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SOME CLASSES OF GLOBAL CRAMER-RAO BOUNDS

BY B. Z. BoBROVSKY, E. MAYER-WOLF AND M. ZAKRAT
Tel-Aviv University, Technion and Technion

This paper considers Cramér-Rao type bounds for the estimation error
of a parameter in a Bayesian setup. This class of bounds, introduced by Van
Trees, proved useful in various stochastic communications and control
problems. Two issues are considered in this paper. The first deals with a
comparison of the tightness of several different versions of the bound in the
multivariate case. The second introduces several useful generalizations of the
original version of the bound.

1. Introduction. The Cramér-Rao bound [10] was developed in the context
of non-Bayesian estimation and provides a lower bound for the mean square
error of any unbiased estimator of a parameter; this bound is, in general, a
function of the parameter. In [12] Van Trees presented a global (or Bayesian)
Cramér-Rao inequality,

1
E[3/dx(In p(x, y))]*’

1) E(x ~ E(xly))’ =

where p(¢,7) is the joint density of the random variables x and y. In the
Bayesian setting, lower bounds on the estimation error are, in principle, less
important since expressions for the least square estimator and error are avail-
able. It turns out, however, that in many cases (1) provides a tight and useful
lower bound for the estimation error when the conditional expectation is difficult
to find explicitly. For example, this bound was applied in [4] to compare the
mean square estimation error for nonlinear filtering problems with that of
related Gaussian problems (cf. also [6]).

A proof of (1) is included as a particular case of Proposition 2 in Section 4. It
is noteworthy that unlike the classical Cramér-Rao bound, inequality (1) re-
quires no uniform integrability condition on the density’s derivative since the
proof involves no interchange of derivatives and integrals.

This paper addresses basically two issues. The first one concerns the following
problem. Consider the situation where two random variables x, and x, are to be
estimated via a (scalar) measurement y. A straightforward extension of (1) (cf.
[12]) is the matrix inequality

) E{(x - E(xly))(x ~ E(xly))"} = J7,
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where J is the Fisher information matrix

(J)y=E

d i \
(—p(xl, Xy, ¥) 7 p(x,, %, y))/p(xp X9,7y) }

&, aé,
/p(xl’ Xo, y)Z:I

and p(&,, &5, n) is now the joint density of x,;, x, and y. Two lower bounds thus
arise for E(x, — E(x,]y))*: The first is (J~'),, obtained by considering the first
diagonal element in (2); the second is the right-hand side of (1) for x = x,. We
show in Section 3 that the bound obtained in (1) using the marginal density of x,
and y is always greater than or equal to the bound provided by (J 1), in (2).
This and related results will be obtained for the n-dimensional case. The
measurement y will be assumed to take values in a general space. Still another
bound can be obtained by considering x, as a “nuisance parameter” known to
the observer, obtaining thus a bound depending on this parameter and then
averaging over it. This approach has been suggested by Miller and Chang [11]. It
is shown in Section 3 through examples that while this approach may yield
bounds inferior to (J !),,, surprisingly enough there are cases in which it yields
tighter results than the right-hand side of (1) for x = x; (an application of this
approach to the nonlinear filtering problem is given in [6]).

The second issue concerns generalizing the inequality (1) and its multidimen-
sional counterparts. Several instances of such generalizations for the non-
Bayesian situation are already known in the form of the Bhattacharya bound
[3], the Barankin bound [2], etc. (cf. also [7]), and can easily be expressed in the
Bayesian setting as well. In Section 4, the following generalization of (1) will be
shown to hold:

32
= —E[(ml’(%xz, y)

, (Eq(x, y))*
(3) E(x — E(x|y))" = E[q(x, y)3/3x(In p(x, y)q(x, ¥))]°

for a very large class of functions g, together with its multidimensional counter-
parts. Furthermore, it is shown in Section 4 that the supremum of the right-hand
side of (3) over all admissible functions q(-, -) achieves equality. Examples are
given for which the use of a properly chosen ¢ yields useful bounds, whereas for
g = 1 the bound (1) is trivial. Further generalizations of the global Cramér-Rao
bound are derived in Section 5. In particular, it is shown that the densities
p(x, y) appearing in the bounds (1) and (3) can be replaced by Radon-Nikodym
derivatives with respect to certain reference measures. This approach enables
derivation of bounds for cases where expressions for p(x, y) are untractable
while Radon-Nikodym derivatives with respect to certain reference measures
are available. An example where this approach is useful is the nonlinear filtering
problem (cf. [4], [6]).

This paper is devoted to Cramér-Rao type bounds for Bayesian problems. It
should, however, be pointed out that this is not the only method for deriving
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error bounds in the Bayesian setup (cf., e.g., [8], [14]).

2. Notation. Throughout x = (x;), is a random vector satisfying
(4) Ex!<ow, 1<i<n.

Let % denote a subsigma algebra and assume the existence of a differentiable
conditional density of x when conditioned on % denoted pyg(&;,..-,§,) or
Pxjo(§) [in Section 5 the regularity conditions on Dxja(§) will be relaxed];
Dxj2(x) will denote the random variable obtained by setting £ = x in p, 4($).
Note that if p, 4(-) is piecewise continuous with nonrandom points of discon-
tinuity, then p, 4(£(w)) is indeed a measurable function of w, namely a random
variable. Let L be an inner product space and consider u = (u;)?, and v =
(v;)™, which are, respectively, n and m vectors with elements in L. The
Grammian n X m matrix ((u, v)) is defined by ((u,v));; = (4;,v;), 1 <i < n and
1 <j < m, where ( , )is L’s inner product and set ((u)) = ((u, u)). Our interest
lies in L = L?(Q), the space of second order random variables with inner product
(w, z) = Ewz. We now denote

grad p, (%)
pxw(x)

where grad = (D,)™, is the gradient operator. It must be pointed out that the
quantity defined in (5) is legitimate since p, 4(x) > 0 a.s. (indeed,

P{wa(x) = 0} = E[E(I(O)(wa(xm@)]
= EL}(O)(P;:@(E))Pq@(E) d§ = 0;

this argument will frequently be implicit in the sequel).
We further assume that

(6) E(ai(x|@/))2 <o, 1<i<n,

and consequently define the Fisher information matrix

(5) a(x|%) = = grad log p,,¢(X),

n

(7)  I=?) = ((alx, ) =

i,j=1

3 3
E ( oo log Pyjo(x) 5 —log px.q(X))

X i X j
and also the error matrix

(8) 2(x,y) = (x-E(x2))) = [E(xi - E(xi|@))(xj - E(xj|@))]?,j=1-

Whenever no confusion arises, one or both of the arguments of the expressions
defined in (5), (7) and (8) may be omitted. For multiindices «, 8 and v, i.e.,
ordered subsequences of [n] =: {1,2,..., n}, the expressions v, and M, . denote,
respectively, the corresponding partial vector of v € R™ and submatrix of
M € R™*™ When n is clear from the context, a* will denote the complementary
multiindex of « in [n]. For an n-vector u, diag(u) will denote the diagonal n X n
matrix D with D;; = u,.
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Finally, for two symmetric matrices M, and M,, the inequality M, > M,
denotes that M; — M, is nonnegative definite.

3. Comparison among different multidimensional bounds. A global
version of the Cramér—Rao inequality derived by Van Trees states that under
the assumptions (4) and (6), 2(x|¥)J(x|¥) =1, (I, is the identity n X n
matrix), which implies that J(x|%) is nonsingular and J~'(x|%) constitutes a
lower bound for the error matrix Z(x|%); for the proof cf. [12] or Section 4 of
this paper with ¢ = 1. Now suppose we are only interested in some of x’s
components, say x, for some multiindex a. Since nonnegative definiteness of a
matrix is shared by all of its principal submatrices, we have

(9) 2(x4) = (2(®%))a,a 2 (7)) 4 o
On the other hand, the global Cramér-Rao bound applied directly to x, yields
(10) 3(x,) 2 J7H(x,).

The first inequality of the following proposition establishes that the lower
bound appearing in (10) is tighter than the one in (9). In other words, as far as
the Van Trees version of the global Cramér-Rao bound is concerned, no
improvement can be obtained by embedding a given system in a larger system
(with more components in the x vector).

PROPOSITION 1. Under the assumptions (4) and (6) and for any multiindex o
(subsequence of [n]),

(11) I7(xy) 2 (I71(%)) g0 = {(F®))a,a) -

Proor. First note that if A and B are two positive definite matrices, A > B
iff B~! > A~ Thus, (11) is equivalent to

(11) I@®)a a2 (71®),0) " = I(x0),
which in itself shall be seen to be contained in the following chain of inequalities:
3, o(%) 2 3, (X) — d, (DI o(®) e o(x)
= ((2a®) = Ty (D) (T, (%)) ""20e(x)))
(12) > ((B(2u®) = 30 (0 Toe, (X)) 2B, )
= ((a(x4)))
= J(x,).

The proof of (12) is as follows: The first, second and last lines follow by
definition or simple verification. The third line follows from a direct extension of
Pythagoras’ formula to Grammians; namely, if z is a random vector and Z the
conditional expectation of z conditioned on some given subsigma algebra, then
(EzzT — E22T) = E(z — #)z — )T > 0.
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Finally, the fourth line in (12) is a consequence of

LeEMMA 1.
(13) E(a,(x)x,,¥) = a(x,) as.,
(14) E(a.(x)x,,%)=0 a.s.

PROOF. Let 1 <i<n and assume a has m components. Then, almost
surely,

E(ai(x)|xa,€7/) =j|;" . ];p::?éi) Dy, |xm@/(£a*)d£a*
(15) ta=x,
B px,,w(x [ s,.=x.,]'

If i is one of a’s components,

= Dipx‘,,w(xa) as.,

o

/ _ Dipx|€7/(£) d§,.
Rﬂ m

=X

=x &,

a @

yielding E(a,(x)|x,, %) = a(x,) a.s., which is (13).
If i is not one of a’s components, append i to a and call the augmented
multiindex &. Then

(16) Ln_mDiwa(e) d§, = /

R-m—

(e [ Dipyg(8) dii = 0.

To be precise, the preceding equality holds for (Lebesgue) almost every £, in R™.
This can be justified by the following standard argument. Since

1= [ pao(®) = [ dke " pus(8) i

the inner integral is finite for (Lebesgue) almost every &,. € R"~L Thus for each
such fixed £,., there exist sequences s, | — oo and £, 1 oo such that

kli—I»I:o p"g(e)‘e.-sk - kl;l{I:o pxlg(£)|$.=tk =0
and thus
f_wwDipxw(E) d§, = k]j—>n:o j;ZkD,-pxw(ﬁ) d¢; = 0.
Now combining (15) and (16) we obtain (14). This proves the lemma. O
Finally note that (J ™), o = (J, & = I a*(Jer ar) " 'Jov o)~ s0 that to conclude

the proof of Proposition 1, it only remains to collect the first, second and last
terms in (12). O
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REMARK. The right-hand side inequality in (11) holds for any positive
definite matrix.

A different approach was adopted by Miller and Chang in [11] to provide a
lower bound for Z(x,) in the presence of x,. (termed nuisance parameters in
[11]). The bound of [11] and an immediately related result are summed up in the
following lemma. To deal with the present situation the notation will be
extended as follows. For any multiindex 8 and random vectors u and v, ((u, v))?’
will be a random n X m matrix with entries E((u;, v;)|Xz). As before, ((u))®
will stand for ((u, u))®. In particular, define J®(x|%) = ((a(x|%)))®. Also
grad, will indicate the partial gradient operator along the components of B.

LEMMA 2.

* _1 -_—
(17) 3(x,) 2 E{(J0x) 00} 2 (I(X)aa) -

REMARK. The left-hand side inequality is the bound of Miller and Chang
and the right-hand side is the statement that it is tighter than the weakest
(right-hand term) of the bounds in (11).

Proor.

3(x,) = E[((x, - E(x,19)))*"]
> E[((x, - E(x,%,%,.)))"]

o -1
{ gradapxal‘.’y,x,,-(xa)) ( )}
>E

pxﬂ|‘y,xa.(xa)

-1

(o)
- E { w)) } = E{(J(a’)(x))aa}~l'

px|@/(x)

The second inequality in (17) is an immediate consequence of the following
general result on matrix valued random variables. O

LEMMA 3. Let A be a random square matrix, almost surely positive definite;
then

(18) (EA) ' < E(A™Y).

Proor. First observe that any positive definite matrix D satisfies
(19) D+D1>2l
[since (D2 — D~1/2)2 > 0]. Now let B and C be any two positive definite
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matrices and set D = C/2B~1C%2 in (19), from which one obtains

(20) CY/?2B-ICY2-1>1- C V2BC™ 12,
Multiplying (20) by C~'/2 on the left and on the right yields

(21) B-'-C!>C}C-B)C

For B = A and C = EA, one has

(22) A1 - (EA)"'> (EA)"'(EA - A)(EA)™!

and the lemma follows by taking expectation on both sides of (22). O

Until now, four lower bounds have been presented for the error matrix of a
subvector x, of the random vector x conditioned on the subsigma algebra %,
namely,

= Jd7(x,) [cf. (10)],
B, = (J74(x)),.. [cf. (9)],
B; = (J(®)aa) [ef.(11)],

B, = E{((J ("*)(x)))a, o ' (the bound of Miller and Chang).

In Proposition 1 it was shown that B, > B, > B,. Also, by Lemma 2, B, > B,.
The following two examples will show that no further ordering is possible.
Indeed, in the first example, B, > B,, while in the second, B, > B,. For simplic-
ity, in both examples, x will be independent of the subsigma algebra # so that
the error matrix is simply the covariance matrix.

ExaMPLE 3.1. Let x = (x,, x,) be a jointly Gaussian vector such that x; ~
N(@,1), i = 1,2, and cov(x;,x,) =p, —1 <p <1. Choosing a = {1}, we are
interested in bounding &% =: var(x,) = 1. We have

2-(, 1)

and since x is Gaussian, equality holds in the global Cramér—Rao inequality [12]
so that J~1(x) = 2(x) and B, = 1, a tight bound for ¢2. On the other hand,

d In px1|x2(x1)
dx,

2

JO(x),, = E

X2

and since the law of x, conditioned on x, is N(px,,1 — p?), it follows that
JO(x),, = 1/(1 — p%) and thus B, = 1 — p?

ExamPLE 3.2. For every 8 > 2, let x = (x,, x,) be distributed with density
Dpp(xy, x9) = ((B— 1)/m)L + x2 + x2)7# and choose again a = {1}. For this
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example &2 =: var(x,) = 1/(28 — 4), while

B __ Bt

@es-1)(B-1)’
B+1

B=Bs= pp-1)

_ (B+1)EB-3)
28(B-2)28-1)"
[These expressions are calculated making use of the integrals (a > 0)

B,

w dt Vo T(B-1/2)
/—oo (®+ )~ a1 T(p)

o  t2dt Vr (B -1/2)
f-w (a + £2)* T (28-3)a® 7 T(B) ]

It can be immediately verified that in this particular case, ¢ > B, > B, >
o = B, for all g > 2.

4. Generalized bounds. Consider the scalar case n = 1. The Cauchy-
Schwarz inequality in L%*(Q) states that

(o)

(23) hel> — .

The right-hand side is the length of u’s projection along v which must, of course,
be not larger than u’s length. The global Cramér-Rao inequality considers
u=x— E(x|%)and v = a(x|¥) = (p;e(x))/(Psa(x)), its simplicity following
from the fact that in this case |(u, v)| = 1. However, tighter bounds could be
achieved by selecting v from an appropriate family of random variables. One
such family of generalized bounds was considered in [13].

Consider, for example, the collection of % measurable random variables
q(£) = q(§, w) depending smoothly on a real parameter { and define a, =
[9(2)Pye(%)] /(Pys(x)). Assuming g(x) € LX) and a, € LY(R), (23) yields

. { [9(x)Pus ()] }

pxw(x)

.

(24) E(x - E(x))" = (Eq(x))* /

[Note that for ¢ = 1, (24) reduces to the classical bound.]

Moreover, choosing ¢*(§, w) = (1/p,9(£))/°(7 — E(X|¥))p,9(7) dr,
equality is achieved in (24). The details can be easily verified (the more
general multidimensional case will be dealt with later). We remark that the
family of bounds expressed by (24) includes other generalized bounds such as
E(x — EX|%))? > [E(h™Y)(2)]%/(J(2|¥)), where z = h(x) is an invertible
transformation of x with inverse x = A~Y(2). [Set q(¢) = 1/(Rh'(§)), which is
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deterministic whenever % is.] Incidentally, for this one-dimensional case, (24)
appears in [5, Equation (21)] with nonrandom g¢’s.

We shall now obtain the multidimensional extension of (24). The next lemma
is an extension of the Cauchy-Schwarz inequality to Grammians.

LEMMA 4. Let. L be an inner product space and u = [uy,...,u,] € L™ and
v =[v,...,v,] € L™ Assume ((v)) is nonsingular [which will be the case if,
e.g., rank((u, v)) = m]. Then,

(25) () = (0, ))((+) (v, w)).
ProOF. Consider the appended vector w = [u,,..., u,,v,,...,v,] € L**™
We have

((w) | ((u,V))]
((vow) i (W) [

where 0 is the (n + m) X (n + m) zero matrix. Also let I, be the n X n identity
matrix and let D € R, . ) be defined by

D = [L| - ((w,v)((v) ']

Then we also have D((w))D? > 0 and (25) will follow by observing that
D((w))D” = () = ((w, V))((+)) " '((v,w)). o

LEMMA 5. Equality occurs in (25) in the ith diagonal element iff there exists
a Y € R™ such that u, = yTv. In this case,

(26) v = ((u;, v))((v)

REMARK. In a nonnegative matrix, whenever a diagonal element is zero, so
are the corresponding row and column. This justifies considering only the
diagonal in Lemma 5.

03((w))=[

PROOF. Define the multiindex a =[i,n + 1,...,n + m]. Then, with the
notation of Lemma 4,

((w)).;
((Va ui))

Using the block expansion of a determinant leads to

det{((w,))} = det{(v))}[((w)) = ((w,v))}(¥) (v, w)], .

It follows that equality occurs in (25) in the ith element of the diagonal iff the
components of w, are linearly dependent. Since ((v)) is nonsingular, this implies
that u; = L7 ,v,v; as claimed; (26) follows by direct substitution. O

((ui,V))

(62)) = (@) = |
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As a first application, we state the following

ProrposITION 2. Let q(§) = q(§, w) = (q;(§ w))?_;, be a collection of n-
dimensional %-measurable random vectors depending on the parameter £ € R™
and satisfying for each i:

(@) g,(+, w)pya() € C'R™) a.s.
(b) E|g,(x, w)| < co.
(c) Eq,(x, w) # 0.

Furthermore, defining a ,(x|%) = (Di[qi(X, ©)Pya(X)])/( Pxja(X)))i-1, assume
the components of a(x|%) have finite second moment, and as a result, denote
Jy(xX|¥) = (ay(x|¥9))). Then

(27) 2(x|%) > diag[ Eq(x, w)]dy *(x|% )diag[ Eq(x, w)].

ProOF. Inequality (27) will follow from Lemma 4 by choosing u = x —
E(x|%) and v = a(x|%). We only need to verify that

28) (W)= E[(x; = E(x1#))(agx¥)),] = ~(Eai(x, @) 8,
Indeed,
E[(x, - E(x)9))(ay(x19)),] = E[ (& - E(x49))D,[q( @)pyo(t)] dt.
If i =,

(@v)u=E[ dée[" (6~ E(xi®)Di[a,(8 @)pas(8)] dt;

- _E fn  dé f_";qi(i, ©)Pyo(£) dt; = Eqy(x, ).

The justification for dropping the boundary terms in the integration by parts
is just the same as in Lemma 1. Here condition (b) is used.
If i #,

(@v)y=E[ (&~ E(xi9))dt [ Dja,(& w)pus(8)] dé;.

Again by similar arguments, the inner integral is zero for (Lebesgue) almost
every £. in R™™ % thus ((u, v)), ;= 0, completing the proof. Note that in view of
(28), condition (c) guarantees that rank((u, v)) = n; thus ((v)) is nonsingular. O

REMARK. If % is the o-algebra generated by a random vectory = (y,,..., ¥,)
such that there exists a differentiable joint density p, ((§,,..., &, 15,...,1,),
then p, 4(x) may be replaced everywhere by p,  (%,y) so that (27) becomes

2(x,y)
-1
Di( qipx,y)(x’ y)Dj(qux,y)(x, Y)
px,y(x’ y)2 i, j=1

(29) > diag[ Eq(x,y)]{ | E

x diag[ Eq(x,y)]
(here D, still denotes the derivative along x,).
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ProposITION 3.  Equality occurs in (27) if and only if for each i,1<i<n,
there exists a constant C; # 0 such that for all £ € R satisfying pya(§) # 0,

C oo Ex I .
(30) qi<a>=px|@(£) fs.. (- (x12)(t - B( w))),.px.@(t)dt,tt.%
or equivalently
(30) ax) = — :"(x) / “(ET®I)(t ~ E(x19)))peo(t) dt, a.s.

to=x.

Proor. This result is a direct application of Lemma 5. Note that since we
are considering equality of matrices in (27) (and not of the individual diagonal
entries), we may exchange the roles of u and v and conclude from Lemma 5 that
equality occurs in (27) if and only if a (x|%) = I'(x — E(x|%)), while from (26)
and (28) I' = —diag(Eq(x))=~Y(x|%). Thus, almost surely for each i and
(Lebesgue) almost every £,

(31) D,[4:(8)pxa ()] = —pae(£)(27H(x1%)(& - E(x|2))),,

where §,(§) = q,(£)/Eq;(x). Integrating (31) we obtain (30). Note that the
constraint Eq§,(x) = 1 forces the integration constant to be nonzero. O

REMARK. In the scalar case (n = 1), the optimal function q(£) given by (30)
is sign preserving. To see this, note that the function J&(t — E(x|¥ DDy, (1) dt
tends to zero at + oo and its derivative changes sign exactly once. This means
that in the scalar case, the bound (27) can be restricted to nonnegative functions
q. When n > 1, it can be easily seen that this property no longer holds.

By denoting in Proposition 2
9:(§)Pya(£)
hi(k) = -

E ( q,(x)) ’
one obtains a reformulation of Propositions 2 and 3 which is summarized in

1=1,...,n,

PRrOPOSITION 4. Let h(£) = h(§, w) = (hy(t, w))*_, be a collection of n-
dimensional %-measurable random vectors depending on the parameter £ € R"
and satisfying for each i:

(@) k-, w) € C(R™) a.s. -

(b) 2y(§ w) € L'R" X Q) (that is, E[gn|h (£, w)|dE < o).

(c) Efgnh (& w)dE=1.

Then

E

2
px| 4 (X)
Furthermore, equality is achieved in (32) if and only if

(33) (& 0) = /g “(Z®I2)(t - E(x(9))) pye(t) db,

(32) 3(x|9) = [ Di(”i("’w)ﬂ’f(hf(x’w))) ] .

i, j=

a.s.
=&,
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We conclude this section with two simple examples in which the classical
global Cramér—Rao bound (g = 1 in Proposition 2) is trivial but by choosing g
in an appropriate manner, useful bounds can be obtained. Both examples result
from the following situation: '

Let x be a random variable with density p.(£), r an independent Gaussian
noise with mean 0 and variance p? and g(-) a continuous and almost every-
where differentiable function; x is to be estimated based on the observation y =
&(x) + r. The joint density is

(34) e (&) = (2m02) T p,(&)exp| - (n — g(£))*/2¢%].

Consider the bound (27) for 2 = E(x — E(x|y))? and for the sake of simplicity
assume the function q is independent of the measurement y, that is, q(x, y) =
q(x). Then by inserting (34) in (29), a simple calculation yields

pix)\?

E 2.(x)

(35) &> (Eq(x))’ /

(q'(x) +q(x) ¥ %q%x)g«xf}).

ExamPLE 4.1. Here x is an N(0,1) random variable and y = sgn(x). It can
be verified directly that E(x|y) = (2/7)/2y and that ¢ = (1 — 2/7) ~ 0.3634.

To be able to apply the bound (35), one must regularize the problem. Let z be
another (independent) N(0,1) variable and for each p >0 and A > 0 set y =
&gx\(x) + pz, where g,(§) = /A if |§] < A and g,(§) = sgn(&) otherwise. Denoting
by e}, the mean square error of the perturbated problem, clearly & =
lim, o lim, &} ,. In particular, by (35),

X (Eq(x))"
" E(g'(x) — xq(x))" + lim, _.o(1/6*)lim, _. o E(q*(%)gi(x)’)

The classical bound (1) is obtained by choosing ¢(£) =1 in (36). Since
lim, _, ,E(g{(x)?) = oo, this choice yields a trivial lower bound for 2. However,

if lim, _, ,E(q%(x)g{(x)?) = 0, a significant (positive) bound is obtained. This
will be the case, for example, if g(¢) = 0 in a neighborhood of the origin and also

p—0

(36) ¢?

for g (x) = x%(*/2%° o > — 1 This gives a family of lower bounds,
£ C,= (2a + 177 as -2
* (a+ 1) (Ta2+10a+7)’ 2’

The bound is approximately optimal when «a,,,, = 0.7 and C_,, ~ 0.25. Note
that C,,./* ~ 0.69.

ExaMPLE 4.2. In this example, x is distributed uniformly on [0,1] and
y =x + r, where r ~ N(0,1). Denoting by ¢ (resp. ®) the standard Gaussian
density function (resp. distribution function), we have that

E(xly) =y + (¢(y) —¢(y—1))/(®(y) — ®(y - 1))
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and the mean square error is given by &2 = 1 — Y271, where
I=[" (8(3) - ¢(y - 1)"/(8(») - ®(y ~ 1)) db.

Performing numerical integration one obtains & ~ 0.07692. To be able to
apply the classical bound (1) (¢ = 1), the problem must again be regularized, and
we do so by choosing for any & € N the a priori density

k
k_ﬁ, lf£€ [0,1]’
Pk(g) = k [ -1 ]
— (1 + 2 1,1 + —
k+1( cos2mkt), if¢e 57 ) 5% |’
0, otherwise.

Denoting by &2 the mean square error for this problem, clearly e = lim, _, 2.
But the lower bound (1) for €2 is 1 /(1 + 272[k2/(k + 1)]), which becomes trivial
when & — oo.

However, choosing an appropriate continuous function q(£) whose support
lies in [0, 1], we obtain from (35),

2
(fda(£) dg)

37 e2>B, = .

57 T (g% (&) + q'%(8)) dt

Defining

— £_£2’ ifge [0’1]’
0(£) {0, otherwise,
a very tight bound is obtained, namely B, = 5/66 0.07576. Actually the

bound in (37) can be optimized for g; the goal is to find a function g,(§) in
C'[0,1] which achieves

min [ (g%(8) + q(8)) d

subject to the constraint [jg(£)d¢ = 1 and satisfying the boundary conditions
q(0) = g(1) = 0. This is a classical isoperimetric problem solvable by use of the
method of Lagrange multipliers [1]. In this case the solution is

ef+el ™t —(e+1)

QO(é) = ‘ (e _ 3) ’

yielding the bound B, ~ B, = (3 — e)/(e + 1) ~ 0.07577 < & = 0.07692.

5. Some further generalizations. The global lower bound (1) for the
estimation error and its matrix counterparts in the vector case are particular
applications of the abstract inner product space inequality (25), as well as the
generalized bound of Proposition 2 (or equivalently Proposition 4).

In this section, a further use of (25) will yield a general family of bounds
including the previous bounds, as well a bounds which are of the Barankin [2]
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and Bhattacharya [3] type (cf. also [12]). As a motivation, consider replacing the
global Cramér—Rao inequality (1) by

E(x — E(x]y))’ = 1/

p(x+8’ y) _p(x’ y) %\
E[ 5(x, ) )

1 x+ 6, 2

8 p(x, )
where the density’s derivative has been replaced by a finite difference. Inequality
(38), while easily verifiable, offers some additional advantages:

(38)

(i) No smoothness conditions are required for the density. Moreover, viewing
p(x + 8, ¥)/p(x, ¥) as a Radon-Nikodym derivative, the density need not even
exist (cf. [4], [6] for an application of this approach to the nonlinear filtering
problem).

(ii) Even when a smooth density p(x, y) does exist, it is easy to construct
examples for which choosing § appropriately, (38) provides a much tighter bound
than (1).

This approach can be pushed further by considering weighted higher order
finite differences of p(-, y) [(S2w;p(x + §;, ¥) with Zw, = 0] or, ultimately, by
convolving the density with an appropriate signed Borel measure (cf. [7] for a
similar approach in the nonrandom parameter setup). Much of what follows
simply formalizes the previous remarks.

In accordance with the preceding motivation, it is assumed from now on that
the conditional density p, 4(-) is piecewise continuous with nonrandom points of
discontinuity. Let p be a finite signed Borel measure on R™ with compact
support and let f be a function on R” which is integrable on compacts. Consider
the convolution p * f which is a function on R” defined by

(39) wr £(8) = [ (&= nu(dn).

Let a be a multiindex, i.e., an ordered subsequence of {1,2,..., n}, of length
m < n and A a subset of R”. The projection A, of A in the direction of « is the
subset of R™: A, = {£,|§ € A}. The measure p is said to be a-cylindrical if there
exists a Borel measure i on R™ such that p(A) = i(A,) for each Borel set
A c R™ If p is a-cylindrical and denoting f(§) = f (§,, €,+), we then have

(40) pef(8) = [ F(k = nes Ea)ii(dn,).

Note that p is a-cylindrical as before if and only if p = § X IT; ¢ .- 85 (Where &; is
the Dirac § function in the i-direction with ji acting on the components of a).
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Now, for i = 1,...,n, let p; be an i-cylindrical signed measure on R” with
compact support, i.e., p; = 8§ X 8& X -+ Xfi; X -+ X82. For each i assume
(41a) i (R) =0,

(41b) A= [ & (de) #0,
R
% Dy x
(41c) E (_“‘_M <
px|@/(x)

Consequently, denoting p. = (p;)/_,, define the n X n matrix J(x|%) by
(i * Pris)(®)(B; * Prjo)(x) } o
R t,j=1,...,n.

(Pre(®))”

PROPOSITION 5. Under the assumptions (41), J(x|%) is a well-defined non-
singular matrix and denoting \ = (\,),,

(43) 3(x|%) > diag(N\)(d,(x|%)) " diag(N).

(42) (J“(xl@))i,j=E[

REMARK. Note that this proposition is formulated in terms of (41) and (42)
and, therefore, could be based exclusively on Radon—-Nikodym derivatives of
measures without even having to assume the existence of a conditional density
for x conditioned on #.

Proor. In Lemma 4 substitute u = x — E(x|%) and

V= ((I-" *me)(x))/(pxw(x))-
To prove (43), it then suffices to verify that

=A;6

[ AT

((w,v));, ;= E|(x; — E(x4%))
Indeed [cf. (40)]

(%)= [ (6~ B(xi9)

("‘j* pxl‘?!/)(x) )]

wa(x)

X f_wwpx|@'(£1’ §2’~ ey £j - TI,, (RN} gn)ﬂ,(d'ﬂ,))

(44) o
- [ itan)| [ (&~ BGzi))

pr|@(§1) §2""’ g_] - nj’“') én) dg)

[assumption (41c) allows the change in order of integration]. If i # j, the inner
integral is actually independent of 7; and thus ((u, v)); ; = 0 follows from (41a).
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Ifi=y,
o0
((uav))i,i = f ’Ii(dni)f (gf +m; = E(xi|@)l’x|@(£') C.lgl)
— o0 R"

® ~
= f nii(dn;) = X, a
— 00
A particular choice of the measures p; is obtained by setting

fii= (1/Ai)(8A, - 30)»

where for each i, A;# 0, and §, is the point mass measure at A;. In this
case A; = 1. Moreover, if the conditional density is a.s. differentiable and A; — 0,
J, tends to the standard Fisher information matrix so that (43) becomes the
classical global Cramér—Rao inequality. This generalization was pointed out in
[7]. Actually, the global Cramér—Rao inequality could be obtained as a particu-
lar case of (43) (rather than by a limiting procedure) as long as the measures p;
are replaced by Schwarz distributions T}; the definitions and requirements given
in (39), (41) and (42) have their immediate generalizations to distributions [9]
and Proposition 5 remains true. The global Cramér-Rao inequality then results
by choosing ’f‘i to be the weak derivative of the Dirac measure at 0. We will not
pursue this approach here.

Two unrelated generalizations of (2) were presented in Proposition 2 (or
equivalently Proposition 4) and Proposition 5. For completeness sake, both
results will be combined in

ProposSITION 6. Let h(§) = (h(§, w))’, be as in Proposition 4 and let
p=(p), and N = (X)), be as in Proposition 5. Define the n X n matrix
Jp,h(xlg) by

5) (3,4(x19)), = E (pi* h)(®) (1 *2h,)(x)  ii=l.m
(wa(x))

Then J, (x|%¥) is nonsingular and

(46) 2(x|%) = diag(N)d, a(x|% )diag(N).

The proof follows directly just as the proofs of Propositions 4 and 5 and is,
therefore, omitted.

The last result will concern a generalization of the global Cramér-Rao
inequality equivalent to the Bhattacharya bound [3] in the nonrandom parame-
ter estimation setup.

Let keNand M= (p,,),s=1,...,nand t=1,...,k,beann X k matrix
of finite signed Borel measures on R” with compact support such that for each
1<s<nand 1<t<k, p,, is s-cylindrical, that is p, ,= 8, X 8, X -+ X
fig,s X 8 X -+ x8, for some signed Borel measure fi; , on R. Furthermore,
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assume

(47a) B, (R)=0, 1<s<n,1<t<k,

(47b) fwgﬁs,,(d§)=0, 1<s<n,2<t<k,
— 00
u, ,*h)(x) |?

(47¢) EM <w, 1<s<n,1<t<ek.
px|‘.‘!/(x)

Let also h(x) = (h,(x, w))",; be as in Proposition 4 and define the nk X nk
matrix Jy 4(x|%) by

(Hi,z * hi)(x)(""j,m * hj)(x)
(wa/(x))z

2

(48) (T w(XI¥)) = vyntis(m—tyntj = E[

fori,j=1,...,nand ,m=1,..., k.

PROPOSITION 7. Under the assumption (47) and denoting \ =
(JZ b5, (d€))s-1, if Iy n(x|¥) is nonsingular,

(49) 2(x|%) = diag(N) (I w(XI¥)) {0y, 1nrdiag(N ).

(Recall that by the notation introduced in Section 2, A(,1(n] U8 the upper left
n X n submatrix of a matrix A.)

PROOF. Inequality (49) follows from Lemma 4 by choosing u = x — Ex|%)
and v(l—l)n+i = (I“‘i,l* hi(x))/(pxﬁ’?(x))’ i= 1" <y and [ = 1’ LRRS} k. To apply
(25) it only remains to verify that

A

(50) ((wo)=| -

|
|
|
10
N

|
1
)
P |
| .
]
]
s |

The calculations leading up to (50) are essentially the same as those appearing
for example in the proof of Proposition 5 and will therefore be omitted here. O

REMARK. Proposition 7 (and also Proposition 6 which is a particular case
when k = 1) can be again generalized further by considering appropriate Schwarz
distributions T, , instead of the measures p, ,. Note that while this extends the
class of measures from which to choose M = (ps,+), condition (47c), must now be
interpreted as implying that T, ,* h, is indeed a function which in certain cases
might restrict the class of admissible h’s.
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