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AN ORDERING FOR POSITIVE DEPENDENCE!

By B. F. SCHRIEVER
Nederlandse Philips Bedrijven

In this paper we introduce a partial ordering for positive dependent
bivariate distributions. Our main result shows that tests of independence
based on rank statistics such as Spearman’s rho, Kendall’s tau, Fisher—Yates’
normal score statistic, van der Waerden’s statistic and the quadrant statistic
become more powerful under increasing positive dependence. In other words,
these measures of positive dependence preserve the ordering stochastically in
samples whenever it is present between underlying distributions.

1. Introduction. In this paper we introduce a (partial) ordering for bi-
variate distributions, called “more associated,” which expresses the strength of
positive dependence. The ordering makes precise an intuitive notion of one
bivariate distribution being more positive-dependent than another. Suggestions
for such orderings given in the literature are, for one reason or another, not
completely satisfactory in our opinion. For example, Whitt (1982) discusses
orderings for multivariate distributions which are related to the so-called HPK
inequality [see also, Eaton (1982), Formula (3.6)]. These orderings seem to be
quite strong because they do not order standard bivariate normal distributions
according to the correlation parameter. A much weaker ordering, called “more
concordant” in Section 2, is independently introduced in Cambanis, Simons and
Stout (1976), in Tchen (1976) and also in Yanagimoto and Okamoto (1969).
Although this ordering has the desirable property that most well-known mea-
sures of positive dependence preserve the ordering (in populations), it is unsatis-
factory because this order-preserving property does not carry over to samples in
a useful sense. The ordering of Kowalczyk and Pleszczyhska (1977) is still weaker
than the ordering “more concordant.” Yanagimoto and Okamoto (1969) also
introduce a second ordering, which in fact is a special case of the ordering we
shall introduce.

The examples in Section 2 illustrate that our ordering arises naturally in
several models and families of bivariate distributions. Furthermore, it is proved
in Section 2 that the ordering “more associated” is stronger than the ordering
“more concordant.” Therefore, it follows (cf. Section 3) that most well-known
rank measures of positive dependence preserve the ordering “more associated” in
populations. The main results of this paper are presented in Section 4 and show
that when the ordering “more associated” is present between two underlying
distributions (with continuous marginals), then the measures of positive depen-
dence preserve the ordering stochastically in samples from these underlying
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distributions. This implies that tests based on these measures have power
functions which are monotone in the ordering.

Schriever (1987) derives monotonicity results, similar to those of Section 4, in
other nonparametric testing problems (one-sided two-sample problem and k-sam-
ple trend problem). His approach is based on partial orderings over pairs of
permutations.

The ordering “more associated” can easily be generalized to the multivariate
case such that sampling properties similar to those of Section 4 continue to hold.

2. Definitions and basic properties. Consider two arbitrary (empirical or
underlying) bivariate distribution functions H® and H®. For k= 1,2, let
(X®,Y®) be a pair of random variables with distribution function H®® and let
the marginal distribution functions of X and Y® be denoted by F® and
G®), respectively. The support &® of the distribution F® of X is defined as
W = (x € (-0, +0]: FE¢) < F*)(x) for all £ < x}. This definition is
unusual, but it is convenient since it makes F® strictly increasing on £®. (A
real-valued function f defined on 2'C R is said to be increasing on % when
2; < 25(2y, 290 €Z) = f(2,) < f(2,) and is said to be strictly increasing on % if
strict inequality is implied.) The support ® of the marginal distribution G®
is similarly defined. Definitions and properties below are frequently formulated
in terms of random variables, but they only concern their distributions. We use
the symbol ~ as short for “is distributed as.”

DEFINITION 2.1. The pair (X®,Y®?) is said to be more associated than
(XD, YD), denoted by (X@,Y?P) > (XD, YD) or by H® >, HD, if there
exist functions ¢: FO X ¥D > D and ¢: FO X FO - F® guch that for
all x,, x, € XY and y,, y, € ¥V

(2.1) x, <x,, N=EXh= o(xy, ») < ¢(x2, yz), Y(xy, 3) < ‘I’(xz; ¥%),
(2.2) o(xy, 3) < d(xy, 3), Y(xy, 31) > ¥(xy, 1) = %, < xy, 1> Das
(2.3) (X®,Y®) ~ ($(XD, YD), p(XD, YO)).

Of course, (2.1) means that ¢ and ¢ are increasing in both arguments and (2.2)
excludes reflection about the diagonal of the mapping (¢, ). Reflection
is excluded in order to make the ordering applicable in situations which
are not symmetric in the X and Y variable. [In case (2.2) is dropped, (X,Y) =,
(Y, X)>,(X,Y) and, hence, any function which is not symmetric in both
variables does not preserve the ordering.]

In the special case that the function ¢ in Definition 2.1 satisfies ¢(x, y) = x
forall x € Z® and y € ¥V, (XD,Y®D) is said to be more regression depen-
dent (=,) than (X®,Y®), In fact, this ordering is considered by Yanagimoto
and”’Okamoto (1969) under the additional assumption that the distributions of
both pairs have the same continuous marginals.

The ordering >, is called “more associated” because for any pair (X,Y) ~ H
with marginal distributions ¥ and G, H >, FG implies that (X,Y) are
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associated in the sense of Esary, Proschan and Walkup (1967). The converse is,
however, not true. It is proved in Schriever (1986) and Yanagimoto and Okamoto
(1969) that H >, FG iff Y is regression dependent on X in the sense of
Lehmann (1966), provided F and G are continuous.

It is seéen from Definition 2.1 that the ordering >, is invariant under strictly
increasing transformations of the marginals in the following sense. Define ‘an
equivalence relation =, by (X®,Y®) = (X®, YY) iff there exist strictly
increasing functions »: F® - @ and p: ¥® - ¥ such that (XP,Y?®) ~
(F(XD), W(YD)), Next, let (X®, YD) =, U, V®) and (XO, YD) =,
(UD, VD), Then the invariance property states that

24) (X9,Y®) >, (XO,YO) iff (U®,V®) 2, (U, VD).

Note that the relation =, is reflexive, symmetric and transitive and therefore
indeed is an equivalence relation.

Although the ordering “more associated” is defined for arbitrary bivariate
distributions, it turns out to behave more regularly on so-called similarity classes
of bivariate distributions. A class of bivariate distributions 5# is called a
similarity class if for any two pairs, (X®,Y®) ~ H® € o and (X®, YD) ~
H® e s#, there exist strictly increasing functions »: ® - ® and p: #® -
¥ guch that X® ~ p(X®) and Y® ~ w(Y®D), that is, the marginals of
distributions in % are equal up to strictly increasing transformations. Examples
of similarity classes are #= {bivariate distribution functions with continuous
marginal distribution functions}, s#’= {empirical bivariate distribution functions
based on N observations without ties} and = {bivariate distributions with
given marginals}. It is not hard to verify [using (2.4) and the following proposi-
tion] that >, is a partial ordering on any similarity class of the equivalence
classes defined by =,.

Proposition 2.1 shows that the ordering “more associated” is stronger than
the ordering “more concordant” of Cambanis, Simons and Stout (1976), Tchen

(1976) and Yanagimoto and Okamoto (1969).

DEFINITION 2.2. The pair (X®, Y®) is said to be more concordant than
(XD, YD), denoted by (X@,Y?) > (XD, YD) or by H® >, H®, when
F®(x) = FO(x), GA(y) = GY(y) and HP(x, y) > HV(x, y) for all x, y € R.

Obviously, the class of bivariate distributions which is “more concordant”
than independence equals the class of distributions which are called (positively)
quadrant-dependent by Lehmann (1966). The ordering >, is a partial ordering
on the class of all bivariate distributions.

PROPOSITION 2.1. H® > HO®, F® = FO G® = GY = H® > HO.

PrOOF. Let ¢: O X ¥D - D and y: FO X D - FD e functions
such that (2.1), (2.2) and (2.3) hold. Choose x € ¥ and y € ¥®. First,
consider the case that ¢(x, y) < x and ¢(x, y) <y. Then by (2.1) and (2.3), it
follows that H®(x, y) = P(X® <x, YV <y} < P(X® < ¢(x, y), Y® <
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¥(x, ¥)} < P(X® <x,Y? <y} = H?(x, y). Next, consider the case that
#(x, y) < x and y(x, y) > y. Then by (2.2) and (2.3), P{X® > x, YO <y} >
P(XO® > ¢(x, y), Y® < Y(x, ¥)} = P{X® > x, Y® < y}. Since X® ~ XD and
Y® ~ YO, it also follows for this case that HW(x, y) < H®(x, y). For the
remaining two cases ¢(x, y) > x, ¥(x, y) > y and ¢(x, y) > x, ¥(x, y) < y, the
result H®(x, y) < H®(x, y) follows in a similar way. Hence, H® >, H®, O

We close this section with two examples of the ordering >, .

ExaMPLE 2.1. This example gives more insight in the way probability mass
is transformed by >, . Consider the case where (X®, Y®) is a linear transform,
with positive coefficients of (X®,Y®). Since the ordering >, is invariant
under location and scale'transformations, there is no loss of generality to assume
that

(2.5) (X®,Y®) ~ (1 - ) XD + a¥®, (1 - B)XO + BYD),

for 0 < a < B < 1. It is seen that the function (¢(x, y), ¥(x, ¥)) = (1 — a)x +
ay, (1 — B)x + By) maps the mass of the distribution HY which lies in the
square with vertices (e, e), (—e, e), (—e, —e), (e, —e) onto the rhombus with
vertices (e, e), ((2a — 1)e,(2B — 1)e), (—e, —e), (1 — 2a)e,(1 — 2B)e). Clearly,
the mass of H® is more concentrated around the line y = x than that of H®,

Special cases of the transform (2.5) give rise to one-parameter families of
bivariate distributions {H®}, . 4, e.g.,

(X@®,Y®) ~ (1 -a)X +4aY,Y), foracA=1[0,1]
and
(X9, Y®) ~ (1-a)X +aY,aX + (1 —a)Y), foracA=]0,1].
In both families we have H*) > H®) iff a, > a,, provided «a;, a, € A.

EXAMPLE 2.2. Let (X®,Y®) and (X®, Y®) have bivariate normal distribu-
tions with correlation parameters p, and p,, respectively, then (X®,Y®) >
(XD, YD) iff —1 < p, < p, < 1. Moreover, the ordering >, is equivalent to
the ordering of the correlation parameter in any elliptical family.

3. Measures of dependence preserving the ordering. In this section we
give examples of measures of positive dependence which preserve the ordering
>, in populations. Measures of interest can be written as real-valued functions

of (underlying or empirical) distribution functions. Such a measure @ is said to
preserve >, when

(3.1) H® >, HO = &(H®) > &(HD).

Since the ordering >, is invariant under strictly increasing transformations of
the marginals, measures which preserve >, must also be invariant under such
transformations. Rank measures have this invariance property. Furthermore, it

follows from Proposition 2.1 that any invariant measure which preserves >,
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also preserves >, on similarity classes, i.e., (3.1) holds provided H® and H®

=a

are in the same similarity class.

EXAMPLE 3.1. Linear rank statistics. Linear rank statistics can be written in
the form

(3.2) o(H) = [ [ J(F(x),G(y)) dHl(x, ),

where J is a real-valued function defined on (0,1] X (0,1], called the score
function. It follows from Cambanis, Simons and Stout (1976) that [under some
regularity conditions which are satisfied, for instance, when the integral (3.2)
exists and is finite under independence] measures of the form (3.2) preserve >,
when J is right-continuous and lattice-superadditive, i.e., u; < uy, v; < vy, =
J(uy, v)) + J(uy, vy) = J(uy, vy) + J(uy, v,). The score function of Spearman’s
rank correlation rho, Fisher—Yates’ normal score statistic, van der Waerden’s
statistic and the quadrant statistic are all of product type J(u, v) = f(u)g(v)
with f and g increasing and, hence, are lattice-superadditive. Therefore, these
linear rank statistics preserve >..

EXAMPLE 3.2. Nonlinear rank statistics. It is not hard to show [cf. Schriever
(1986)] using the result of Cambanis, Simons and Stout (1976) that measures of
the form ®(H) = [[K(H(x, y)) dH(x, y) preserve >_ when K is right-continu-
ous, increasing and convex. An example of such a nonlinear rank statistic is
Kendall’s rank correlation tau.

EXAMPLE 3.3. Isotonic canonical correlation. Define the isotonic canonical
correlation of a pair (X,Y) with distribution function H by ®(H) =
sup Corr(»(X), u(Y)), where the supremum is taken over all increasing functions
v and p for which the correlation exists. It is easily verified [again by using
Cambanis, Simons and Stout (1976)] that this measure preserves > .

These examples show that all familiar rank measures of positive dependence
preserve >, on similarity classes. Note that Pearson’s product moment correla-
tion and omnibus measures such as Pearson’s chi-squared, the canonical correla-
tion and the correlation ratio do not preserve >, (on similarity classes).

4. Sampling properties of the ordering. The main results formulated in
this section show that the order preserving properties of the ordering >, given
in the previous section carry over from population distributions to finite samples
from these distributions. .

Let H® and H® be arbitrary bivariate distribution functions and let HQ
and H{ be empirical distribution functions based on N i.i.d. observations from
H® and HO, respectively.

THEOREM 4.1. Let ® be a measure which preserves >, . Then
(4.1) H® >, H® = P{®(AP) > t} > P(®(HY) > t},
for all t and N, i.e., ®(H?) is stochastically larger than ®(HP).
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PrOOF. Let (X, Y{V),...,(X§{, YiP) be a sample of N ii.d. observations
from H® and let H{ o) be the correspondmg empirical distribution function. Since
H® >, H®Y, there exist functions ¢ and ¢ such that (¢(X®, Y(l))
Y(XO Y(l))) for i=1,..., N is a sample of N iid. observations from H®
Denote its empirical dlstnbutlon function by H3 3. Clearly, ﬁ ¥ has the
same distribution as any other empirical distribution function H 1 based on N
ii.d. observations fromr H®, Furthermore, it is obvious that P(H} >, HP} = 1
which implies P{®(H3¥) > ®(HP)} = 1. Hence, P{®(HY) > t > @(I—?,{,")} =
for all ¢ and (4.1) follows. O

In case the underlying distributions H® and H” have continuous marginals,
the class of all empirical distribution functions based on i.i.d. observations from
H® and H® is a similarity class. Then (4.1) also holds for measures ® which
preserve >, only on similarity classes such as Spearman’s rho, Fisher—Yates’
normal score statistic, van der Waerden’s statistic, the quadrant statistic,
Kendall’s tau and the isotonic canonical correlation. This implies that tests of
independence based on these statistics have a higher power against H® than
against H®, In particular, such tests are unbiased against all alternatives (with
continuous marginals) which are more associated than independence. A similar
monotonicity property for the special case >, is proved in a different, less
transparent fashion by Yanagimoto and Okamoto (1969). Their result implies
unbiasedness against regression dependent alternatives with continuous margi-
nals [cf. Lehmann (1966)].

Another aspect of the order preserving property in samples is the following.
Suppose H® >, HV, then samples from H® turn out to be more frequently
associated than samples from H®.

THEOREM 4.2. Let H® >, H". Then for all sample sizes N
P{ﬁ @ is associated } > P{H is associated } .

ProoF. Let H{ and Hy be as in the proof of Theorem 4.1. By Property P4
of Esary, Proschan and Walkup (1967), His associated = H,¥ is associated
with probability one. O

The main result (4.1) generally does not hold for the statistics considered in
Section 3 when the underlying distributions H® and H® contain atoms. It is
demonstrated in Schriever (1986) that the results actually carry over to the
discrete case when the ordering and the statistics are appropriately modified to
samples containing ties.
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