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MINIMAX ESTIMATORS OF A NORMAL MEAN VECTOR FOR
ARBITRARY QUADRATIC LOSS AND UNKNOWN
COVARIANCE MATRIX!

By LEON JAY GLESER

Purdue University

The problem of finding classes of estimators which dominate the usual
estimator X of the mean vector p of a p-variate normal distribution (p > 3)
under general quadratic loss is analytically difficult in cases where the
covariance matrix is unknown. Estimators of p in this case depend upon X
and an independent Wishart matrix W. In the present paper, integration-by-
parts methods for both the multivariate normal and Wishart distributions are
combined to yield unbiased estimates of risk difference (versus X) for certain
classes of estimators, defined indirectly through a “seed” function A(X, W).
An application of this technique produces a new class of minimax estimators
of p.

1. Introduction. Assume that a p-dimensional (p > 3) random vector X =
(X,,..., X,) is observed which is normally distributed with mean vector p and
positive definite covariance matrix . It is desired to estimate p by an estimator
8 under the quadratic loss

(1.1) L(8;p,2) = [tr(Q2)] "'(8 — u)'Q(8 — u),
where @ is a known positive definite matrix and tr(A) stands for the trace of the
matrix A.

Since X is assumed unknown, a random matrix W is observed along with X. It
is assumed that W is statistically independent of X and has a p-dimensional
Wishart distribution with parameter 2 and degrees of freedom n, n > p + 1.
Estimators § = 8(X, W) of p are evaluated in terms of their risk

R(8;p,2) =E[L(8(X,W); , 2)].

The above situation can occur, for example, when i.i.d. observations Y,,..., Y,

are taken from a p-dimensional normal distribution with mean vector p and
covariance matrix ¥, and the data are reduced by sufficiency to

N N
X=N'YY, W=N'Y(Y,-X)Y-X),
i=1 i=1
in whichcase S = N"'¥, n= N - 1.
Regardless of whether or not ¥ is known, and for any @, the optimal
equivariant estimator §,(X, W) = X of p is minimax. However, beginning with
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the landmark paper of Stein (1956), a large body of research has been devoted to
establishing broader and broader classes of estimators which dominate 8, in risk,
often substantially. For the most part such research has concentrated upon cases
where X is known (in which case W is not needed), or known up to a positive
scalar multiple % The most successful analytic technique in these papers has
been Stein’s (1981) integration-by-parts identities for the normal distribution,
which permit construction of unbiased estimators of risk difference (versus
8, = X)) for competing estimators.

Some attention has also been given to the case @ = =~!, 3 unknown.
However, this is a quite special situation (invariant loss), and also violates the
assumption made in this paper that @ is a known matrix. Under the assumption
that Z is diagonal (or has known eigenvectors), Berger and Bock (1976, 1977) and
Shinozaki (1977) have found estimators which dominate 8, in risk under losses
(1.1), @ arbitrary.

The case of completely unknown = has been the most resistant to solution,
even though it would clearly be of practical importance to find estimators of u
which are superior to §, (and thus minimax) in such situations. Berger et al.
(1977), Gleser (1979) and Berger and Haff (1983) have succeeded in developing
estimators which dominate §, in risk when no restrictions on = (or @) are made.
However, in the first two papers proof of risk domination depended upon the
results of a simulation—a somewhat unsatisfactory demonstration. Berger and
Haff (1983) provide a completely analytic proof of dominance, but for a fairly
narrow class of estimators. Their method of attack depends upon Haff’s (1977,
1979a, b, 1980) and Stein’s (unpublished) integration-by-parts techniques for the
Wishart distribution, but they do not obtain unbiased estimates of risk differ-
ence.

The present paper uses the integration-by-parts techniques for the normal and
Wishart distributions in a new way. In Section 2, it is shown how to start with a
“seed” function A(X, W) = (h(X,W),..., h,(X, W)y, and use this function to
construct estimators 8( X, W) of p having an unbiased estimator of the (weighted)
risk difference

tr(QZ){R(8; p, Z) — R(8y; 1, 2)}

versus §, = X. In Section 3, the new method is applied to provide a completely
analytic proof that a certain intuitively appealing class of estimators dominates
8, in rigk.

2. The general method. To reduce notational complexity, in the remainder
of this paper it is assumed that
(2.1) Q=1,

where I, is the p-dimensional identity matrix. As is verified in greater detail in
Berger and Haff (1983), estimators §*(X, W) for the case of general @ can be
obtained from estimators 8( X, W) for the case (2.1) as follows:

(2.2) ¥ (X, W) = (T") '[8(T'X, T'"WT)],
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where T is any solution of @ = TT’. An estimator 8§( X, W) dominates §, = X in
risk in the case (2.1) if and only if §*(X, W) defined by (2.2) dominates X in risk
when the loss function (1.1) is defined by general Q.

For any (scalar, vector, matrix) function F(X, W), the notations

EX[F(X’W)]’ EW[F(X’W)]’

respectively, denote expectation of F(X, W) taken over X (with W fixed), and
over W (with X fixed). When expectation jointly over both X and W is meant,
no subscripts on E will be used. Since X and W are assumed independent,

E[F(X,W)] = Ex{Ew[F(X,W)]} = Ey{Ex[F(X, W)])
provided one of the above expectations (E, E E, EE ) exists.
Let T = T(W) be a p X p matrix function of W = ((w;;)). If T = ((¢;))),
define
LA

D*T‘(r)= E a + Z

i=1 (22 Héj ij

Under conditions on T(W) specified in Haff (1979b), it can be shown [see
equation (2.4) in Haff (1980)] that the following identity holds:
Ew[te(T=7)] = 2Ew[D*T,, 5] + (n— p — 1)Ey[te(W'T)].

Rewriting this equation in the form to be used in this section,
1
(2.3) Eyfte(W'T)] = p— (Ew[te(T=™)] - 2Ey [ D*T,, 5}

Let
R(X, W) = (h(X, W), hy( X, W),..., h( X, W))
be a p-dimensional vector-valued function of X and W. Define
(24) T=T(X,W)=[(X-p)h(X,W)]W=(X - p)[Wh(X,W)]".
Using the second representation of T(X, W) in (2.4), it is easy to show that
(2.5) D*T(1/2)=r'(X,W)(X—p.),
where r(X, W) = (r(X,W),..., r(X, W)) and
I(Wh(X,W)), 1 I(Wh(X,W)),

26) r(X,w)y=——m+-) ———, i=1,...,p
Iw; 2% I,

Here, for any vector U = (u,,...,u,) the notation (U), denotes u,, the ith

component of U. Alternatively, for future applications, it may be useful to note

that

R W) = 2 (p + Dh(X,W)

(2.67) P p [on (X, W
=1k=1 17}
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where §;; is the Kronecker delta. This can be shown using the first representation
of T(X, W) in (2.4).

It now follows from (2.3), (2.4), and (2.5) that when A(X, W) allows the
regularity conditions underlying Haff’s identity (2.3) to be met for T(X, W)
defined by (2.4),

E[R(X,W)(X = )] = Ex{Ew[t(W'T(X, W))]}
(2.7) = ;?;;j—lE{tr(T(X,W)EI)
—2r(X,W)(X —p)}.
Let

(2.8) HX,W)=h(X,W) +;:—I2)—_'TF(X,W).

From (2.4) and (2.7),

E[¢(X,W)(X - p)]

n —

——;—_—IE[tr(T(X,W)E'I)]

a1 EwlEx[R(X, W)WET(X - )]}
However, if A(X, W) satisfies the regularity conditions for the integration-by-
parts identity for the multivariate normal distribution [see Stein (1981) and
Berger and Haff (1983)],

(2.9) Ex[W(X,W)WZ"Y(X - p)] = Ex[tr(WVh(X, W))],
where

oh, (X, W)
Consequently,

1
(2.10) E[t(X,W)(X -p)] = mE[tr(th(X,W))].
Equation (2.10) is the key result needed to prove the following theorem.

THEOREM 1. Let h(X, W) satisfy the regularity conditions needed to estab-
lish the identities (2.7) and (2.9), and let t(X, W) be defined from h(X, W) by
(2.6) and (2.8). Define the estimator

(X, W)=X—-t(X,W).
Then if 6(X, W) has finite risk,
(2.11) tr(2)[R(8; p, ) — R(8g; 1, 2)] = E[M(X, W)],
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where

(2.12) M(X,W) = ¢(X,W)t(X,W) — (;—_—f;—_——l-)tr(th(X, w)).

Proor. First, note that for §( X, W) to have finite risk, it is sufficient that
E[¢(X, W)t(X, W)] < 0. By a standard argument (remember that @ = I,,),

tr(2)[R(8; p, 2) — R(8y; 1, 2)]
= E[t(X, W)X, W)] - 2E[¢(X, W)(X — p)].

The assertion of the theorem is now a direct consequence of (2.10). O

Theorem 1 describes an admittedly indirect way of arriving at an estimator
8( X, W) for which one can determine an unbiased estimate of risk difference. The
big advantage of this approach is the unbiased estimate of risk difference, which
can simplify verification of minimaxity. The disadvantage of the approach is that
one starts with one possible adjustment X — h(X, W) to X, but winds up with a
different adjusted estimator X — #(X, W). This complicates searching for good
(minimax) estimators. To apply Theorem 1 to a given estimator 6( X, W) = X —
t(X, W), one must solve the set of partial differential equations defined by (2.6)
and (2.8) for A(X, W), and then check that A(X, W) satisfies the required
regularity conditions.

3. A class of minimax estimators. Let
(3.1) R(X, W) = V) 1k
) ’ XWX ’

where b(W) is a positive scalar function of W which is continuously differentia-
ble as a function of the p(p + 1)/2 free elements of W. Define the matrix

d*log b(W)
where d* is the symmetric partial derivative:
dlog b(W)

, i=],
8*log b(W) dw, /

1 #].

Using the fact that when W~! = ((w*™))

Jwhm { —wkiw/™ — wmiwsk, i#J,

Jw,

i im ..
ij —w*w™, =7
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it can be seen that

? (XWX) = (X'W ) (X W ),(2 - 8ij)'

Jw, ;
Consequently,
IWh(X,W)|; Xb(W X'W'X) db(W d
[Wh(X, W)L, Xp() | )W) 8
dw;; (X'W'X) b(W) dw,; dw;;
Xb(W)
(X'WX)
y dlog b(W) . (2 =8, (X W H(X W),
It then follows from (2.6) and the definition of U(W) that
b(W)
r(X, W) = h(X,W) + —)_('VV—_IXU(W)X
It is also straightforward to show that
(p —2)b(W)
(3.2) tr[Wyh(X, W)] = tr[v(Wh(X,W))] = WX

Finally, it is not difficult (see Berger and Haff, 1983) to show that A(X, W)
satisfies the regularity conditions assumed in proving Theorem 1.
Hence, consider the class of estimators

(3.3) (X, W) =X—t(X, W),

where

HX, W) =

p—1 [X’W"‘X}U(W)X

1+——n_2_1)h(X,W)+n_2 b(W)
(3.4) P

) b(W)
“(n-p- 1)(X'WX) {

(n—p+1)W'X + 2U(W)X}.

By Theorem 1,
(3.5) tr(2)[R(8; p, T) — R(8; 1, 2)] = E[M(X, W)],

where
(3.6) M(X,W)=¢t(X,W)t(X, w) — (n—_fﬁ)tr[th(X,W)].

Since for x, y any p-dimensional column vectors (x # 0) and ¢, ¢, any two



MINIMAX ESTIMATORS 1631

scalars, the Cauchy-Schwarz inequality yields
(cix + cyy) (c1x + cpy) = c2x’x + 2¢,c,x"y + c2y'y

1/2 ,
< leyfPx'x + 2]eq gl (xxy'y) 7 + Jegl®y'y

y'y 1/212
ley| + |02|( ) ,

— ,,
(xx) x'x

it follows directly from (3.4) that
VW)X WX
(n=p-D)(X'W'X)’

(X, WX, W) <

X'U’(W)U(W)X]VZ ?
XWX } '

X{(n—p+1)+2

Assume that
(3.7) UW)UW) < W2

in the ordering of positive semi-definiteness for matrices. It thus follows that

(3.8) (X, W)H(X,W) < bZ(W)(nz_p+3)2 [X,W:ZX}.
(n=p-1Y(X'W'X) [[XWX
However for all X,
(39) LA S p——
XWX max A in(W)

where A (A), A ;,(A) denote the largest and smallest eigenvalues, respectively,
of a symmetric matrix A. Consequently, it follows from (3.2), (3.6), (3.8), and (3.9)
that

b(W)
(n-p-1DX'W'X

{ (n—p+3)°b(W)
X

M(X,W) <
(3.10)

(n—p - DA(w) 2P~

THEOREM 2. If b(W) satisfies (3.7) and also
2(p—-2)(n—p-1)
(n—p+3)°

then the estimator 8( X, W) defined by (3.3) and (3.4) dominates (X, W) = X
in risk.

b(W) < Amin(W)’

Proor. This is a direct consequence of (3.5) and (3.10). O
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To show that the conditions of Theorem 2 are not contradictory, so that the
class of estimators 8( X, W) in Theorem 2 is not empty, consider choosing

b(W) = C)\min(W), c>0.
It is shown in Berger and Haff (1983) that for this choice of b(W),

W) = (( d*log b(W) )) 1

= 88’

9*w; A min( W)
where g is the characteristic vector of W corresponding to A, (W), gg = 1.
Hence it is easily seen that

1
U(W))UW) = mgg’ w2

Thus, when b(W) = cA (W), the conditions of Theorem 2 are met when
2zp-2)(n-p-1)
< .
(n—p+3)
Of course, other choices of b(W) are possible. For example, we can use
b(W) = c[tr(W™1)] .

The class of estimators covered by Theorem 2 is closely related to (subsets of )
the classes of estimators considered by Gleser (1979) and Berger and Haff (1983).
Indeed, the estimators discussed in Theorem 2 can be regarded as adjustments to
special cases of estimators considered by these authors. Results concerning
minimaxity of adjustments to the more general estimators considered by Gleser
(1979) and Berger and Haff (1983) can be established using the methods of

Section 2. One can also consider the minimaxity of adjustments to estimators of
the form

X - _f’(_W_)_ WX
XWX ’
although the analysis is more complicated, and the resulting adjusted estimators
are less attractive in form. However, the purpose here has been to illustrate
application of the methods of Section 2. A comparison of the analysis and results
here to the arguments and results in Berger et al. (1977), Gleser (1979) or Berger
and Haff (1983) should give convincing evidence of the usefulness and relative
simplicity of the methods of Section 2.

Acknowledgments. I am grateful to the Associate Editor and a referee for
helpful comments that strengthened the exposition and conclusions in this paper.
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