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WEAK CONVERGENCE OF k£-NN DENSITY AND REGRESSION
ESTIMATORS WITH VARYING 2 AND APPLICATIONS

By P. K. BHATTACHARYA! AND Y. P. MACK?

University of California, Davis

In both density and regression estimation problems, the k-nearest
neighbor estimators with % varying in an appropriate range, when trans-
formed to continuous time stochastic processes, are shown to have a common
limiting structure under the usual second-order smoothness conditions as the
sample size tends to co. These results lead to asymptotic linear models in
which BLUE’s and suitably biased linear combinations are considered.

1. Introduction. In the area of nonparametric density and regression esti-
mation, appropriate choice of the smoothing parameter has always remained a
key issue. Specifically, we are thinking of the window-width %, used in kernel
estimators and the integer &, in k-nearest neighbor (2-NN) estimators, where n
denotes the sample size.

Depending on the smoothness class of functions among which estimation is
attempted, the appropriate rate at which &, (or k,) should tend to 0 (or o0) as
n — oo as well as the rate of convergence of the mean squared error (MSE) of
the resulting estimators, is well known from the works of Rosenblatt (1956),
Parzen (1962), Bartlett (1963), Mack and Rosenblatt (1979) and Mack (1981),
while the optimality of these rates of convergence was established by Farrell
(1972), Wahba (1975) and Stone (1980).

At a rate appropriate for a certain order of smoothness of the functions to be
estimated, one still needs to know the actual value of A, or &, to be used for a
given set of data. Several adaptive methods have been developed for this purpose
based on two main approaches. One of these [considered by Woodroofe (1970)
and Krieger and Pickands (1981) in the context of kernel estimators of a density
f at a given x] is to use consistent but possibly nonoptimal initial estimators of
f(x) and f (x) in the formula for the optimum bandwidth and to show that the
resulting estimator of f(x) is asymptotically efficient. The second approach is a
global one, in which minimization of a performance criterion such as the mean
integrated squared error or Kullback-Leibler information number, etc., is at-
tempted through cross-validation. Asymptotic efficiency of this approach has
been established by Hall (1982), Stone (1984), Marron (1985) and others in
varying degrees of generality for kernel estimation of density and by Hardle and
Marron (1985) for kernel estimation of regression.
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Although the subject of bandwidth selection for kernel methods has generated
much research in recent years, the corresponding problem for nearest neighbor
methods remains virtually unexplored except for a consistency result due to Li
(1984). In this paper, we examine the behavior of 2-NN density and regression
estimators at a given point, as & varies. To keep to the main issue, we consider
the problem under a second-order smoothness condition in the one-dimensional
case. (Generalization of these results involves further technicalities which will be
treated in a future paper).

Our main results are two weak convergence theorems in Section 2, revealing
the same formal limiting structure of the 2-NN estimators in the density as well
as the regression problem, as k& varies from [n*/%a] to [n*/°b] for arbitrary
0 < a < b. This limiting structure also turns out to be the same as the one
derived by Krieger and Pickands (1981) for kernel density estimators with
varying bandwidth. In Section 3 we consider linear combinations of A2-NN
estimators with varying & in asymptotic linear models motivated by the weak
convergence theorems, obtain formulas for the best linear unbiased estimator
(BLUE) in these models and derive their asymptotic distributions. In Section 4
we show that

(i) the method of substituting initial estimators of relevant quantities in
formulas for optimum £k, works.

We also show that

(ii) in some situations, the BLUE’s in the asymptotic linear models of
Section 3 can attain smaller asymptotic MSE’s (AMSE) (i.e., MSE’s in their
asymptotic distributions) than the estimators with the theoretically optimal
number £} of nearest neighbors, and

(iii) it is possible to construct appropriately biased linear estimators in these
models which are guaranteed to attain smaller AMSE’s than the &*-NN estima-
tors.

The proofs of the weak convergence theorems of Section 2 are given in
Sections 5 and 6. The asymptotics of the 2-NN density estimators with %
varying between n*°a and n*°b are simplified by the usual device of relating
order statistics to the partial sum process for exponentials. Donsker’s theorem is
applied to this process with time scaled by n*/®, providing information about the
local behavior of the empirical process. In the regression problem, the asymp-
totics of partial sums of induced order statistics are handled by a conditional
Skorokhod embedding.

2. The main results. Let (X;,Z;), i=1,2,..., be the independent
two-dimensional random vectors distributed as (X, Z), where X has marginal
cdf F with pdf f and the regression of Z on X is pu(x) = E(Z|X = x)
with residual variance ¢%(x) = Var(Z|X = x) and conditional fourth central
moment &(x) = E[{Z — p(x)}*|X = x]. For a fixed x, let Y; = |X; — x| and let
0<Y,< --- <Y,, denote the order statistics and Z,,,..., Z,, the induced
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order statistics in (Y}, Z)),...,(Y,, Z,), i.e, Z,,=Z; if Y,; = Y,. We denote the
cdf and the pdf of Y by Fy and fy, respectively, and the regression of Z on Y
by m(y) = E(Z||X — x| = y), i.e,

Fy(y) = F(x +y) — F(x ~ y),
fy(¥) =f(x+y) +f(x~y),
m(y)=[f(x+yu(x+y)+flx-yp(x-y)]/fy(y).

The residual variance and the conditional fourth central moment of Z, given Y,
are denoted by

s%(y) = Var(Z|Y = y),
7(y) = E[(Z - m(»)}' 1Y =y].

The k-NN estimator of f(x) corresponding to the uniform kernel is

(1) fnk(x) = (k - 1)/(2nYnk)
and the k-NN estimator of p(x) with uniform weights is
k
(2) po(x) =k Y Z,;
J=1

In this section we shall discuss the limiting behaviors of the stochastic
processes { f,x(x)} and {u,,(x)} indexed by %k, as n — oo. More precisely, we
represent the discrete parameter processes indexed by

(3a) ky=[n"%a]l<k<k, =[n"?b], O0<a<b,
by letting

(3b) kE=[n"%], a<t<b

and defining

(4) T(t) = fatwse(%),  Sult) = pp (arsn(2).

We then derive the weak convergence properties of the stochastic processes
(R¥[T(t) - f(0)), a<t<b) and {(n¥°[St) — p(x)], a<t<b) for
0<a<b< .

We shall make the following assumptions:

1. f(x) > 0 and f"” is continuous at x.

2. p” is continuous at x.

3. The residual variance o2 is continuous at x.

4. The conditional fourth central moment ¢ is either bounded or Lipschitz.

We now state our main results in the following two theorems of which
Theorem D.1 deals with density estimators and Theorem R.1 deals with regres-
sion estimators. The symbol —, indicates convergence in distribution, i.e., weak
convergence of the distributions of the stochastic processes (or random vectors)
under consideration and {B(t), ¢ > 0} denotes a standard Brownian motion.
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THEOREM D.1. Under Assumption 1, forany 0 < a < b < o0,
(n?5[T,(¢) — ap] — Bpt? a <t < b} »5{apt 'B(t), a < t < b},
where
(5) ap=f(x) and Bp=f"(x)/{24f%x)}.
THEOREM R.1. Under Assumptions 1, 2, 3 and 4, for any 0 < a < b < o0,
(n%5[S,(¢) — ag] — Brt*, a <t < b} —»5{o(x)t"'B(¢t), a < t < b},
where

(6) ap=np(x) and Br= {f(x)n"(x) + 2f(x)w'(x)}/{24f*(x)}.

REMARK 2.1. From the above theorems we see that in the limit, the stochas-
tic processes T,(t) and S,(¢) have the same formal structure, the only differences
being in the formulas for the constants a and B in the deterministic part and the
scale factor in the random part. This formal structure was also obtained by
Krieger and Pickands (1981) for kernel estimators of density with varying
window-width.

3. Asymptotic linear models and linear combinations of 2-NN density
and regression estimators. Use (3b) to rewrite ¢ in terms of 2 and (4) to
rewrite T,(t) and S (¢) in terms of f,,(x) and p,,(x). Theorems D.1 and R.1
then suggest the following asymptotic linear models for f,,(x) and u,,(x) as n
gets large:

far(%) = ap + 0¥ Bp(kn=*°)* + n~*2ap(kn=*/%) " B(kn~*?)

(7a)
=ap+ (k/n)Bp+ aph,s,  ko<k <k,

where k, and k, are given by (3a) and the errors A,, = n?°k~'B(kn~*/°) have
E(A,,) =0, Cov(A,,j, A,;) =min(j 1 k7).

Similarly,

(7b) (%) = ag+ (k/n)'Br+ 0(x)Any, ko< k <k

Because of the similarity between the two models, we shall examine the BLUE’s
of ay and B, in (7a) and their asymptotic distribution, and the corresponding
results in the other model will be immediate.

First note that due to the covariance structure of {A,,},

e = VR(R+1) (8, 4y —Buk),  kRo<sk<k -1,
enkl = \/k—lAnkl

are mutually uncorrelated with mean 0 and variance 1. Taking normalized

(8)
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differences in (7a), we thus have

Vo = Vk(k + 1) { fp pe2(x) = fon(x)}

= unknBD + ApE,ps ko <k< kl -1,

(%) Ve, = s fun )
= Jkyap + U Bp + @pea,,
where
10) u,,=k(k+1) 2k +1)n"2, ko<k<k -1,

— 1,5/2,-2
Upp, = Ry/*n7%

REMARK 3.1. In the linear model given by (9a) and (10), the form of the
design matrix and the order of magnitude of its elements are analogous to a
simple linear regression in which all but one of approximately n*/5(d — a)
observations correspond to a regression through the origin and the regressors u,,,
are O(n~2/%), so that Yu2, = O(1) for these observations. Consequently, the
slope B8, cannot be consistently estimated (which, not surprisingly, will show up
in the covariance structure of Theorem D.2). The important thing is that these
observations still provide enough information about B, to improve upon the
crude estimator f,,(x) = V,, / ‘fla of aj, by bias correction.

The BLUE’s of aj and B, in the asymptotic linear model given by (8), (9a)
and (10), i.e., the BLUE’s of these parameters if this linear model were exact, are,
respectively,

R k-1
(11a) a, = fnk,(x) - BD(kl/n)2’ Bp = > UniVar Z urzzk'
k=kq k=kg

To derive the asymptotic joint distribution of aj, and B, note that

ki—1 k-1
S uly=nt ¥ k(k+1)2k+1) = [*4z*dt+ O(n~ ")
(12) k=t k=, a
= 4(8°~ a®) + O(n~*"),
and
k-1 k-1

Y uVae=n"% Y k(k+1)(2k + 1){f, pi1(x) = fur(x)}

k=Fk, k=k,

- n-z[_ko(ko +1)(2ko + 1 fui (%) + (By = DEy(2R, = 1)fry (%)

k-1
-6 ) sznk(x):|

k=kq

= n2/5[—2a3T,,(a) + 26°T(b) — 6/”W,,(t)T,,(t) dt] + 0,(n"%5),
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where W, (¢) = ([n*5t]/n*®)? > t2 uniformly in a <t < b. By virtue of the
weak convergence of T,(t) given in Theorem D.1 the above expression further
simplifies to

ky—1

Z unkVnk
k=Fk,

(%) _ 4(b° - a®)By + aD[—ef”tB(t) dt + 2bB(b) — 2a2B(a)

+0,(1).

Substituting (12) and (13a) in (11a), using Theorem D.1 again on f,, (x) = T,(b),
and carrying out some algebraic simplification, we arrive at

w8 - ap) = apt + o,(1),
B~ Bp = apn + 9,(1),
where
= —2Ab‘5[3/ast(t) dt — *B(b) + a’B(a)|,
(14) £= —by+ b 'B(b),
A=3[1-(asp)] "

Clearly, £ and 75 follow a bivariate normal distribution with mean vector (0, 0)
and it is easy to verify that

Var(n) = Ab=5,  Var(b7'B(b)) =b"', Cov(n, b 'B(d)) =0,
so that
Var(¢) = (A +1)b7Y, Cov(¢,m) = —Ab3.

In the regression problem, we proceed analogously by taking normalized
differences in (7b) to arrive at the asymptotic linear model

Vn*;z = Vk(k + 1) {p'n,k+1(x) - p‘nk(x)}
=u,,Br+ o(x)e,, ko<k<k -1,
V'r;';el = \/—El—p'nkl(x)
= Vkyap + Upp Br + 0(x)e,p,

where the u,,’s and ¢,,’s are as in (8) and (10). The BLUE’s of a, and Bj in this
asymptotic linear model are, respectively,

(9b)

k-1 k—1

(llb) &R = p‘nkl(x) - B\R(kl/n)27 BR = Z Unk n,z Z u;2zk’
k=k, k=k,
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and analogous to (13a) we have
k-1

%k
Z UniVok
k=k,

A) (5~ 0y + o(x)| -6 ["tB(¢) de + 26%B(5) - 20*B(a)

+0,(1).
Using (12) and (13b) in (11b), and applying Theorem R.2, we now have
n2/5(&R - aR) = a(x)g + Op(l)’

ﬁR - ,BR = O(x)n + Op(1)7

where £ and 7 are as in (14).
These results are summarized in the following theorems.

THEOREM D.2. The linear combinations &, and fp, of { f,i(x), ko < k < k;}
given by (11a) are the BLUE’s of ap and By, respectively, in the asymptotic
linear model given by (8), (9a) and (10). Under Assumption 1,

(n2/5(&1) - ap), (BD - .BD)) =g ap(é,m),
where (&, n) is bivariate normal with mean vector (0,0) and covariance matrix

(off ofn) _ ((A +1)b7! —Ab3

5] -1
o o s ans] AT 21~ (arp)’] .

n L

THEOREM R.2. The linear combinations &5 and By of {po(x), kg < k < Ry}
given by (11b) are the BLUE'’s of ap and By, respectively, in the asymptotic
linear model given by (8), (9b) and (10). Under Assumptions 1, 2, 3 and 4,

(n2/5(&R - aR): (BR - .BR)) 9 o(x)(g, ),
where (&,m) follows the same bivariate normal distribution as in Theorem D.2.

REMARK 3.2. Theorem D.1 and the asymptotic distribution of &, were
announced by Bhattacharya and Mack (1985). Corresponding results for kernel
estimators of density with bandwidth varying over a finite set were also obtained
by Yang and Cox (1984).

REMARK 3.3. For the density estimation problem, the BLUE of aj in the
linear model (9a) does not make use of the fact that the residuals have variance
a%. One obvious way to incorporate this information is to consider the usual
estimator of the residual variance and take its square root, viz.,

ky—1 1/2

éu = (kl — ko — 1)—1 Z (Vnk - BDunk)2 ’
k=k,
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which is easily shown to have the convergence property

where { is normally distributed with mean 0 and variance o;; = {2(b — @)}/,
and is independent of the normal random variable { in Theorem D.2. The
appropriate combination of &, and &, is

—1a ~14a
) + O 0p

* —
ap = )

-1 -1
O + O
having convergence property

n*%(ap — ap) =g apw,

where w is normally distributed with mean 0 and variance o,,, = (05" + o5') ™"
The estimator a} thus improves upon the BLUE @&,,. One could also consider the
maximum likelihood estimator of (aj, B,) for the model (9a) with Gaussian
errors. The likelihood equations are a bit messy, and due to inconsistency of the
estimator of 8, the asymptotics for the estimator of a, become complicated.
However, the Fisher-information matrix for (9a) with Gaussian errors is

ky I, I, _,[ 3k — 2k + 2 Ry i,

kge(,l"k B (Iaﬁ IBB) - Vs U, k32 |

from which the element I** in (L kolnr) " is seen to be

I = n~*%2[2(b—a) + b/(A + 1)] {1+ 0(1)} = n~ %}, (1 + o(1)}.

Hence the estimator a} has the asymptotic efficiency one would expect the
maximum likelihood estimator to have.

REMARK 3.4. The technique described in this section would lead to estima-
tors of a; and ap whose MSE’s tend to 0 at a rate faster than n~*" if
Assumptions 1 and 2 are strengthened by requiring f ”” and p” to be Lipschitz of
order r, i.e.,

[f"(x +h) = f"(x)[ < MR, |p"(x + k) = p"(x)| < MR,

for all sufficiently small 4 and for some M < o0 and 0 < r < 1. For this, consider
{f.x(x)} and {u,,(x)} as k varies from kj, = [n*>*%%] to k{ = [n*/**2%p] with
0 <8 <r/{5(5 + 2r)}, and define

Tn'(t) = fn’[n4/5+2st](x), S,:(t) = }Ln’[nuswst](x).
Then on a < t < b, the stochastic processes
{n2/5+8[Tn’(t) - aD] - n583Dt2} and {n2/5+5[S,;(t) - O‘R] - n583Rt2}

converge in distribution to {apt 'B(¢)} and {o(x)t 'B(t)}, respectively. Conse-
quently, the asymptotic linear models (9a) and (9b) hold for &) < k& < k{, and
the BLUE’s (&p, I3 ), (8g, B ) of the parameters in these models have the same
asymptotic distributions as in Theorems D.2 and R.2 with normalizing constants
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n?5*% for &, — ap and &z — ap, and n*® for B, — B, and B — Bg. For
different values of the exponent 0 < r < 1 in the Lipschitz conditions previously
mentioned, a continuum of smoothness classes is generated as in Farrell’s (1972)
Case I for density estimation, and by taking 8 arbitrarily close to (but less than)
r/{5(5 + 2r)}, the rate of convergence of the MSE of &, or d@ can be made to
approach the optimal threshold rate of n=(**27/6+2m A similar improvement in
the rate of convergence of kernel density estimation by introducing Lipschitz
condition has been discussed by Ibragimov and Has’'minskii (1981), page 235.

4. Applications. From Theorems D.1 and R.1, it follows that n¥°[T (¢) —
apl =4 N(Bpt? a3t ') and n?5[S,(t) — ag] > N(Bgt?, o*(x)t™ ) for each ¢,
where N(u, 02?) denotes a Gaussian r.v. with mean p and variance o2. Hence the
asymptotic MSE’s (AMSE) of T,(¢) and S,(¢), i.e, MSE’s in their asymptotic
distributions, are n~*®(B2t* + a%t™') and n~*3(B2t! + o%(x)t™!), respec-
tively. These AMSE’s are minimized at ¢, = {a5/(483)}'/® in the density
problem, n*°AMSE(T,(¢;)) being 2a}t;' and at ¢, = {o%(x)/4B2)}/° in the
regression problem, n*/°’AMSE(S,(tz)) being 26%(x)tz'. However, we cannot put
the estimators T,(¢,) and S,(fg) into practice, because ¢, and t, involve
unknown quantities.

Let us define the asymptotic relative efficiency (ARE) of a given density (or
regression) estimator with respect to T,(¢,) [or S,(tz)] as the ratio of the AMSE
of T,(tp) [or S,(tg)] to that of the given estimator. In this section, we construct
estimators in the density and regression problems whose ARE’s are equal to 1,
may exceed 1 in some situations or are guaranteed to exceed 1.

4.1. Substituting initial estimators in the formulae for optimal t. By stan-
dard weak convergence arguments [in particular, using Theorem 4.4 of
Billingsley (1968)] it follows from Theorem D.1 that if £, is a consistent
estimator of the optimal ¢;, in the density problem, then

n2/5[Tn(£D) — ap] =4 Bpth + aptp'B(tp).

Thus, T,(f,) has the same asymptotic distribution as T,(,), and, therefore, its
ARE equals 1. For the same reason, in the regression problem it follows from
Theorem R.1, that if # is a consistent estimator of ¢, then the ARE of S,(£5)
equals 1. These results parallel the results of Woodroofe (1970) and Krieger and
Pickands (1981).

The optimal ¢, and ¢ are continuous functions of f(x), p(x), their first two
derivatives and o?(x), and from consistent estimators of these quantities, #;, and
{r can be obtained for the preceding purpose. This can easily be accomplished
under Assumptions 1, 2 and 3. For example, take the kernel estimators

fix) = (nhy) " ix((x ~ X)/h,),

in(x) = (nh,) " iz,x((x — X)/h)/E),
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with K(u) = C1(Ju| < Dexp[ —u?/(1 — u?)], where C is such that K is a pdf
and let A, |0 and nh® - o as n > co. Then f(’)(x) and @(x), r=10,1,2,
serve our purpose. Fmally, the estimated residual variance
k-1
n - 2
6%(x) = (ky — ko — 1) ' Z (Vr;;e - BRunk) ’

k=k,

in the regression problem is a consistent estimator of o2(x).

4.2. ARE s of ap and dp. From Theorem D.2, the AMSE of &, is
n~"%2%(A + 1)b~ . Thus, the ARE of &, with respect to T,(¢p) is

S5t /{(A+1)b7Y) = bt;,l[g + {1 - (a/b)°) 1].
The ARE of ap with respect to S (f;) also has the same expression with ¢,
replaced by tp. Using consistent estimators, £, and £, we can choose b
sufficiently large for any a/b < 1 so as to make these ARE’s arbitrarily large.
However, due to the practical limitation imposed by k, = [n*/®b] < n, the
choice of b is restricted by a finite quantity for any given sample size. Moreover,
values of b near this upper bound fall outside the scope of our theorems.
Extensions of Theorems D.1 and R.1 for b > o0 may give us a better under-

standing of this point. The situation here has some similarity with the one
considered by Abramson (1982).

4.3. Biased linear combinations of k-NN estimators. We now consider
estimators of the form &, + cn~%38,, for a;, with suitably chosen c. These are
the BLUE’s of a; + cn™ %8, and, therefore, have smaller AMSE than any
other linear combinations of {f,.(x)} with the same amounts of bias. [The
terms “bias” and “MSE” apply here to &, + cn~2/%8,, or to arbltrary linear
combinations of {f,,(x)}, as estimators of a.] In particular, with ¢ = ¢,

AMSE(&,, + n~¥%Bpt) < AMSE(T,(tp)),

provided that a < ¢, < b, because then T,(¢,) is a linear combination in the
class of estimators under consideration, having a bias of n~2/%8,t%. However,
&p, + n~%/38,t2 involves the unknown ¢, and a and b have to be chosen so that
a < tp < b. To this end, we choose two numbers 0 <y, <y, < 1, determine
ép, b, by bD— £5/vs Gp=v,bp, where £} is a consistent estimator of ¢,
obtained, as in Section 4.1, with arbitrary a < b and then obtain the BLUE’s
a D!BD in the asymptotic linear model with @ = é,, and b = b,,. Finally, let
= {&2/(4B%)}"/° and consider the estimator

(15) ap=dp+ n-2/5/31) &

Then (&, ,lfD) has the same asymptotic joint distribution as given in Theorem
D.2 with a/b =y, and b = ¢y, !, and

n*%(&p — ap) = n¥%(8p - ap) + Bp{tzz) + Op(l)}

-4 N(BDtlz,, af)(a“ + tf,om’ + th,oe,,)).
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Hence, using ¢;,/b =1y, and A = 2(1 — y9)7,

n*°AMSE(ap) = B3th + ab(oy + tho,, + 2tho,, )

%(a%/tp)[l — 41 -v) + w1 -v) /- 715)]~

Thus, the ARE of &), with respect to T,(tp) is

(16) [1- - w){f - %0 - v)@+ w1 - )]

If, in the regression problem, we determine d p, by in the same manner and then
construct & = & + n~%BLf% analogous to &, given in (15), then the ARE of
dp with respect to S,(¢5) is also given by (16). This, ARE > 1 because 0 < v, <
Y, < 1 implies

1 - ) {t - %0 -%)A+1)"/(1-))
>(1- Yz){% — (1 = 7,)(A +v,)*/(1 - 72)5}

= (1= )4+ T+ 4v3) /{51 - ¥)} > 0.

Getting back to the more general type of biased estimator of a;, we first
choose @, and b, as previously explained, and then for the BLUE’s &, b
obtained with this 4, < b,, we minimize

n*°AMSE(&p + cn~¥%8)p)

-1

= o315 + (A + 1)b71 + c?Ab ™% — 2c4b72],

with respect to c. This requires ¢, = Atlys/(3 + Ays), of which a consistent
estimator &, is obtained by substituting #;, for ¢,. The resulting estimator
&, + n~%%,f,, will then be an improvement upon &, defined earlier. Analogous
improvement can also be achieved in the regression problem.

5. Proof of Theorem D.1. Some properties of the quantile function of
Y = |X — x| and the regression of Z on Y follow from our basic assumptions by
elementary calculations. These properties are stated without proof in the follow-
ing lemma.

LEMMA 1. By Assumption 1,

(i) g(u) = FyY(u) is defined for 0 < u < ¢ and for some ¢ > 0 as the unique
solution of Fy[g(u)] = u,
(ii) g is continuous at 0,
(iii) g(0) = g”(0) = 0, g'(0) = {2f(x)}"", & (0) = —f"(x)/{8f*(x)}.
Moreover, by Assumptions 1 and 2,

(iv) m” is continuous at 0,
(v) m(0) = p(x), m'(0) = 0, m”(0) = p"(x) + 2f'(x)p'(x)/f(x).
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Finally, by Assumptions 2, 3 and 4,
(vi) s? is continuous at 0, and
(vil) 7(y) < M, + M,y for all y > 0 and some M,, M, < oo.

LetU, < --- < U,,denote the order statistics in a random sample U, ..., U,
of size n from the uniform distribution on (0,1). Recall that ¥, < --- <Y,
are the order statisticsin Y; = |X; — x|, i = 1,..., n, and g = Fy! is the quantile
function of Y. Thus Y, = g(U,;). Since Y, 4, With ¢(n) > oo and
n”'¢(n) > 0 as n — oo are the key elements in £-NN density and regression
estimation, we need the following properties of these order statistics. By 1(S) we
denote the indicator function of a set S and for simplicity of notation, we write
Y,, and U,, for Y, (4 n) @and U, [4n)e» TESPeCtively.

LEMMA 2. Let ¢(n) > o0 and n”'¢p(n) - 0 as n = . Then

(i) for B > b and sufficiently large n,
P[UM > n'1¢(n)B] < exp[—2n‘1¢2(n)(B - b)2];
(i) for B > b/f(x) and sufficiently large n,
P[Y¢b > n“1¢(n)B] < exp[——2n‘1¢2(n){Bf(x) - b}2].
ProorF. We prove (ii) and indicate during the proof how it should be

modified for (i). Since Y,, > n~'¢(n)B if and only if X7 1(Y; < n”7'¢(n)B) <
[#(n)b], we have

P[Y,,> n"'¢(n)B] = P[ﬁ:; {1(Y;< n7%(n)B) — E1(Y < n"'(n)B)}

< —n{EL(Y < n7'%(n)B) — n"'[¢(n)b]}|.
Now for large n,

ENY < n"'9(n)B) — n"[¢(n)b] = L’i“;':::ff(t) dt — n-[¢(n)b]

> n"'¢(n)Bf(x) — n”'¢(n)b
=n"'o(n){Bf(x) — b} > 0.

[For part (i), EX(U < n™'¢(n)B) — n"[¢(n)b] > n"'¢(n)(B — b) > 0.] It now
follows by an application of Theorem 1 of Hoeffding (1963) that

P[YM > n'1¢(n)B] < exp[—2n{E1(Ys n~'¢(n)B) — n“1[¢(n)b]}2]
< exp[—2n‘1¢2(n){Bf(x) - b}2]. a

COROLLARY 1. If ¢(n) = nf, ;< e <1, then U,, and Y,, are O,(n"'¢(n)).
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ProoF. For each B, the previous bounds can be made smaller than arbitrary
e > 0 by making n sufficiently large. O

COROLLARY 2. If ¢(n) = n, } < e <1, then for sufficiently large n,
E[Y,,] < 2n7%(n)b/f(x).
Proor.
E[Y,,] = n7%(n) ["P[ne(n) Y,y > 5] dy

<n7'¢(n) fb/f(x)ldy + fw -exp[—2n‘1¢2(n)f2(x)
0 b/f(x)

x{y = b/f(x)}?] dy]

= n7Y%(n)f(x) [ + n%(n) "\ (n/8)"]
< 2n7%(n)b/f(x),

by a change of variable, when n is large. O

Before proceeding to the proof of Theorem D.1, we state a well-known
representation of the uniform order statistics in the following lemma [see, e.g.,
Bickel and Doksum (1977), page 44]. We use the symbol {X,, A € A} =, (X},
A € A} to indicate that two collections of random variables have the same joint
distribution.

LEMMA 3.

k n+l
{Unk,lsksn}=g{2m ZW,-,lsksn}
1

1

= {k(n + 1)“(1 + k71 fw,.*)

n+1 -1
x1+(n+1)'1ZWi*) ,lskSn},
1

where W,, ..., W, are iid negative exponential ro’s with mean 1 and W* =
W, — 1 are iid with mean 0 and variance 1.

From now on we treat n*/°t = ¢(n)t as an integer to avoid unnecessary
complications. Thus, T,(¢) given by (1) and (4) becomes

(17) T,(t) = {o(n)t - 1}{2ng(U,,)} ",

where g = Fy! is the quantile function of Y = |X — x|.
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In the Taylor expansion of g(U,,) around 0, use Lemma 1(iii) and (5) to obtain
_1 _ _ —_
{28(U¢t)} = ‘xDUml[l - aulﬂDU¢2t + Rn(t)U¢2t] '
(18) = apUpH[1 + ap'BpUZ + Ri(£)UZ]
= O‘DU¢_tl + BDUW + aDR;z(t)qu

where R (t) = 3~ aD{g " (NU,,) —&77(0)}, 0 <A <1, and R;(¢) is obtained in
terms of R, () and U2 by comparing the second and third expressions in (18).
Substituting this in (17), we have

19) T,(t) = [ap{n " 6(n)tU,'} + Bp{n " 's(n)tU,,}

+Ry(D)][1 + 0(n=4#)],
with R7(t) = ap{n™'¢(n)tU,,}R;(t). We now examine the terms in (19). By
Lemma 3, using the standard calculus of o, and O, [see Pratt (1959)],

o(n)t -1
n~'(n)tUy," =5(1 + n‘l)[l + 070t (n) L W]
1

X[l +(n+1)7" nfw;*]
(20) 1 d(n)t
= [l — n %5t 19(n) "2 Z W* + op(n‘z/"’)][l + Op(n‘1/2)]

o(n)t
=1-n"25%"%(n)""? Z W* + 0,(n"2%),

and, similarly,
o(n)t

n () Uy =5 ¢(n>t}2[1 +lomy X Wi*][l +0,n)]
= n—2/5t2 + Op(n-4/5) = n—2/5t2 + op(n—2/5)’

where the o,-terms in (20) and (21) are uniform in 0 < a < ¢ < b < oo by virtue
of

(21)

é(n)t

sup |®(n)" " Z W |=0,1).

a<t<b

For the remainder term, we first look at R,(¢) in (18). Under Assumption 1,
g’ is continuous at 0 by Lemma 1(ii) and U,, = O,(n"'¢(n)) = O,(n~'/%), by
Corollary 1 to Lemma 2. Hence, R,(f) = 0,(1), so that R;(¢)is also 0,(1), which
leads to R”(t) = 0,(n"?/%). Moreover, as in (20) and (21), this o, ~term is also
uniformin a < ¢t < b because U,, < U,, for all ¢ < b. Using this i m conjunction
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with (20) and (21), we rewrite (19) as
¢(n)t

(22) n?[T,(t) — ap] =5 Bpt® — apt 9(n) """ E W* + 0,(1),
uniformly in a < t < b. Theorem D.1 now follows from (22), because
{—¢(n)_1/2 ¢(Zn)tVl/}*, a<t< b} —o{B(t), a <t<b},
1
by Donsker’s theorem.

6. Proof of Theorem R.1. We write
$(n)t

(23) S.(t) = {o(n)t} " L m(Y,;) + n¥%(x)t71E,(2),

of which the first term is examined in Lemma 4 and
o(n)t

V,(t) = ¢(n) o(x) " X {2, - m(Y,;))
1
is analyzed in Lemmas 5, 6 and 7. As before, ¢(n) = n*/5.

LEMMA 4.
D(n)t
{qb(n)t}_1 Yy m(YnJ-) =ap + n"¥Bpt® + R, (1),
1

where sup, _ , < | R ,(2)] = 0,(n™*").

Proor. By Lemma 1(iv,v) and (6), for ¢(n)a < j < ¢(n)b,
(24) m(Y,,) = ap+ 12f2(x),BRYn2j +R
where |R, ;| = 27m"(AY,;) — m"(0)[Y%, 0 < A < 1. By continuity of m” and
Corollary 1 to Lemma 2, SUPy(yq < ; < o(nys| Bl = 0,(n~2/%). Thus,

o(n)t o(n)t

(25) {(1>(n)t}—1 Zl: m(Ynj) =ap+ L‘Zf2(x)Bﬁ,{q>(n)t}_1 };_: Y2+ R, (1),

nj»

where sup, _,_,|R(¢)| = 0,(n"**). Now by Lemma 1(ii) and Corollary 1 to
Lemma 2,

¢(n)t d(n)t

{o(n)e} ™" ; Y2 = (¢(n)e) }: g*(U,;)

(n)t

(26) - (6w T [&OU,; + 3) g (W, U]

¢(n)t

= {g'(O)}2{¢(n)t}”1 ; U2 + o,(n™%?).
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Finally, letting F, denote the empirical cdf of U,,..., U,
— 7 -1 = . — .
lrlljajnlUnj Jn | 12?5};'[]”’ Fn(Unj)l
< sup |F(u) —u|=0,(n""?),
O<ux<1
so that U?; = (j/n)? + o(n"'/?) uniformly in ¢(n)a <j < ¢(n)b. Hence,
¢(n)t d(n)t

{s(n)e) ™ ; U = (#(n)t) ™ 51: (J/n)* + o,(n"1%)

o(n)t

= {n7%9(n)} 't 9(n) ! ; {J/6(n)}* + o(n"?)

= w21 ['52ds + 0(n )| + 0,(n"17)

=n"¥5371? + o,(n"%%).
Thus,

d(n)t
(s(n)t) " X m(Y,,) = ap+ 12f%(x)Ba{£'(0))*n " ¥°37 12 + o,(n"%?)

1

ap + n"YBpt? + 0,(n%),
as was to be proved. O

LEMMA 5. Under Assumption 3,

k
sup k71 Y s3(Y,;) — s%(0)| = o,(1).
d(n)a<k<d(n)b 1

Proor. By Lemma 1(vi), s%(y) is continuous at 0, i.e., s2(y) = s%(0) + o(1)
as y — 0. Since Y, ;, j < ¢(n)b are uniformly O,(n~'/%) = 0,(1) by Corollary 1
to Lemma 2, we have s*(Y,;) = s%(0) + 0,(1) uniformly in j < ¢(n)b, which
implies the results. O

Without any loss of generality, assume that there is a B.M. {B(¢), ¢t > 0} on
the same space on which (X, Z,),(X,, Z,),...are defined and let .« denote the
o-field of Y, = | X, — x|, i = 1,2,..., in this space.

LEMMA 6. For every n, there exist stopping times T, ..., T,, of the Brownian
motion {B(t), t > 0} such that

(0 (ZHZ,, - m(Y, ), 1 <k<n)=¢(B(T,+ - +T,),1<k<n),
@) T,,...,T,, are conditionally independent given <« a.s.,
(iii) E(T,y|o) = s(Y,) a.s.,
(iv) E(T%| ) < Cr(Y,;) a.s., where C is a constant.
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Proor. By Lemma 1 of Bhattacharya (1974),
n
P[Z,;<z,j=1,....n&] = [1Hy (2,) as,
j=1 /

where H (z) = P(Z < 2z|Y = y). Thus, - m(Y,;), 1 <j < n, are condition-
ally mdependent given &/ with mean O vanance sX(Y, J) and fourth moment
7(Y, ;). In the conditional argument given 7, the lemma is thus a special case of
the well-known theorem of Skorokhod (1965), page 163. O

LEmMMA 7. (¥ (), a <t < b} —45 {B(f), a <t<b}.

ProoF. By Lemma 6(i),

o(n)t

(¥.(t),a<t<b}= {qb(n)_wo(x) E [Z,,j Y, )] a<t< b}

=9{¢(n)—1/20(x)_lB(Tn1 + o+ T ay), e S S b}

o)t
=9{B((¢(n)62(x)) Z ,,,), a<ts< b}.

To complete the proof, we shall show that

_1¢(n)t
(27) swp [(6(m)o*(@)} " X T, - ¢

a<t<b

because, by arguing as in Theorem 13.8 of Breiman (1968), (27) would imply that
along all sufficiently rapidly increasing subsequences {n,}, the expression in (27)
converges to 0 a.s. and the desired weak convergence will follow by Theorem
13.12 of Breiman (1968). To prove (27), note that

¢(n)t
o?(x) sup {9(n)o?(x)} Z
a<t<
k
< sup o(n) Z{ i oz(x)} + o(1)
¢(n)a<k<¢(n)d 1
k
<b sup k‘IE{Tnj—oz(x)) + o(1)
®(n)a<k<e¢(n)b 1
k
<b  sup EL YT, — s%(Y,,) H + 0,(1),
¢(n)a<k<®(n)b 1

by Lemma 5, since 6%(x) = s%(0). By Lemma 6 and the Hajek-Rényi inequality,
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we now have

k

kAT, - 8%(Y,))

1

P sup
¢(n)a<k<¢(n)db

> &

¢(n)a d(n)db
, a.s

gcs‘z[{¢(n)a}_2 Zl: (Y,,) + ; k~?0(Y,,)

= 207 Ho(ma) ", ity (o

<2Ce {¢(n)a} [ M, + M,Y,,],
using Lemma 1(vii) in the last step. Hence,

o(n)a

Y AT, - s¥(Y,,)}

1

P sup
¢(n)a<k<o(n)d

< 2Ce *¢(n)a) [ M, + M,E(Y,,)],

and the proof is completed by an application of Corollary 2 to Lemma 2.
The proof of Theorem R.1 is now accomplished by using the results of
Lemmas 4 and 7 in (23). O

> ¢
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