C,T,s,, 8,) be a sequence of sta-
tionary processes with f;* € Lip, and

4
(A1) |f4*(a1, ay, a3) = f*(By, Bas Ba)' <K E ey — .3;|"°, ko € (0,1],

Jj=1

where a,= —a, — ay, — a; and B, = —B, — B, — B;. Suppose that the data
taper used is of degree (k,x) with k > max{s, +s,—1,8,8,} and k<
min{1/12, k,/2 — 1/4}. Let further ¢, ...,¢, be bounded functions. If
limy _, TH, 7/H}  exists, then

VT (Ir(ey) = I(8))} o,



SMALL SAMPLE EFFECTS IN TIME SERIES ANALYSIS 833

tends weakly to a Gaussian random vector £ with mean 0 and covariance

TH
cov($;, §;) = 21r{ lim 4’T}

T— o0 H22,T

(a2) { fua) (50 + 4= da
‘ f4*(a1’ ‘al»“z)
2*(a1)f2*(a2) da}.

ProoF. The theorem is proved by a cumulant method [cf. Brillinger (1981),
Lemma P4.5]. The assertion follows from Lemmas Al.3(b), Al.4(b) and Al.5.
* O

+fnz¢i(“1)§5j("“2)

LEmMMA A13. Let XD € Z(f5, f*,C,T,s,, s,) be a sequence of processes
with f* € Lip, , x, € (0,1]. Suppose that the data taper is of degree (k, k).

(a) If k = max{s, + s, — 1, 8,, 5,} and k < ko/2, then
Jim EJr(¢) - J($) = 0.
(b) If k > max{s, + s, — 1, 8,, 8} and k < k,/2 — 1/4, then
Tim VT(EJr(4) - () = 0.

PRrROOF. (a) We have
EJr(¢) — J(9)

(A3) = {2ﬂH2,T}-1L2{foT:_;§TE)_Q _ 1}¢(a)IHT(B)I2 dad.
Since

|Hp(B)|/HY2 < KLy (B)* 1T~ +1/2-9
(Lemma 4.4), we obtain

LT(B)2k+2

fz,'.r(“ + .3) - f2,T(°‘) T dadp.

f2,T(°‘)
Furthermore, if f, 7(a) = g, r(a)f3*(a), (2.2) implies
for(a+ B) = for(a) _ f*(a+ B) _ 1) + (g2,T(a +B) _ 1)
fz,T(“) f*(a) g2,T(a)
(fz*(“‘l'ﬁ) 1)(82,7‘(“"‘.3) _ 1).

o (a) - g2,T(a)

(A4) |Edp(9) —J(9)] < Kfnz
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By using f;* € Lip, and (2.1), we obtain that (A.4) is less than
LT ( B)2k+2

K[ (5(T,a B\, b,281,25,) + |81} ~ropsr=gc dadf
r 2s;
<KY ¥ [ 1L (4 at B) Loy, + o)
ji=1 k=0 T 1 ’

i=1,2 ky+ky21 ,
XLp(B)** 2 M * dadp + KT,
Using 7! < Lp(B) < T, the first summand is less than

KT*! Z.fm{[LT(M +a+ B) + Ly(n, + @)| Lr(B)

+Lp(A, + a+ B)Ly(u, + o)} dadB,

which, by using Lemma Al.1(c) is less than K72~ log?T.
(b) This follows analogously. O

LEMMA Ald4. Suppose that the assumptions of Theorem Al1.2 hold.

(@) If k < (ko + 1)/4, then lim,_, var{J (¢)} = 0.
(b) If k < ko/4, then limy_, T cov{Jr(9,), Jr(¢;)} = cov{§, §;}.

ProoF. (b) Cumulant calculations give [cf., e.g., Dahlhaus (1983), (3)]
Tcov{Jr($,), Jr(s2)}
fz,T(Yl)fz,T('Yz)

- T{%Hz,T}-z{ [ #ia)lolea) +ala) | [ AT

XHT(“l - Y1)HT('Y1 - az)HT("‘z - Yz)
XHp(y, — &) dady
f4,T('Yv Yo 'Y3)

% fn’(bl(al)%(az) ‘[H“ f2,T(a1)f2,T(a2)

XHT(al - Yl)HT(—al - Yz)HT(“z - 'Ys)

(A5)

XHp(—ay+ v, + ¥, + 73) dvda}.

With Y(a;, ap) = ¢,(a))[po(@y) + o(—a;) ] and (5.1) the first term is equal to

o T02mHar} ™" [ Wlor,co) [ Hr(os = v)Hr(n ~ o) Hy(ey = 12)

X Hp(v, — &) dady + R,

(A.
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with
fz,T('Y1)f2,T('Yz) _
f2,T(°‘1)f2,T(“2)
X{Lp(a; = 1) Lp(v, — a3)Ly(az = v2)
X Lp(vy — a)}*" ' dady.

IRl < KT—4k—1+4:cf 1

H4

(A7)

Using (2.1) and (2.2), we obtain

fz,T(Yl)fz,T('Yz) -1
fz,T(al)fz,T(“z)
(A.8) N
8 fz*(Yl)fz*('Yz) _
T e e ll’
(@) (ii)

with b, = b(T, a;, v, — a3, N\, B, 81, S3), by = b(T, ag, v, — ag, N\, b, 81, 83), by =
b(T’ gy Yo — Ay, )\’ I, 8y, 82) and b4 = b(n Q) Yo — @y )\’ s 81, 82). We now con-
sider an M of the preceding sum and assume without loss of generality 1 € M.
We have

blLT(al - Yl)k+l
T Si
k k
<KY XY LT()\jl + 1) Ly(pj, + ;) Ly(a, — 1)
i=1 k=0
ll-l,2 kl+k221

k+1—k, —ky

and since L;(a) < T and & > max{s, + s, — 1, 5, S5},
< KT*L{Ly(A;, + 1) + Lr(py, + @)}
Ji
Analogously, we get
Ly(y, - “2)k+lmax{b2a 1}
< KT"Emin{LT(M,-, + ay) + Lyp(v, — @), L'.r("j1 +7) + Lp(n — “2)},
Ji
Ly(a, - 72)k+lmax{b3,1}
< KT"Zmin{LT(}\jl +7;) + Ly(ay = v,), Ly(pj, + @) + Ly(ay — Yz)}
Ji
and
Lyp(y, — “1)k+lmax{b4,1}

< KTkZmin{LT(”'jz + al) + LT(Y2 - al)’ LT(AJ.‘ + 'Y2) + LT(Y2 - al)}.
Ji
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We now obtain with [;L(a)da < K logT,

LI4LT(Aj11 + Yl){LT(ILj22 + ay) + Lp(y, - “2)} {LT(}‘jla +7) + Ly(ay — Yz)}
X{Lz(p,, + &) + Lp(v, — &)} dady < K log*T

and

S Lk + a){Lr(h, + 1) + Lol = o) {Lr(y, + @2) + Lr(az — 12))

X{Lp(A, +¥2) + Ly(v, — a;)} dady < K log*T
Thus, we get the upper bound K7~ log*T for the term of (A.7) that corre-
sponds to (i). Since (ii) is less than K|a; — v,|* + K|a, — ¥,/|*°, the corresponding
term of (A.7) is less than KT'**~*log*T. Thus, (A.6) is equal to
- 2
TH [ 40, a0)| B§P ey — o) [ dey desy + 0(1),
which tends to
H2 . /xI/T(a a)da + R,

by usual kernel calculations. The second term of (A.5) is treated similarly, which
gives the result. Part (a) of the lemma follows analogously. O

LEMMA Al5. Let X € Z(f*, ¥, C,T,s,s,) be a sequence of stationary

processes with 0 <c¢, <f*<c, and ¢,,...,¢, be bounded functions (j=

., 1). If the data taper is of degree (k, k) with k > max{s, + s, — 1, s, 85},
then we have forl > 3,

|cum(J7(9,), ..., Ip(d;))| < KT~ HH1+2k]og2-1T,

Proor. We have with dr(a) = ZT-0h, 1 XPexp(—iat),
|cum( 7 (9,), ..., Ir(4,))]

L ¢i(a))
‘/;T’{J-I—II fo,7(a;) }

X cum{dT(al)dT(—al)! veny dp(ay)dp( _“z)} da|.

< KH; %,

(A.9)

Using the product theorem for cumulants [Brillinger (1981), Theorem 2.3.2], we
have to sum over all indecomposable partitions {P,,..., P,} with |P| > 2 of the
table

¢ d;

¢ d;
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where ¢; and d; stand for the position of d,(a;) and d;(—«;), respectively. This
sum will be denoted by X; ,. The elements of a set P, from such a partition shall
be assumed to be in a fixed order. If P, = {a,,..., a,} we set P, := {al,..., a, 1),
BP (Bal +1Pq,_ 1)’ B = —Zn—lpa and fn T(BP) = fn T(Ba1 ) Let
further m be the size of the correspondmg partition and B8 = ( ,BP1 - Bs)
Using the product theorem for cumulants and these notation, we get as an upper
bound of (A.9)

l {a:) | m
ip. j;T’{ J=Hl fzjr((;:) }fnm_m{ kIJl f lPkl,T(B?,,)}

{HHT( ~ B,)Hy(~ ajjﬁdj)}dﬁda.

J=1

KH;% Y
(A.10)

If P,={a,,...,a,} we obtain from Definition 2.2
flPkltT(Bal’ e an—l)

n}l-le,T(Yj)l/z
n

<K ,1:[1 zj:;'((ij)) KMC(IZ - Jl;[”b(T s Yjs Ba; = Yj» Ny By S15 32)
where B, = — 1_1[3 Therefore, we obtain by a suitable arrangement of the
f2,T(aj)1

n;?—ll flP,],T(BT’k)
Hjl'-lfz,T(aj) = KMc(l2 ,21} Jle_llwb ’

with b, = b(T aj, B - a;, \, b, 8;,8,) and b, , = b(T, —a,, ,Bd

o Ny s sl, S3), J=1,...,1L Usmg this and the generahzed Holder inequality, we
obtam as an upper bound of (A.10),

KT-1-2k-0 % fn,fnzz m{ jeM }

ip. Mc {1 ..... 21}

(A.11) ;
x{ T Lr(e; - B, N L~y - ij)k“} d da.

j

The special structure of each partition is expressed in the special structure
of the corresponding B. Every a; and every B,(a € U}.,P,) is contained
in IT\,Lp(a; - ,Bcj)’”lLT(—aj — By)**! exactly twice as an argument,
once with positive sign and once with negative sign. Consider a partial product
Tl alg(e; = B ) ;e pLyp(—a; — Ba, )t+1 Because of the indecomposability
of the correspondmg partition, we see that there exists at least one argument
y € {ajj€{1,...,1}} U {B,Ja € UP.,P,} that is contained exactly once in the
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partial sum. As in the proof of Lemma Al.4 we now have

Lr(a; - £,)"" ' max{t;,1}
(A.12) < KTk E min{LT(AJ‘ +. BL‘j) + LT(aJ - B(.‘j)’ LT(M‘_]Z + aj)
Ji=1
i=1,2

+LT(aj - :Bc,.)}

and

)kaax{ij,l}

LT(—aj - ij
< KT* Y. min{LT()\j1 + ,ij) + LT(_dj - ij), LT(P‘jZ - a;)

ji=1

i=1,2

+LT(—aj - ij)}.

We now calculate an upper bound of (A.11) for a fixed partition and a fixed M.
We have Lp(a, — B, )"“max{bl,l} < KT**!. We know that there exists an
argument that is contained in I1;,,L(a; — B, )"“l'[J’ 1Lr(—a; = By )" ex-
actly once as an argument (in this case B, or, if B, is of the form ,B = —Z" 1 a0
one of the B, involved). Because of Lemma A. 11 integration in (A 11) over thlS
argument glves an additional factor KT *log T. Proceeding like this, we obtain as

an upper bound of (A.9)
KT—I—Zl(k—x)TzkH llogzl— lT
which is the result. O

In Theorem Al.2 we have proved that a data taper of degree (&, k) with
k > max{s, + s, — 1, s,, 8,} and suitable « is sufficient for a central limit theo-
rem of J;(¢). Our results of Section 7 (cf. the proof of Theorem 7.1) prove for
(s; >0, s, < 1) and (s, < 1, s, > 0) the necessity of the preceding degree.

APPENDIX 2

Matrix norms and Toeplitz matrices. In this appendix we briefly sum-
marize some results on matrix norms and Toeplitz matrices needed in Section 3.
Suppose A is an n X n matrix. We denote
|Ax| x*A*Ax \1/2
lAll = sup —— = sup | ———
xeC” | | xeC”
= [maximum characteristic root of A*A]"?,
‘where A* denotes the conjugate transpose of A, and

1A| = [tr(AA4*)]"2.

x*x
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If A is a real nonnegative symmetric matrix, i.e., A = P’DP with PP’ = P'P =1
and D = diag{A,,...,A,}, where A, > 0, then we define A'/> = P'D'/?P, where
DY? = diag{|A, ..., JA, ). Thus, A2 is also nonnegative definite and symmet-
ric with A/24Y/2 = A. Furthermore, A~Y/2 = (A/2)"! if A is positive definite.

The following results are well known [see, e.g., Davies (1973), Appendix II, or
Graybill (1983), Section 5.6].

LEMMA A2.1. Let A,B be n X n matrices. Then

(a) |tr(AB)| < |A]|B],

(b) |AB| < ||A|l|BI,

(o |AB| < |A]|||Bl|,

d |IA]l < |A| < Vn|Al,

(e) IABJ < ||A]l||BIl,

® 1Al = 11A%|],

(8) Itr(A)| < Vn|A|

(h) |x*Ax| < x*x||A|, x € C",

(i) logdet A <tr{A -1}, A>0.

Suppose now, that the elements of A are continuously differentiable functions of
6 and 6, < 0,. Then

G) Ly —A‘l(iA)A‘l
a6 a0 ’
k é)l det A =t A'laA
(k) slogdet 4 = {4~ 7).
ad
O 1AG) - A®)| < 10, - )| AG)|, with0 < [6,0,]
ad
) 1A@) - A@)] < 16, - 0)] 4@ witho < [6,,6,]

The following results are proved in Dahlhaus (1986), Lemma 4.1 and Theorem
4.2.

LEMMA A22. Suppose that f and h are real nonnegative, symmetric func-
tions. Suppose further that f is positive on an interval of positive Lebesgue
measure. Then

|B2(£) " Br(f8)?| = || Bx( fR)*B2(£) ™| < sup [h(A) 72,

LEMMA A23. Let LEN, s,s,€N,, f*€Lip, with a k, € (0, 1] and
0<C2<f*<C? and fr be a sequence of spectral densities of processes
XM e #(f*,0,C,T,s,,5,). Let further g,,..., 8, be bounded integrable func-
tions, and h,,..., h, be positive integrable functions that are bounded from
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above and below. Then

gj(>‘
h;(A

lim %tr{jt[lBT( f78;)Br( fThj)_l} - 51"7’/;1{11-:-[1 )}dx .

T oo

N’
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