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ASYMPTOTIC BEHAVIOR OF LIKELIHOOD METHODS FOR
EXPONENTIAL FAMILIES WHEN THE NUMBER OF
PARAMETERS TENDS TO INFINITY!

BY STEPHEN PORTNOY
University of Illinois

Consider a sample of size n from a regular exponential family in p,
dimensions. Let §, denote the maximum likelihood estimator, and consider
the case where p, tends to infinity with » and where {6,} is a sequence of
parameter values in RP-. Moment conditions are provided under which
16, — 6,1l = O,/P./n) and 1§, — 6, — X,,|| = O, (p,/n), where X, is the
sample mean. The latter result provides normal approximation results when
p2/n - 0. It is shown by example that even for a single coordinate of
(0;, - 8,), p2/n — 0 may be needed for normal approximation. However, if
p2%/n - 0, the likelihood ratio test statistic A for a simple hypothesis has a
chi-square approximation in the sense that (—2log A —p,)/ ‘/§p~n )
470, 1).

1. Introduction. Most statistical procedures depend heavily on asymptotic
methods either for inferential purposes or for justification, particularly in non-
normal cases. These methods generally rely on the central limit theorem in the
parameter space and provide good approximations for remarkably small sample
sizes when the dimension of the parameter space is small. However, in all but the
simplest problems, some models with a relatively large number of parameters are
considered, particularly when the sample size is large. Thus, asymptotic results
which permit the number of parameters p to grow with the sample size n are
needed. For example, in a linear regression problem with five independent
variables, a sample size n = 100 might be considered adequate. However, consid-
eration of a quadratic model requires p = 21 parameters; for p2/n to be small (a
condition often required for adequate approximation), n must be much larger
than 500 observations.

The fundamental question for applied statistics is how large can p be
(compared to n) so that asymptotic distributional approximations for maximum
likelihood estimators and likelihood ratio tests may be accepted as reliable. The
basic conclusion presented here for exponential families is that asymptotic
approximations are trustworthy generally if p®2/n is small [and EA, in
condition (3.10) is small], but otherwise may be in substantial error, particularly
if p%/n is not small. The results here apply directly to such applications as
contingency tables (or more general multinomial situations), nonlinear problems
in multivariate normal situations, Markov chains and so forth, although I believe
that the basic conclusion should hold for arbitrary smooth distributional situa-

Received October 1986; revised April 1987.
!Research partially supported by NSF Grants MCS-83-01834 and DMS-85-03785.
AMS 1980 subject classifications. Primary 62E20; secondary 60F05, 62F10.
Key words and phrases. Asymptotics, maximum likelihood, central limit theorem, exponential
family.
356

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @%%
The Annals of Statistics. IIEOIRS ®

WWww.jstor.org



ASYMPTOTIC BEHAVIOR OF LIKELIHOOD METHODS 357

tions. In particular, if p2/n is not small (or if p3/2/n is not small and one wants
to be safe) distributions of maximum likelihood estimators or likelihood ratio
test statistics must be found using alternative methods, for example, Monte
Carlo simulations or more extensive asymptotic expansions (which at present are
not generally available unless p is very small compared to n). One positive result
presented here is that maximum likelihood estimators will tend to be (asymptoti-
cally) consistent if p/n — 0, but the important message here is a word of
caution about applying standard asymptotic approximations when p is not
small.

The general framework for the results assumes a sequence of problems with
observation spaces %,,, parameter spaces ®, C R?» with p, = oo and distribu-
tions Q™ for 6, € B,. Since B, differ, the true parameter value cannot be fixed,
but a sequence {6, € ©,: n=1,2,...} must be considered and strong laws are
precluded. However, versions of weak laws can often provide conditions under
which estimators {0 } satisfy ||0 8,l| = p 0 (for some appropriate norm on ®,).
Similarly, normal approximation results (particularly in the classical row-wise
independent, triangular array situation) will often provide a normal approxima-
tion for functions of (4, — 6 ,) or a uniform normal approximation for S, '/ %4, -
0,) in R?~ [where S, = Cov(0 )] in the sense that

|P{S; (6, - 6,) €A,} —@(4,)| -0

uniformly over appropriate sets A, C R?» (with @ the standard normal distribu-
tion in R?»). Some examples of such results are the following.

For using the chi-square test for testing a simple hypothesis for a multinomial
distribution with p, cells, results of Morris (1975) and Koehler and Larntz
(1982), among others, provide conditions under which chi-square or normal
approximations can be used when p, — co. For the most general situations,
these results appear to require p2/n — 0, but in many cases p2/ 2/n — 0 may
suffice. For example, Theorem 5.2 of Morris [(1975), page 183] gives a normal
approximation for the difference of the likelihood ratio test statistic and a bias
term B,. Let {6,: j=1,..., p,} denote the cell probabilities. If {d,,} lie away
from the boundary of the sunplex in the sense that X.2=,(1/( D26 ;) converges to
a nonzero constant, then B, = O(p3/2/n), and so p>/2/n — 0 suffices.

Some related results obtamlng consistency and asymptotic normality in
regression settings are presented in Huber (1973), Yohai and Moronna (1979),
Ringland (1983) and Portnoy (1984, 1985, 1986a, b and 1987).

The specific framework here takes X,,..., X, ii.d. according to a regular
exponential family distribution P{™ in R? with canonical form density

(1.1) P{M(x) = exp{—y,(0) +6x}, 0686,

with respect to some sigma-finite dominating measure, where ©, is the natural
parameter space (assumed here to be a nonempty set). From now on, we will
generally suppress the subscript n on the dimension p and will let || - || denote
the usual Euclidean norm in R”. As is well known, the maximum likelihood
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estimator O, satisfies
(1.2) v,(0,) = X,

where X = X, = X7, X; and ¢ denotes the gradient of ,,. When necessary, the
coordinates of X; will be denoted using a second subscript j = 1,..., p (X;)).

The results here depend on asymptotic (Taylor series) expansions and on
central limit theorems. The basic expansions are given in Section 2 and hold
under reasonable conditions since derivatives of {(8#) can be expressed in terms
of expectations. These expansions should hold for general regular families, but
the conditions would be extremely unwieldy and artificial. Expansions and
asymptotic normality results are given in Section 3. For general approximation
in RP, a central limit theorem for X is given in Portnoy (1986b) (which shows
that p%/n — 0 is essentially necessary and sufficient for general normality).
However, an asymptotic approximation for the likelihood ratio test statistic for
testing a simple hypothesis is also given which holds if p®?2/n — 0. This result is
based on a normal approximation for (|| X — EX||%2 — p)/ \/55 which is derived
in Section 4 from a martingale central limit theorem and is of substantial
interest on its own.

2. Consistency. The asymptotic results require expansions for the loga-
rithm of the likelihood function, which in this case only involves y(#). Since
Y(0) is a cumulant generating function, its derivatives can be expressed in terms
of moments, thus giving the following straightforward Taylor series expansions.

ProPOSITION 2.1. Let y/(0) denote the gradient and }/(0) denote the
Hessian of y,. For each n and any 6 and 0, in ©,, the fcllowing three
expansions hold for some 8 between 6 and 6, in ©,:

V,(0) = ¥,(6p) + (0 — 6,)¥;,(6,) + 3(8 — 65)'¥7(6,)(8 — 6,)
(2.1) +1E, ((8 - 6,)U)’
+%{Eo((6 - 6,)U)" - 3[ E4((6 - 8,)U )]},
wi(8) = wi(80) + (8 — 6,)'W;(8,) + 3B, ((6 — 6,)U)’U
(2.2) +1E4((6 - 6,)U U
—1E4((6 - 8,)U ) E4((8 — 6,)U)U,
(2.3)  ¥u(8) = ¥i(6,) + (6 — G,)w7(8,) + LE4((8 — 8,)U)°U,
where E, f(U) denotes the expectation of f(V — E4V) with V ~ B,.

THEOREM 2.1. Let \(0) be the minimum eigenvalue of " (8) and let A\(8) be
the maximum eigenvalue. For 0, € ©,, define B, and b, by

Bn = 7\1/2(0n)/é(0n)7 bn = vp/an'
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Let 0, € ©, satisfy B, = O(1) and
sup{|Eo(aU): 116 = 8, < (1.2)b,, lla,ll = 1}
< (0.1)y/n/pX(8,)/N/2(8,).

Then the maximum likelihood estimators {f,} are norm consistent in the sense
that

(25) 16, = 6.l = O,(yp/n).

PRrOOF. Let F(6) = /() — X. The maximum likelihood estimators uniquely
satisfy F(f) = 0. By Theorem 6.3.4 of Ortega and Rheinboldt [(1970), page 163],
if (8 — 6,)YF(0) > 0 for all § € O, satisfying ||6 — 6,|| = (1.2)b,, then there is a

root of F(8) = 0 in || — 6,|| < (1.2)b,, that is, (2.5).would follow. By (2.3), we
have [with p = E; X = ¢/(6,)],

(6—6,YF(6) =(6—6,)¥,(8,) + (8 — 6,)¥7(6,)(8 - 6,)
+3E4((0 - 6,)U)° - (6 - 6,)X
=—(0-6,)(X—p)+(6-6,)9.(6,)(8-19,)
+3E4((8 - 8,)U)".
From Theorem 4.1 [formula (4.11)], {(X — pY(¥(8,) (X —p)}/* = \p/n
S)-ll— 0,(1)). Hence, using (2.4), for ||0 — 6,|| = (1.2)b, with probability tending
(6 - 8,)F(8) = A(6,)116 — 6,11 — (1.05)y/p/n X/*(6,)116 — 6,
—(0.1)yn/pN(8,)/N"*(6,)1I6 — 6,II°

= (p/n)A(8,)/A(8,)((1.2)* — (1.05)(1.2) — 0.1(1.2)°)
> 0.

Hence, the result follows by the previously cited theorem of Ortega and
Rheinboldt. O

(2.4)

(2.6)

(2.7)

REMARK. Since the parameter space is not fixed, there is no way to obtain
consistency at every sequence §, € ©, in general. However, in practice, the true
parameter value would tend not to be very extreme. Since the right-hand side of
(2.4) would generally tend to infinity (if p/n — 0), one could expect (2.4) to hold
for the parameter values of interest.

3. Asymptotic normality. In this section, we will fix the sequence {6,} and
consider the asymptotic distribution of Vn (¥"(8,))/%(8, — 6,) by relating it to
that of vn (¥"(6,)) /%X, — p,): Since affine transformations take exponential
families into exponential families, without loss of generality the notation can be
considerably simplified by taking

(3.1) p,=EX=y(6,)=0, Cov(X)=y"(6,)=1I
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The first result bounds (4, - 6,) — X|| so that the asymptotic distribution of
(8, — 8,) can be derived from central limit theorem results for X.

THEOREM 3.1. Suppose (2.5) holds so that ||6, — 0,||2 < cp/n in probability
and suppose that for some constant B,
sup{ Eola’U|*: |la|| = 1, ||6 - 6,]1* < cp/n} < B,
where U =V — EVwith V ~ P,.

Note that by Holder’s inequality, (3.2) implies
(3.3)  sup{EyaU*|bU|*: ||la| = 1, bl = 1,110 - 6,|* < p/n} < B
for k, and k, positive integers with k, + k, < 4. Then, if p/n - 0,

(6 - 6,) — Xl = O,(p/n).

(3.2)

PRrOOF. Since 4/(0:,) = X, (3.1) and expansion (2.2) yield
(34) (6, —6,) =X~ 3E,((6 - 6,)U)U + 4,

n

where A is the last two terms of (2.2). From (3.3),
(6, - 62| < $E4((6, - 8,)U)" + 1{E4((4, - 8,)U)’)
< Bld, - 6,1* = 0,(p*/n%),

(since |§ — 0,2 < ||§n — 0,]> < cp/n in probability). Similarly, |X'A| =
0,(p*/n?); hence,

35) 16, - 6,° = (6,— 6,)X - 1E,((6, - 6,)U)’ + 0,(p*/n?),
(36) (6,—6,)X=XI2- $E,((6, - 6,)U) (XU) + 0,(p*/n?).
Subtracting (3.6) from (3.5),

”(én - 0n) - X”2 = —%E0n(U,(§n - 0n))2U,((§n - 0n) - ‘Y) + Op(pz/nz)

(37) = %{E&.(Ul(é\n - 0n))4}1/2{E0n(U,((én - on) - X))2}1/2
+0,(p*/n?)
<(4, - 8,) - X4, + B,

by condition (3.3), where A, = O,(p/n) and B, = O,(p*/n?). Solving this
inequality yields the result. O

2

Theorem 3.1 immediately provides asymptotic approximations for many func-
tions of interest. In particular, assume f: R? —» R is such that | f'(x)| is
uniformly bounded (in x and p). Then from Theorem 3.1,

(3.8) f(n(6,-6,)) = f(/nX) + O,(p/Vn).
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Portnoy (1986b) shows that if p?/n — 0, f(Y/nX) can be approximated by
assuming Vn X ~ A0, I) (and that no faster rate will work in complete gener-
ality). Thus, normal approximation will tend to hold if p%/n — 0. It is some-
times possible to obtain a better sufficient condition for normal approximation
by carefully considering error terms in (3.4). For example, if |la,| =1,
vn a,X, - A(0,1) as long as n — oo with no condition on p. Proposition 3.1
gives an error term for a/(f, — 6,) which will often be of smaller order than
p?%/n. It follows directly from (3.4) and Theorems 2.1 and 3.1.

ProrposiTION 3.1. If |la,|| = 1 and (3.2) holds, then
Vn
2

Now let A, =A/(X)=VnE,UX)XaU). Then straightforward calcula-
tions (see the Appendix) show that

(39) Vna,(f,-6,) =Vna,X,-

3/2
Ey (XU ) (all) + op( P )

n

1 p
3.10 EA = —E, |U|*(a.U), VarA, = O(—).
( ) n ‘/; 0,,” ” (an ) arAa, n

Thus, Vrn a’(, — 6,) will be asymptotically normal if p3/2/n — 0 and EA, — 0.
This later convergence will often hold, but the following example shows that
EA_ may actually be of order p/V/n .

Let Y be a random variable (bounded) with EY = 0, EY? =1 and EY3 = 1.
Let U=(Y,YZ,...,YZ,_,), where (Z;,...,Z, ) ~A,_,0,I). Let a,=
(1,0,0,...,0y. Then EU?U, = EY®Z? = 1 so that

EA ! f EUU, P
n= \/ﬁ o Y1 = ‘/"; .
Note that the conditions for Theorem 3.1 and Proposition 3.1 hold for this

example.

Last, we show that the likelihood ratio test statistic for testing a simple
hypothesis can be approximated using the normal approximation for x? as long
as p*?%/n - 0.

THEOREM 3.2. Let A be the likelihood ratio test statistic for testing H,:
0 =0, versus H;: 0 # 0,. Assume the conditions for Theorem 3.1. Then, if
p¥?/n -0,

(3.11) (—2log A — p)/y2p = (nl X||* - p)/V2p + 0,(1).
Thus, the left side of (3.11) is approximately A4°(0,1) by Theorem 4.1.
ProOOF. By definition of A and (2.1),
— 2log A = 2n{(6, - 6,)X - (¥(6,) - ¥(6,))}

(3.12) _ _ 1 . 3 ?
= n{||X||2 —1X = (6, - 6,)I* + 5B, (8, - 6,)U) } +0, %)

where (3.2) is used as in the proof of Theorem 3.1.
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Now, using (3.2) again (with E denoting E, ),
E((6, - 0)U)’ = E(XU)® + 3E(XU)Y(6, - 6, - X)U
(3.13) +3E(XU)((6,-6,- X)U)" + E((6, - 6,- X)U)’

- BE(XU)’ + op((g)z) + op((g)s/%) + 0,,((%)3).

From Proposition A.2, EX(EXU)?)? = O(p®?/n® + p/n*) (where EX de-
notes expectation over X). Hence,
(3.14) E(XU)’ = 0,(p>*/n*? + p¥?/n?).
The result follows by combining (3.12)-(3.14). O

Note that [since y(8,) is assumed to equal I] it is possible to test H, using
the statistic ||§n — 6,]|2. As in the proof of Theorem 3.2, it can be shown that

(nlld, — 6,12 — p)/V2p = (RIX|1> - p)/V2D + 0,(1),

if p%2/n — 0; hence, the same normal approximation holds.

4. Asymptotic behavior of | X||%. Let X,,..., X, be iid. vectors in R?
with EX, = 0, Cov(X,) = I and EX}; < B < + oo (for j =1,..., p), where the
basic “triangular array” situation is being considered but the coordinate index
(J) will be suppressed for convenience. The following result shows that the
asymptotic behavior of ||X,||? follows from a martingale central limit theorem.

THEOREM 4.1. Define T,, € R? and S, by
n
(4.1) T,= L X» 8,=T.T,-np=I|T,* - np.
i=1

Then, if p/n - 0,
(4.2) (n1 X112 - p)/V2p =8/ (ny/2p) —»p #(0,1).
Proor. Let %, be the sigma-field ¥(X,,..., X,) = #(T,,...,T,). That S,
is an %, -martingale follows directly from
Sn = (Tn—l + Xn)’(Tn—l + Xn) - np
= |T,-ill> = (n— Vp + 2X,;T,_, + || X,]|* - p.
Now consider the martingale difference sequence
(4'4) Dn = Sn - Sn—l = ZXI:Tn—l + ”Xn”2 - DP.

Define 62 = ED? and s2 = L 07
To apply the martingale central limit theorem of Chow and Teicher [(1978),
equation (8), page 316], it suffices to show that if p/n — 0, then both

(4.5) Y E|D{’/s} — 0

i=1

(4.3)
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and

(4.6) Y E\E(D3%,_,) — ol|/s2— 0.

i=1
First note that
o? = ED? = 4ET; X, X!T,_,

+4EX!T,_,(1 X2 - p) + E(1XI? - p)°

(4.7)
= 4E||T,_,||> + 0 + O(p?)
= 4(i - 1)p + O(p?)
since
(4.8) E|X,|?* < p*B for k < 3 (since EX{; < B).
Therefore,

(4.9) sk= ioi2=2n(n— 1)p + O(np?) =2n2p(1 + O(%))
i=1
To prove (4.5), by (4.4)
ED? < 8( E(X/T,_,)°)"”* + 8p°.
From the Appendix (A.17) for some constant c,
E(X!T,_,)® < c(i%® + i?p® + ip®).
Hence, for some ¢’ and c¢”,

n n
Z E|D1|3 <c 2 (i3/2p3/2 + il)5/2 + ‘/l_pi'l +p3)

i=1 i=1
< c”(n5/2p3/2 + n2p5/2 + n3/2p3)_
Therefore, from (4.9), if p/n — 0,
n
Y E\DJ*/sy < ¢ (1/Vn + p/n+p¥?/n¥?) -0

i=1
and (4.5) follows.
For (4.6), as in (4.7),

E[D2#,._] = 4IT,_,|I* + 4T_,EX,(I X|* - p) + O(p?).
Hence, from (4.7),
E|E[Di2|-g’.i—1] - °i2| < {E(E[Dfl‘%—l] - °i2)2}

(4.10) < {E(IT- )12 - (i - 1p)" + (EX(I1X” — p))

1/2

BT, T (EX/(1X1? - p)) + O(p*)}'"".
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But ET; ,T,_, = il and [from (4.8)]
2
IEX,(1X% - p)I* = ENXN*(1 X012 - p)” = O(p?).
Therefore, from (4.10),
E|E[D3#,_,] - o < ¢{2i% + ip® + p*}'".
Hence, using (4.9), :

n
Z ElE[Dizl‘g;i—I] _ °i2|/53 < cm(nzpl/Z + n3/2p3/2 + np2)/(n2p) -0
i=1

if p/n — 0 and (4.6) follows. Thus, from the Chow-Teicher theorem,

S,/s, = S./(ny2p)(1 + o(1)) »p #(0,1). O
Last, note that (4.2) immediately yields the r(;sult that
(4.11) 1XII? = p/n + O,(Yp /n) = (p/n)(1 + 0,(1)).
APPENDIX

Let X,,..., X, beiid. in R? with EX = 0 and Cov(X) = I. The computa-
tions here all involve expectations of the form

— 1
E(a’X)* = =Y XY - Xa; - a,EX,; - X
oy i e
Since EX = 0, subscripts i, and i, must be equal at least in pairs. Furthermore,
since Cov(X) = I, for a pair of equal subscripts which differ from all other

i-subscripts, the double sum over j, and j, reduces to a single sum over
J. =J, =J. This argument is used in each of the following results.

ProPOSITION A.1. Define for ||a|| = 1 and U ~ X (independently),
(A1) A, = VnE(U'X)*(aU),

where E, denotes expectation over the distribution of U. Suppose, for some
constant B,

(A2) sup{ E,|a’U|*: ||a|| = 1} < B.
Then

1 2pB? p
(A3)  EA,= =EUI"aU) and VarA,s (z+ ;).

PROOF. As previously noted, since EX; = 0, Cov(X;) = I,

Vn
EA, = FEOZ Z Z Z Ulejz( a’U)EXi,j,Xi,jZ
W ol i Jo
1

ﬁEollUllz(a’U)-

- S EEUey) -
n® 5 7
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Note that by (A.2) and Hoélder’s inequality,
(A4) |EUIXaU)| < LEURIaU| < p(EolU,*)"*(EglaU)®)”* < pB.
J
Similarly, with V ~ U independently,

1
EA% = —EY - LYYV (aU)(@V)EX, ; X, X, ; X,

J2 N VS PV Pl TV Skl PUA

= %EOEZZZWVE(a’U)(b’V) (iy = iy, b5 = iy)

i+l j k
(A.5) 2 , , il = i3, i2 = i4
n” ikl 5ok L=l 12T

1 . . .
+ ?EOZ Z e Z(]j!]jzv}:,‘@(a’v)(a/v) (i, =iy =i3=1,).
St

l

Subtracting (EA,)? from the first term in (A.5) gives

(A6) (1/n = (n = 1)/n2)(Eg|U|*(aV))’ < (Bp)"/n
by (A.4). Using (A.2) for the expectation over V, the second term in (A.5) is
bounded by

a7y @ DBV (@U)@V)) < 2BEU | al(aU)l/n

<2B%p/n,
again by (A.4). Similarly, if e = (1,...,1), the last term in (A.5) is bounded by

’ i 2 B)?
(A8) %(EO(ZUJ) (a’U)) = ;la(Eo(e'U)“’(a'U)) < (’;2) ,

Thus, the bound on Var A, follows from (A.5)-(A.8). O

PROPOSITION A.2. Under the hypotheses of Proposition A.l,
(A.9) E(E(UX)?) < c(p™2/n® + p*/n*)
for some constant c if EXS. < B forallj = 1,..., p.

ij=

Proor. Expanding as in (A.5) and summing,

E(E(UX )3)2=
(A10)  (c/n)(EJUIPIVIPUY + EUVI?)
(A.11) +(c/n*)EE U X)P|V'X|?
(A.12) +(c/n*)E(E UIIUX| [V'X]? + E ) UVI(UX) (VX))

(A.13) +(c/n®)EE U XP|V' X2
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For (A.10), from (A.4) (for expectation over V') and Hélder’s inequality,

(A.14) EqUIIVII’|U'V] < pBE|U||® < B'p*?
and from (A.2),
(A.15) EU'V]? < BE,|U|? < cp®2.

Therefore, (A.10) contributes the first term in (A.9). From (A.15), (A.11) is
bounded by (c¢/n*)E||X||® < ¢p®/n*, which gives the second term in (A.9).
Similarly [using (A.2) and (A.4)], terms (A.12) and (A.13) are also bounded by the
second term in (A.9). O

Last, note that Proposition A.3, which is required for Theorem 4.1, does not
need condition (A.2). The proof is similar to the preceding proof.

PROPOSITION A.3. LetT,_, = L7 !X, and suppose

(A.16) EX5<B forj=1,...,p.

Then for some constant c,

(A17) E(X!T,_,)° < ¢(n®p® + n%p® + np®).
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