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SIMULTANEOUS ESTIMATION OF POISSON MEANS
UNDER ENTROPY LOSS

By MaLAY GHOsH! AND MING-CHUNG YANG

University of Florida and University of Iowa

This paper characterizes admissible linear estimators of multiple Poisson
parameters under entropy loss. Estimators dominating some of the standard
estimators are given. Further, hierarchical Bayes estimators are generated
and conditions under which they dominate the standard estimators are also
given. Monte Carlo simulations are undertaken to indicate the extent of the
risk dominance.

1. Introduction. Let X,..., X, be p independent Poisson variables with
respective means 6, ..., §,. We write X = (X|,..., X)) and 6 = (6,,...,6,). Itis
assumed that 8 € (0, 00)”. Consider the problem of estimating 8 when the loss is

of the form
p

(1.1) Ly(6,8) = ¥ 0;™(0, - a;)’,
i=1

where m;’s are known constants. For p = 1, admissibility of the usual (MLE,
UMVUE, etc.) estimator X of 6 follows from more general results of Karlin
(1958) or Brown and Hwang (1982) for every m, [other proofs are available in
Girshick and Savage (1951) or Hodges and Lehmann (1951)]. Estimation of 8 in
higher dimensions has received considerable attention in recent years beginning
with the pioneering work of Clevenson and Zidek (1975). Clevenson and Zidek
showed that when m, = --- = m, =1, X was an inadmissible estimator of 0
for p > 2. Peng (1975) considered the case m; = --- = m, = 0 and proved the
inadmissibility of X for p > 3 and its admissibility for p = 2. In more recent
publications, estimation of 6 is considered for general m,,..., m, [see Ghosh,
Hwang and Tsui (1983) for a unified treatment].

The present paper considers instead the loss as the entropy distance (or the
Kullback-Leibler information number) between two distributions of p indepen-
dent Poisson variables. Accordingly, the loss is defined as

E, [k,g{ | MTewn(-0)07/x:) / 11 exp(-a,.)agf.-/x,.g)}]

L(0,a)
(1.2)

= f: (ai -0, - oiIOg(ar/oi)) = i oi(ar/ai — log(a/6;) — 1)-
i=1 i=1
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Note that the entropy loss can differ from the conventional loss measured in
terms of the distance between the parameter and its estimate.

The entropy loss was first introduced by James and Stein (1961) for estima-
tion of the multinormal variance-covariance matrix. Later, the same loss was
considered in Brown (1968), Haff (1977, 1979, 1980, 1982) and Dey and Srinivasan
(1985) for estimating either the multinormal variance—covariance matrix or its
inverse. Dey, Ghosh and Srinivasan (1987) considered the entropy loss for
simultaneous estimation of p independent gamma scale parameters or their
reciprocals, while Ighodaro and Santner (1982) and Ighodaro, Santner and
Brown (1982) considered entropy loss for simultaneous estimation of indepen-
dent binomial and multinomial proportions.

Note that when (a; — 6,)8; ! is near zero, retaining only the first two terms in
the Taylor expansion,

log(a,/0;) = log(1 + (a; - 6,)6;7*) = (a,— 6,)6;* — L(a, - 8,)°672.

Hence, from (1.2) it follows that if (a; — 6,)0; ! is close to zero for all i = 1,..., p,
then L(0,a) = 1Y% (6, — a,)?/0;, which is a constant multiple of the loss given
in (1.1) with m; = --- =m, = 1. However, the loss (1.1) (with m; = --- =
m, = 1) and (1.2) may differ considerably when the preceding does not hold.

Note that the usual MLE estimator X of 0 is not very appropriate in this
case since under the loss (1.2), X has infinite risk for all 8. One way to
generate meaningful estimators is to use certain priors (proper or improper)
and obtain the resulting generalized Bayes estimators of 8 under the loss (1.2).
For any such prior, if the resulting posterior pdf f(0|x) is proper, the gener-
alized Bayes estimator of 0 under (1.2) is obtained by minimizing
Xr,f(a; - 6loga;)f(8]x)dl, --- df, with respect to a which gives the solution
a;,=a,x)=E(]x), i=1,..., p. Thus, the generalized Bayes estimator of
under (1.2) is the same as its generalized Bayes estimator under squared error
loss and is given by E(8|X). Thus, use of independent gamma («;, &;) priors

P

(1.3) g.1(8) = H {exp(_aioi)oiki-la?i/r(ki)};

i=1

a,>0,k;>0forall i =1,..., p, leads to the proper Bayes estimators
(1.4) es(X) = (1 + o) (X, + &y),...., (1 + 0,) (X, + &)

of 0, and these estimators have finite Bayes risks (expected loss over the joint
distribution of the parameters and the samples). The class of priors described in
(1.3) can be extended to include improper priors as well, where some or all of the
a;’s and k;’s are allowed to be zeros. The resulting generalized Bayes estimators
are obtained as appropriate pointwise limits of the estimators derived in (1.4).
The preceding estimators are members of a more general class of estimators of
the form XC + b, where C is a diagonal matrix of constants and b is a vector of
constants. In Section 2 of this paper, we characterize the admissible subclass
within this general class of estimators. A fortiori, this will characterize the
admissibility of generalized Bayes estimators under independent gamma priors
or their limits. Cohen (1966) characterized admissible linear estimators of the
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multivariate normal mean, while Brown and Farrell (1985) characterized admis-
sible linear estimators of Poisson means under the loss (1.1) with m, = -.. =
m,=1or0.

Following Ghosh (1983), in Section 3 of this paper, we obtain certain gener-
alized Bayes estimators of 0 using hierarchical priors. Such estimators have also
an interesting empirical Bayes interpretation.

In Section 4, using Monte Carlo simulations, we compare the risk perfor-
mances of X + 1 and the estimators dominating them. In the preceding, 1 is a
p-component row vector with all elements equal to 1.

In Section 5, we have made some concluding remarks about how the results of
Section 2 can be generalized when C is not necessarily diagonal. The proof of the
technical Lemma 4 is deferred to the Appendix.

2. The admissibility results. Let the parémeter space be © = (0, 0)”.
Write C = diag(c,,...,c,) and b = (b,,.. b,), where each b, > 0. Note that
since P(X; = 0) > 0, if one allows some b < 0 the correspondlng ¢;X;+ b, can
take negative values with positive probablhty for which the loss given in (1.2)
will be undefined. The main theorem of this section characterizes the admissibil-
ity of the estimators XC + b under the loss (1.2).

THEOREM 1. Under the loss (1.2), XC + b is an admissible estimator of 9 if
and only if (i) b;>0 and 0<c¢;<1 for all i€ S={(1,...,p} and (i) 0 <
Lies: q=1)bi < 1 holds.

The preceding characterization theorem is a consequence of Lemmas 1-5. For
all these lemmas, the loss is the one given in (1.2).

LEMMA 1. XC + b is an inadmissible estimator of 0 if there exists at least
one c; > 1 with the corresponding b, > 0.

PROOF. Suppose ¢, > 1 and b, > 0. Then, writing once again $°(X) = XC +
b, but 8*(X) as an estimator with all but its /th element equal to the correspond-
ing element of 3°(X) and the /th element of 8*(X) equal to X, + b,c;}, it follows
that

R(6,8°) — R(0,8*) = E, [L(8,,c,X,+ b)) — L(8,, X, + b !)]
= (c/6,+ b)) — (6,+ b )
(2.1) —8,Eylog[(c, X, + b)) /( X, + bye; V)]
=(¢,—1—-loge)0,+ b,(1 - ¢t)
> (¢;—1-1logc)6,>0,
8o that 8* dominates §°. O

LEMMA 2. XC + b is an admissible estimator of 0 if 0 < c¢,<1 and b, > 0
for everyl € S.
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Proor. Consider the joint prior distribution which is the product of inde-
pendent gamma ((1 — ¢;)/c;, b,/c;) priors if ¢; > 0 and priors degenerate at b, if
¢;=0. XC + b is a proper Bayes estimator of 6 under this prior with finite
Bayes risk, and hence, it is admissible. O

LeEMMA 3. XC + b is an inadmissible estimator of 8 if b, = 0 for somel € S.

Proor. This is an immediate consequence of the fact that if b, = 0 for some
le S, R(8,XC) > R(0,, X;c;) = + o0, while there exist estimators, for example,
positive constants with finite risk for all 8 € (0, c0)?. O

LEMMA 4. Foreveryp > 1,38°X) = (X, + b,,..., X, + b)) is an admissible
estimator of 8 under the loss (1.2) if b;> 0 foralli € Sand ¥;.gb; < 1.

The proof of Lemma 4 is technical and is deferred to the Appendix. Like many
other proofs of admissibility, our proof employs Blyth’s (1951) technique, but
instead of using a sequence of conjugate gamma priors to approximate the
improper prior with respect to which 8°(X) is generalized Bayes, our proof
employs a different sequence of priors closely akin to Brown and Hwang (1982).
However, in spite of the similarity of the technique of proof with the one in
Brown and Hwang, the calculations are different because the present entropy
loss differs from the squared error loss of Brown and Hwang.

The final lemma of this section proves the inadmissibility of 8°(X) defined in
Lemma 4 when b, > 0 forall i € S and ¥; . ¢b; > 1.

LEMMA 5. Suppose 3*(X) = 8°(X) + ¢(X) when ¢(X) = (6,(X) -+ ¢,(X))
with
c(X)(X; + b))

(X, +d) =P

$:i(X) = -

where d > 0 and ¢(X) is nondecreasing in each coordinate. We assume that

() Z2,b;=B>1;
(ii) 0'< e(X) < [2(B - )pd1/[pd + 1 + 2(B — 1)] = G (say).

Then 8*(X) dominates 3°(X) under the loss (1.2).

ProoF. First note that using (1.1) of Hwang (1982),

R(0,8%) - R(0,87) = ¥ Eo[¢,-(x) - 0,-10%(1 + (ﬁ)}

(2:2) d $(X —e;)
= ElEo ¢,(X) — X;log|1 + X1b-1 Iix, 1)

< E[UX)],
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where
p

(2.3) UX)= ) [d:(X) - X-log(l + M)I ]

- = i i Xi+ bi_ 1 [X;=1] |»
e; being the ith unit vector. Next, observe that writing 7= X?_,X; and using
assumption (ii),
¢(X — e;)
Xi + bi - 1
Next, using (2.4) and Lemma 3.1 of Dey, Ghosh and Srinivasan (1987), it follows
that

(X -e)

(2.4) (X211 = T—-i-p;iTT (x;>11 < ﬁ

<1.

6:;(X - e;)
log(l + ———Xi - 1) [X;>1]
9(X-e) 3-G(pd)" #(X-e)
(2.5) > — = " 2 ({1xi21]
X;+b-1 6(1-G(pd)™") (X;+b,—1)
c(X—-e;) 1 o X -e)
>{————— —pd(pd -G — iy o
{ T+pd-1 2P (p ) (T+pd—-1)2 [X;=1]

Using the fact that ¢(X) is monotone in its arguments, it follows from (2.3) and
(2.5) that

¢(X)(T + B) c(X)T pd Tc*(X)
UX) =< - T + pd {T+pd—1+2(pd—G) (T+pd_1)2}”2”
B c¢(X)(T + B) e(X)T N pd Tc(X) I
T+ pd T+pd—1 2(pd—G) (T+pd-1)*|">"
(2.6)

—C(X)T yo +
< @ pd)(T+pd=1) [< ~1)- mc(x)]fm
c(X)T(pd + 1)
" (T +pd)(T+pd - 1) (G = XNy
<0,

where assumption (ii) is used in the last step. The lemma follows now from (2.2)
and (2.6). O

PROOF OF THEOREM 1. We are now in a position to prove Theorem 1. From
Lemmas 1 and 3, it follows that 8°(X) = XC + b is inadmissible when any
element of b = 0 or a diagonal element of C, say c;, exceeds 1 with corresponding
b, > 0. Further, if some of the ¢; = 1 and sum of the corresponding b; > 1, then
using Lemma 5, one can prove the inadmissibility of 8°(X). Hence, suppose that
3°(X) has components of the type c;X; + b;, where each j in S belongs to one of
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the two sets
={j:0=<¢<1,b;>0}
and
sz={j: ¢j=1,b>0and )} bjsl}.
Ji =1

If either S, or S, is empty, then appealing to Lemmas 2 and 4, one proves the
admissibility of 3°(X).

Suppose now neither S, nor S, is empty. Let 3(X) = (8,(X),..., 3,(X))
dominate 8°(X). Writing the component losses of L(8,a) as L(§;, a;), one gets

(2.7) E,l zp) L(s;, aj(X))} < E, Z L(6; 8°(x))]

Jj=1 j=1

for all 8 € (0, 0)? = @ with strict inequality for some 6 € ©. Integrating both
sides of (2.7) with respect to pdf’s corresponding to the priors £,(6;) described in
Lemma 2 for j € S, one gets

J L E[L(650)] IT d¢(4)

JES

+f > Eo[L aj(X))]jlel dg;(6;)
(2.8) o5 1
<fzmu,wm]nﬁw)

JES
+[ L E[L(6,8/00)] TT 42,(9):

But, since 8°(X) is the Bay&i estimator of 6, with finite Bayes risk for every
J € 8,, the ﬁrst term in the rhs of (2.8) is less than or equal to the first term in
the lhs of (2.8). Hence,

J £ B[ (0, 8)] TT 45(4)
(2.9) '
< | £ B[L(6,500)] I1 d5(0).

Let 0, denote the vector with its elements equal to §; (j € S,). Both the lhs and
rhs of (2.9) depend on 6 only through 0. Also, the rhs of (2.9) involves only the
elements of X, the vector with its elements X; (j€S,). The lhs of (2.9)
involves the elements of X, where the elements of X+ are independent Poisson
with parameters equal to the corresponding elements of 8, while the remaining
elements have certain negative binomial distributions depending on the b,’s and
c;’s or are Poisson with parameters b; (j € S)). Using convexity of the loss and
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the sufficiency of X, for 8, it follows that there exists 8(X_ ) such that
P> L(8,5/%.)| IT ()
JES, JES
(2.10) < [ T E[L(4, )] IT dz,(6)
JjES, JES,

JLapRt: §7x))] IT 46/(9).

But using Lemma 4, 8°(X, ) is an admissible estimator of 8, within the class ot
all estimators depending only on X . Thus, using convexity of the loss, one must
have 8(X,) = 8%X,) a.., because otherwise 1(8(X.) + 8%X,)) dominates
89X ,). Hence, one must have equality in (2.10) and, accordingly, in (2.9). Hence,
from (2.8), (2.9) and the unique Bayesness of 81-0(X) with respect to the prior §;,
one gets

[ 1 [ T
(2.11) Ey| X L(6,8(X)| = E| ¥ L(6,8(X)|.
| JES, ] | JES, |
Hence, from (2.8) and (2.11), one must have
(2.12) E| T L(6, )| <&| X L(g,5°x)],
| JES, ] | JES,

with strict inequality for some 6 € ©. Arguing as before with the sufficiency of
X, for 0_, convexity of the loss and using Lemma 4, one finds that (2.12) leads to
a contradiction. Thus, 8°(X) is admissible when all j € S, U S,. The proof of
Theorem 1 is now complete. O

3. Hierarchical Bayes estimators. In this section, we develop certain
Bayes estimators using hierarchical priors of Ghosh (1983). According to this
“formulation, conditional on U = u (0 < u < 1), §,’s have independent gamma
(/1 — u), k;) prior distributions, while U has a beta (m, n) prior distribution.
Then, using the results of Ghosh (1983), the Bayes estimator of 0 is given by
8 4(X), where

n+T
8HX) = ———— (X + ;
7 X) k+m+n+T(X’+k’)
(3.1) k+m
gl Bl (C AR
for j=1,..., p, where k =X?_k; and T = X2_, X,. These estimators have an

interesting empirical Bayes interpretation. Suppose we consider only the first
stage prior as described previously. Then the Bayes estimator of 0 is (1 — u)
(X + k), where k = (k,,..., k,). In an empirical Bayes framework, « is un-
known and is estimated from the marginal distribution of the X;’s. It is easy to
find that marginally X;’s are independently distributed negative binomial ran-
dom variables with probability functions

I(x; + k)

k; _ xi
PP B

(3.2) P(X,=x,) =
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x,=0,1,...,k; (i=1,..., p). Then, marginally T = ¥2_, X; is sufficient for u,
having a negative binomial distribution of the form

T k
(3.3) P(T=t)= —g%(%;—)-uk(l -u)’, t=0,1,...,

where k = LP_,k;. Estimating u from the marginal distribution of T, one gets
(1 — &(T))XX + k) as an empirical Bayes estimator of 8. The estimator given in
(3.1) is one such estimator with &(T)=(k+m)/(k+ m+ n+ T). If one
identifies £; with b; in the definition of ¢,(X) in Lemma 5 and takes ¢(X) = 2 + m
and pd =p + m + n, then, using Lemma 5, the estimator 3%(X) dominates
the generalized Bayes estimator of 8 provided 2 =YX7 k;>1 and £+ m <
20k — 1k +m+n)/(k+m+n+1+ 2k —-1)). This is equivalent to
n/(k+m+n+1)>(k+ m)/(2(k — 1)). This is impossible to achieve for ev-
ery given m, n and p, for example, when m > k — 2. However, if m <k — 2
(k = 3) and n is very large compared to 2 + m + 1, it is possible to construct a
proper Bayes estimator which dominates X + k. Thus, for &2 > 3, it is possible to
construct proper Bayes estimators using hierarchical priors which dominate
X + k. One merit of constructing such estimators is that they are typically
admissible.

4. Monte Carlo simulations. It is pointed out in the introduction that
estimators X + b of 0 are generalized Bayes with respect to improper (limiting
gamma) priors. One such estimator is X + 1. In some sense, this is a plausible
estimator of 0, since it prevents its components from being too small near the
origin. Note also, that X + 1 has finite risk for all 8 € (0, o0)?. However, it is
shown in Section 2 that X + 1 is an inadmissible estimator of 6 for p > 2 under
entropy loss. In this section, using Monte Carlo simulations, we show the risk
improvement of certain estimators given in Lemma 5 dominating X + 1.

With this end, for different p, first take certain values of 6,,...,0, and
compute the risks of 8°(X) = X + 1 and

_ 2pd(p — 1)
(pd+2p - 1)L2_(X; + d)

8*(X) =X (X+1)

under the loss (1.2) for d =1,2,3,5,10 and p = 2,5,10. Now, X,,..., X, are
generated by the IMSL routine GGPON such that X; has a Poisson distribution
with parameter 6, i=1,..., p. Then, the losses L(0,3°) and L(8,3*) are
calculated. This procedure is repeated 1000 times to compute the simulated
versions of R(0,8°) and R(0,8*) as the averages of L(8,8°) and L(0,3*),
respectively. From the preceding, the percentage risk reduction is computed as
100[ R(0, 8°) — R(0, 8*)]/R(0, 8°). The preceding procedure is repeated 10 times
by keeping the 6,’s fixed. The averages and standard deviations of the 10
percentage risk reductions are reported in Tables 1-3 corresponding to p = 2, 5
and 10, respectively.
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TABLE 1

(p = 2) Percentage of risk reduction for 8* over 8°.
(Estimated standard deviations are in parentheses.)

d
(By,...,8,) 1 2 3 5 10
(0.5,0.5) 4452 (0.26) 4020 (0.17) 3451 (0.11) 2599 (0.09)  15.94 (0.04)
(0.5,2.0) 23.57(0.23)  27.29(0.15)  26.39(0.14)  22.04(0.14)  14.88 (0.07)
(0.5,3.5) 14.07 (0.28)  18.25(0.23)  18.65(0.20)  17.20(0.15)  12.77 (0.13)
(1.0,3.0) 15.36 (0.38)  20.23(0.19)  20.42 (0.18)  18.63(0.18)  14.26 (0.07)
(2.0,2.0) 1493(0.23)  20.41(0.28)  20.71(0.18)  19.33(0.18)  14.45 (0.11)
(2.0,4.0) 1040 (0.29) 12.75(0.27)  14.47(0.19)  14.69 (0.21)  11.57 (0.12)
(3.0,4.0) 8.48(0.33) 10.33(0.31) 12.10(0.26) 1275(0.21)  10.80 (0.14)
(4.0, 6.0) 5.02 (0.30) 7.27 (0.26) 8.16 (0.27) 9.12 (0.33) 8.22 (0.23)
(4.0,8.0) 4.60 (0.32) 6.06 (0.24) 6.27 (0.18) 7.82 (0.30) 7.26 (0.17)
(5.0,7.0) 4.35 (0.21) 5.70 (0.28) 6.46 (0.14) 7.28 (0.16) 7.33 (0.09)
(6.0, 6.0) 4.45 (0.15) 5.69 (0.36) 6.46 (0.20) 7.37 (0.15) 7.50 (0.21)
(7.0,8.0) 3.33 (0.20) 4.29 (0.27) 4.70 (0.21) 5.67 (0.22) 5.94 (0.23)
(8.0,8.0) 3.37 (0.14) 3.89 (0.26) 4.49 (0.25) 4.92 (0.21) 5.68 (0.21)
(8.0,10.0) 2.79 (0.19) 3.50 (0.27) 4.00 (0.27) 4.64 (0.08) 5.38 (0.23)
(8.0,12.0) 2.48 (0.13) 3.07 (0.27) 3.52 (0.29) 3.83 (0.24) 4.53 (0.21)
(9.0,11.0) 2.29(0.15)  3.25(0.18)  4.02(0.23)  4.10(0.25)  4.55(0.25)
(10.0, 12.0) 2.19 (0.16) 2.78(0.14) ©  3.28 (0.30) 3.75 (0.28) 4.15 (0.24)
TABLE 2
(p = 5) Percentage of risk reduction for 8* over 8°.
( Estimated standard deviations are in parentheses.)
d
(Oy,...,8,) 1 2 3 5 10
(1.0,1.0, 1.0, 1.0, 1.0) 48.97 (0.20)  50.34 (0.11) 47.45(0.09) 39.32 (0.09) 26.43 (0.04)
(3.0, 3.0, 3.0, 3.0, 3.0) 19.32 (0.15)  22.10(0.33) 22.50 (0.21) 22.43 (0.17) 18.15(0.14)
(0.5, 1.0, 2.0, 3.0, 4.0) 25.90 (0.20) 29.51(0.22) 29.51 (0.24) 27.54 (0.08) 20.64 (0.13)
(0.8,1.6,2.4,3.2,4.0) 23.48(0.17)  27.15(0.28) 27.50 (0.14) 26.68 (0.14) 20.02 (0.09)
(5.0, 5.0, 5.0, 5.0, 5.0) 11.34 (0.12) 13.08 (0.15) 13.46 (0.18) 14.29 (0.28) 13.25 (0.21)
(7.0,7.0,7.0,7.0,7.0) 8.15(0.13)  9.07 (0.30) 9.86(0.24) 10.50(0.16) 10.04 (0.20)
(4.0, 5.0, 6.0, 7.0, 8.0) 9.67 (0.11)  10.95 (0.25) 11.81 (0.25) 12.42(0.22) 11.41(0.17)
(4.8,5.6,6.4,7.2,8.0) 8.93(0.25) 10.28 (0.26) 11.14 (0.25) 11.10(0.28) 10.91 (0.18)
(9.0,9.0,9.0, 9.0, 9.0) 6.52 (0.13)  7.45(0.21) 7.66(0.22) 8.26(0.09) 8.10(0.19)
(11.0,11.0,11.0,11.0,11.0) 548 (0.12)  6.11(0.20) 6.62(0.22) 6.03 (0.22) 6.84 (0.21)
(8.0,9.0,10.0,11.0,12.0)  578(0.10)  692(0.29) 7.00(0.32) 7.40(0.19) 7.27(0.17)
(8.8,9.6,10.4,11.2,12.0)  547(0.09)  591(0.19) 6.47 (0.18) 6.86(0.19)  6.02 (0.15)

The preceding simulation results suggest that for a given p and d, the
maximum risk reduction takes place when all the 6,’s are near zeros. This is quite
intuitive since 8*(X) shrinks 8°(X) toward zero. Also, when the 6, values are
equally spaced within certain intervals [for example, (2.0,4.0) for p = 2,
(0.8,1.6,2.4,3.2,4.0) for p=5 and (0.4,0.8,1.2,1.6,2.0,2.4,2.8,3.2,3.6,4.0) for
p = 10 all involve spaced 6, valued within (0.00,4.00]], the risk improvement

seems to be more significant when the dimension increases.
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TABLE 3
(p = 10) Percentage of risk reduction for 8* over 8°.
( Estimated standard deviations are in parentheses.)

d
(8y,..-,8,) 1 2 3 5 10

(1.0,1.0,1.0,1.0, 1.0,
3.0,3.0,3.0,3.0,3.0) 32.33(0.17) 35,37 (0.08) 35.13(0.15) 32.25(0.15) 24.33(0.07)
(2.0,2.0,2.0,2.0,2.0,

4.0,4.0,4.0,4.0,4.0) 23.09(0.19) 25.87 (0.17) 25.93(0.19) 24.93 (0.16) 20.34 (0.13)
(0.4,0.8,1.2,1.6,2.0, ‘

2.4,2.8,3.2,3.6,40) 29.33(0.15) 32.05(0.14) 32.25(0.24) 29.60 (0.14) 22.81 (0.08)
(5.9,5.0,5.0,5.0,5.0,

7.0,7.0,7.0,7.0,7.0) 1157 (0.15) 13.24 (0.30) 13.51(0.24) 13.79(0.17) 12.88 (0.16)
(6.0,6.0,6.0,6.0,6.0, .

8.0,8.0,8.0,80,80) 10.13(0.13) 11.29(0.22) 11.68(0.08) 12.06(0.16) 11.54 (0.12)
(4.4,4.8,5.2,5.6,6.0,

6.4,6.8,7.2,7.6,80) 1127 (0.13) 12.80(0.16) 13.22(0.26) 13.04 (0.16) 12.78 (0.11)

5. Concluding remarks. For simultaneous estimation of means of p inde-
pendent Poisson variables under the entropy loss given in (1.2), so far we have
considered estimators of the form XC + b when C is diagonal. Theorem 1, given
in Section 2, provides necessary and sufficient conditions for admissibility of such
estimators. Utilizing our Theorem 1 and Theorem 1 of Brown and Farrell (1985),
one can extend the admissibility results for an arbitrary C.

With this end, first note that following the line of argument of Brown and
Farrell (1983) [see also Brown (1981)], one can show that a necessary condition
for an estimator 8 of 8 to be admissible is that 8 is the pointwise limit of a
sequence of Bayes estimators. Since Bayes estimators under the squared error
and entropy losses are the same, such estimators retain the same property as
given in (1.2) of Brown and Farrell (1985). Now minor modifications of the proofs
of Theorems 1 and 2 of Brown and Farrell (1985) lead to the following theorem
which characterizes admissible estimators of the form XC + b, where C is not
necessarily diagonal. The proof of the theorem is omitted for brevity.

THEOREM 2. Under the loss (1.2):

(i) If C is nonsingular, then 8(X) = XC + b is admissible if and only if
C = D is a diagonal matrix and satisfies the conditions (i)—(ii) of Theorem 1.

(ii) If C is singular, then 8§(X) = XC + b is admissible if and only if there
exists a permutation ¢ of 1,...,p for Ct and b’ (where C* and b° denote,
respectively, the transpose of C and b) such that the permuted matrix (C*) =
(Cliiyoisy) has the block form

a(i)o(j !
M, 0 -~ 0 - 0
0 M, --- 0 --- 0
©r-| : .

8

0 e 0 e 0
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and the permuted vector (b‘) = (8;m,, Bom,,...,B,m,Yy). In the preceding
M; are (r; X r;) with the rank 1 and M; = om’, (1,...,1), i = 1,2,..., s, where
m’; is an (r; X 1) vector with positive entries satisfying (1,...,1)m%=1, 1 >
0,202 -0 20,>0,yisa(r,, X1 vectorofposztweentnes Zf"llr =p,
B;>0,i=1,...,s, and if there exists an i such that ¢; = 1 and o;,, < 1 (with

051 = 0), then Zk=lﬂk <1
APPENDIX

PROOF OF LEMMA 4. Under the prior =(8) = (I17%.,0,%")g(0), where b, > 0
for all j, and the loss (1.2), the Bayes estimator of 0 is 84(X) = (8§(X),.. ., 65(X)),
where

88(x) = [[0‘” j()waiexp(—faj) ﬁ@xf‘“’;f‘lg(())dﬂl dﬂp]

J=1

(A1)
o0 0 p
+ f exp( Y6 ) 675*%g(0) do, dﬂp].
0 1
Define I (g) as the denominator given in (A.1). Then, integration by parts leads
to
(A2) 88(x) = x; + b + [ I, o (Vig) /I(&)],

where v,g = dg/d0; and e; is the ith unit vector. Take g(6) = 1 and g,(8) =
8(0)h%(0), where h%(0) w111 be defined later. Then I,,,(V;g) = 0 and one gets
from (A.2),

Lo(Vign)
I(&,)

Hence, writing r(w, 8) as the Bayes risk of an estimator 8 of 8 with respect to
the prior «, and writing =,(0) = [12.,6%'g,(0), one gets

(A.3) gf(x) — 8(x) = -

p 88( )
r'4 — &n = g —_— .gn
(84) (7, 89) = r(r,, %) ElE[s‘ (X) = 8£+(X) ~ Blog 5 o (x)]
where E denotes expectation over the joint distribution of 6 and X. Note that
E[55(X) - 65-(X)] - B |- 20
=0 x,=0
n};lajxj+bj—1 3gn
(A5) X (—_I_I-;)-—I;IT— 0"3—07 d01 e dap

Il
|
S
8
S
8
o
%

i
\—)-./
=

Q:
S|k
U
>
QU
R
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E|6] OH(X) E|6] Xt b
08 7" B 78 X, +b+ {Ix+eL(Vign)/Ix(gn)}

-E

ol X, +b -
;108
X, + b+ {Ix, . (vi8,)/Ix(8,)}
IX+e(Vzgn) :I
(X; + b,)Ix(g,)
0 e 1 x+e (V,gn) x+e, (gn)
Z Z T2 ;! ( b)I
=0 x,=0 =1%;° X; + ) x(gn)
Next notlng that I x+e; (gn) = (x + b, )Ix(gn) + 1. x+e (vtgn)7 one gets from (A 6)’

85(X)
_E[ﬂl g88 (X)]

< E[ﬂ,

(V ) ) + Ix2+e,(vign)
xel Vi) T (e b)I(2,)

) © Bg
= bi-11g 2N
_fo fo (1‘[01 )o, . dé, --- déb,

b e 1 Ix2 e Vi n
+ E .. E + ,( g ) .
ne0 a0 1! (2, + b)) I(8,)
Combining (A.4), (A.5) and (A.7), one gets

r('”n» 86’) - r('”n’ 55,.)

(A7)

& & < 1 I3+e~(vign)
< cee L
igl x12=0 x,,‘éo (n};lxj!)(xi +b)  I(g,)
I S Tl
s “ e
i=1x=0  x,=0 (nf‘;lxj!)(xi +b;)

i o P ah \2
X e T2 9x+o-1| —2| d6, --- dé,
(A.8) Lo (“ g )( fwi) ' ’
p 00
YR+ Y (x+1))7

<
i=1 x;=0
. , P \[0h,\?

-0,px;+1 bi—1 n

x [ fo e %9 0,(}1101 )(ao,.) dé, -+ db,
Pow e [P ah,\?

-1 b—-1 n 9

<1+ maxor) [ [0l o) (T oo
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Now take
p
h,(0)=1, ifo<p=)6,<1,

i=1
(A9) log pu
= 1 —
log n

, ifl<p<n,

=0, otherwise.
Then, from (A.8) it follows that

r(7,, 8¢) — r(m,, 85)

(A.10) < (1 + max b,-“)(logn)_2 f fp,‘l( lglﬂjbf'l) dé, --- déb,.

l<i<p l1<p<n Jj=1

Using the transformation p = XP¢;, 0,=60,/p, i =1,..., p — 1, it follows that
the integral in the rhs of (A.10) equals

f. . f -/;n”—l(y’zlpbj—pw—l)

$;>0,ZP 1¢;<1

b,-1

p—1 p—1
X 1:[ ¢j-’f‘1(1 - X ¢,) dpde, -+ de,_,
1
(A.11) < const. j;np’:fbi'2dy

P
< const., if )b, <1,
1

p
< const. (logn), if }.b,=1.
’ 1
It follows from (A.10) and (A.11) that r(=,, 8%) — r(m=,,84) > 0 and n - «©
when X?_ b, <1, and using Blyth’s theorem [see, for example, Brown and
Hwang (1982)], the proof Lemma 4 is complete. O

Acknowledgment. Thanks are due the referee for his constructive com-
ments which led to substantial improvement over the original version of the

paper.
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