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ASYMPTOTIC PROPERTIES OF THE PRODUCT LIMIT
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and Brookhaven National Laboratory

Many authors have considered the problem of estimating a distribution
function when the observed data is subject to random truncation. A promi-
nent role is played by the product limit estimator, which is the analogue of
the Kaplan—Meier estimator of a distribution function under random censor-
ing. Wang and Jewell (1985) and Woodroofe (1985) independently proved
consistency results for this product limit estimator and showed weak conver-
gence to a Gaussian process. Both papers left open the exact form of the
covariance structure of the limiting process. Here we provide a precise
description of the asymptotic behavior of the product limit estimator, includ-
ing a simple explicit form of the asymptotic covariance structure, which also
turns out to be the analogue of the covariance structure of the Kaplan—Meier
estimator. Some applications are briefly discussed.

1. Introduction. Let (x,, t,),...,(x,, t,) be a random sample from the joint
cumulative distribution function

(1) K(x,t) = [ [* 1(u < v) dG(v) dF(u)/P,
— 00" — 00

where F and G are arbitrary continuous distribution functions, I(-) is the usual
indicator function and P = [/f,_,dF(u)dG(v). From the sample a primary
goal is to estimate the conditional distribution function F*(-) = F(:)/F(T*)
for any fixed T* that is smaller than sup{t: G(¢) < 1}. Notice that if
sup{x: F(x) < 1} < sup{t: G(¢) < 1} then we may choose T* so that
F(-)/F(T*) = F(-).

This is a model that describes observations on a random variable X subject to
random truncation where the distribution of truncation values is independent of
the distribution of X. For a general description and motivation of the problem
with applications see Wang and Jewell (1985) and Woodroofe (1985). When the
joint distribution of (X, T') is given by (1) it can be considered as if X and T are
drawn independently from two arbitrary populations with distribution functions
F and G, respectively, but the sampling mechanism is such that (X, T) is
included in the sample if and only if X < T.

An important application of the techniques discussed in this paper arises in
the estimation of the slope parameters of a standard regression model Y = BZ + e
where the dependent variable Y is subject to truncation from above (or below) at
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a fixed value K. The distribution function F of the residuals e is unspecified.
Given B, suppose one wishes to estimate F. This is important for two reasons: (i)
one may wish to check potential parametric descriptions of F and (ii) one may
wish to adaptively estimate 8 through an iterative scheme that estimates F at
each stage. Estimation of B for simple linear regression is discussed by
Bhattacharya, Chernoff and Yang (1983) using rank based methods. They also
briefly discuss estimation of F' at a finite set of values. Jewell (1985) introduces
an iterative scheme for estimating B that uses an estimate of F at each stage of
the iteration. The estimation of F is based on the set of observed residuals from
a given line, {e;}. Each e, is then a random observation from a truncated version
of F, the truncation point being K — BZ,. Estimation of F under these cir-
cumstances is exactly the problem discussed in this paper with the truncation
distribution in this case being generated by the marginal distribution of Z.

Based on the sample (x,, ,),...,(x,, t,), Jewell (1985) and Woodroofe (1985)
independently considered the following estimator for F *:

@ Fa(x)- [ "1

x<x,<T* m(xj) ’

where m(x) = X7_,1(x; < x, t; > x), and the product is taken to be 1 if there is
no x; with x <x; < T* This estimator had previously been suggested by
Lynden-Bell (1971) in the context of a problem in astronomy. The estimator is
the analogue of the product limit estimator of Kaplan and Meier (1958) for
randomly censored data.

Wang and Jewell (1985) proved the uniform strong consistency of Fg as an
estimate of F'* over intervals (— oo, T*]. They also briefly discussed the weak
convergence of F to a Gaussian process, but left open the exact form of the
covariance structure. Independently, Woodroofe (1985) obtained a weak con-
sistency result for ¥ and showed weak convergence to a Gaussian process but
also did not give the asymptotic covariance structure. Here we discuss the
derivation of Fg; and describe precisely the asymptotic convergence of Fg
including a simple explicit form for the covariance structure.

In what follows, note that the derivation of the estimator Fy, and its
asymptotic properties do not depend on any parametric assumption about the
form of F or G. Also, the methods extend in a straightforward manner to
truncation from below and thus estimation of G.

2. Preliminary comments. Consider the likelihood of the observed data
points, written as a function of F and G:

L= ij[l [dF(xj) dG(tj)/ffxstdF(x) dG(t)].

This can be factorized as the product of the conditional likelihood of the x’s
given the observed values of the ¢’s and the marginal likelihood of the ¢’s. That
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is, with F(t;) = [ dF(x), we have
3 = | T arte)/vts) || TTorts)|
J= j=

Turnbull (1976) considered maximization of the conditional likelihood, i.e., the
first term in (3), with respect to F. Because he considered a more general form of
truncation, he did not provide a closed form solution. Under the condition that
sup{x: F(x) < 1} < max{¢,,..., t,}, an algorithm, based on a self-consistency
approach, was given for the estimation of F.

Writing F*(-) = F(-)/F(T*) we can separate out from the conditional likeli-
hood those terms that have information on F *. That is, ordering the x values so
that x, <x, < --- <x,, we have

(4) CL = li[ldF(xj)/F(tj) = ,fjxdF*(xj)/F*(tj)H ‘ ﬁ 1dF(xj)/F(tj) .

J=m+

Here m = # {x; < T'*}, and the second factor only contains information on F(x)
for x > T*. Write CL* = [1]L ,dF*(x;)/F *(¢,).

Maximizing CL* with respect to F* is a special case of a general problem
considered by Vardi (1985). He discusses the nonparametric maximum likelihood
estimator Fy, , i.e., the choice of F'* that maximizes the value of CL* subject to
the constraint that F* is a distribution function. Before describing his results
we require some notation. For each i, 1 <i<m, let D, = {x;:x; <t} and
assume no ties amongst the observed ¢’s. Then a straightforward application of
Theorem 1 of Vardi (1985) yields the following result.

THEOREM 1 (Vardi). A necessary and sufficient condition for the existence of
a unique nonparametric maximum likelihood estimator Fy, is that for each
proper subset B of {1,..., m}, the set Dy = U, . 3D, contains at least one x  with
J & B.

It is easy to construct examples of data configurations that fail to satisfy the
condition. If the existence condition is satisfied, Vardi (1985) gives an algorithm
for computing the estimator, although no results on asymptotic convergence are
available. No convergence results are proved in Turnbull (1976) either. Note that
the theorem can easily be extended to cover the case where ties occur amongst
the truncation values.

Recall that, forx < T*, m(x) = #{t; > x with x; <x; j=1,..., m} and put
a;=[m(x;) — 1]/m(x;) for j = 1,..., m. A careful analysis of the maximization
of CL* that yields Fy establishes the following facts. First Fy% and Fy,
coincide when Fy exists. A necessary and sufficient condition for this is that
a;> 0 for j =2,..., m. It is straightforward to show that this is equivalent to
the condition of Theorem 1.
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Despite the independence of X and T, the marginal likelihood of the ¢’s, i.e.,
the second factor of (3), does depend on F in contrast to the situation with
randomly censored data. The marginal likelihood of T is given by

ML(t) = dG(t)F(t)/// dF(x) dG(t).

Thus the observed values of T do carry some information about the distribution
of X; however, the information is small. In fact if we observe T = ¢, all we can
infer regarding F, in the absence of knowledge of G, is that inf{x: F(x) > 0} < ¢.
Nevertheless, this suggests maximizing the full likelihood (3) simultaneously
with respect to F and G. This turns out not to make any difference, i.e., when
the unique nonparametric conditional maximum likelihood estimate, F;, exists
it is also the unique nonparametric maximum likelihood estimator of the full
likelihood (3) (Wang, (1986)).

All of the above has implicitly assumed that there are no ties amongst the
observed x’s. It is easy to see that the estimator directly extends when ties
occur. Explicitly we have in this case:

Fro = 1 M) -ds)

PL x<x,sT* m(xj) )
where the product is taken over distinct x,’s and d(x;) is the number of tied
values at x = x.

3. A representation for F*. In this section we describe a representation
for F'* in terms of the sampling distributions of observed random variables. It is
this representation that allows us to develop the large sample properties of Fi .
For simplicity we assume that F is continuous. The extension of the results to
arbitrary F is discussed at the end of the section.

Let A = {X < min(T, T*)}, and let P* = pr(A). Define

H(x,t) = pr(X < 2,T > (X, T) € A)

(5) _ f_"“"‘”*’ f°°1(u < v) dG(v) dF(u)/P*,

and let R(x) = H(x, x).
Also, set

Cx)=pr(X<x|(X,T)€A) = f:ﬂ:(x’T*)/wwI(u <v)dG(v) dF(u)/P*

and A(x) = [T(dF(u)/F(u)). Note that C(T*) = 1.
It is easily seen from (5) that

©) AG) = [
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Furthermore,
(7) F*(x) = exp[ - A(x)].

A natural estimator of F* can be constructed by substituting into (7) the
estimator of A given by replacing R and C in (6) by their empirical counter-
parts, i.e., we can estimate A by

+dC, (1)
(8) Ay (x) = LT R0’
where C,(u) = m 'L7 I(x; < u) and R, (u)=m 'L" l(x;<u<t)=

m(u)/m. The estimator of F* given by exp[ —A,,] is asymptotically equivalent
to F, but is easier to study. The representation of F'* given by (6) and (7) and
the estimator A, were derived in Wang and Jewell (1985) using slightly different
notation. Woodroofe ((1985), Theorem 1) also obtained this representation, again
with different notation. This representation is analogous to one obtained for a
survival distribution function when the underlying survival and censoring distri-
butions are continuous. This representation is discussed in Breslow and Crowley
(1974) and Peterson (1977).

An immediate application of the representation is that it provides a straight-
forward method of proving consistency properties of Fi as an estimator of F'*.
In particular the following is true.

THEOREM 2. Assume that F is continuous and T* < sup{t: G(t) < 1}. Then
sup, . r«|Fg(u) — F*(u)| - 0 with probability one as n — oo.

Details of the proof of Theorem 2 are given in Wang and Jewell (1985).
Woodroofe ((1985), Theorem 2) gives an alternative proof and extends the result
to cover the case T* = sup{t: G(¢) < 1} at the expense of substituting weak
consistency for strong consistency.

In the preceding we have assumed, for simplicity, that F is continuous.
Theorem 2 can be extended to the general case by using the following representa-
tion, which is the extension of the one previously obtained:

I(z>x)

F*(x) = exp|— [ dC(u)/R(w)| - T1 [1 - a(2)(R(2)7")]" >,
x zeD

where C, is the continuous component of C, D is the set of discontinuity points
of C, and q(z) = pr(X = 2|(X, T) € A). This representation can be proved in
the same manner as Corollary 2.1 in Beran (1982).

4. Weak convergence of Fp. Before stating our main results we need a
lemma, which follows immediately from the representation of Section 3 using the
techniques of Breslow and Crowley (1974) and the observation that Fgi(x) =
exp{Z‘.qusT*log[l - m(xj)‘l]}. Details of the proof are given in Wang and
Jewell (1985).



1602 M.-C. WANG, N. P. JEWELL AND W.-Y. TSAI

LEMMA 3. Let n(x) = #{x; <x witht; > T*}. Let inf(z: F(z) >0} <x <
T* < sup{t: G(t) < 1}. Then, with probability one,

0 < —log F#(x) = A,(x) < [m = n(x)]/[n(x)(n(x) ~1)] asn— co.

Standard results concerning convergence of empirical processes yield the next
lemma.

LEMMA 4. Define Y, =m"/*C, — C) and Z, =m"* R, — R). Then
(Y,,, Z,,) converges weakly to the bivariate Gaussian process (Y, Z), which has
mean 0 and covariance structure given by

cov(Y(x), ¥(y)) = C(x A y) — C(x)C(y),
(9) cov(Z(x), Z(y)) = H(x A y,x V y) — R(x)R(y),
cov(Y(x), Z(y)) = H(x Ay, y) — C(x)R(y),
where x A y = min(x, y) and x V y = max(x, y).
Theorem 5 describes the weak convergence of A,, to a Gaussian process.
Woodroofe ((1985), Theorem 3) independently obtained the weak convergence of

A, using a related argument but did not describe the asymptotic covariance
structure explicitly.

THEOREM 5. Let R(T*) #+ 0 and suppose F and G are continuous. Suppose
inf{z: F(2) >0} <a <x < T* <sup{t: G(¢t) <1}. Then the random function
Vm (A, (x) — A(x)) converges weakly to the Gaussian process W = A — B de-
fined by

T* Z
R?

.Y
+fT — dR and B(x) = dc,

« R?

(10) A(x)=(Y(T*) Y(x))

R(T*) R(x)

where (Y, Z) is the bivariate mean 0 Gaussian process satisfying (9). Further-
more, the covariance structure of the limiting process W is given by

7+ dC
(11) cov(W(x), W(y)) = | 53-
xVy

Proor. Using Lemmas 3 and 4, the establishment of weak convergence
follows exactly the arguments in the proof of Theorem 4 of Breslow and Crowley
(1974) and so the details are omitted. What remains is to evaluate the covariance
structure of the limiting process W.

For x <y, write cov(W(x), W(y)) = cov(A(x), A(y)) + cov(B(x), B(y)) —
cov( A(x), B(y)) — cov(A(y), B(x)), where A and B are the processes defined by
(10). To evaluate each of these terms we use integration of parts repeatedly
together with the relationships (6) and (9) and the fact that C(T *) = 1. Alterna-
tively these calculations are special cases of Lemma A.1 of Tsai ((1982), page
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117). Such calculations yield
cov(A(e), 4() = [T HAELR S ALIE)

R(u)R(v)

(12)
R~ AEAG);

cov(B(x), B(y)) = /T T+ [H (u Av,uVo)— R(u)R(v)]

), Rz(u)Rz(u) dC(u) dC(v)

T*

=yfx 2<)R2()

+f f F@%—) dC(u) dC(v)

dC(u) dC(v)

" f fT dC(u)dC u)
“R(2)R(v)
- [ [ 7t )dc<u)d0(o>
fyT* ;%dc(u)dcw) A(x)A(y);
I e
_ fyT* /xoduH((z;,);)zt(ic)(o) - AL
R e

= _LT*./:d“i((Z’);L?f)(v) + A(x)A(y).

Furthermore, for u < v < T*,
(1 - G(v))F(u) dF(u)
pP* F(u)

d,H(u,v) = (1 - G(v))dF(u)/P* =

dC(u)
R(u)

Then cov(W(x), W(y)) is the sum of terms (12) through (15), which is equal to
/,’dC(u)/R?*(u), completing the proof of Theorem 5. O

= H(u,v)
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The following theorem is an immediate consequence of Theorem 5 using the
delta method and Lemma 3.

THEOREM 6. Assume the conditions of Theorem 5 hold. Then the random
function Vm (Fg%, — F*) converges weakly to the Gaussian process W* with
mean 0 and covariance given by

* dC
(16) cov(W(x), W*(y)) = FX(x)F*(y) [

xvy R?

REMARKs. (1) We can easily obtain a consistent estimate for V(x), the
asymptotic variance of Fg(x). For dC,(u)=m™', R,(u)=m(u)/m and
R, (u") = (m(u) — 1)/m. Substituting C,, for C and R, (u)R,(u") for R*(x) in
the expression (16) yields the following estimate for V(x):

V) = Fafa) - [mlx)(m(x) = 1)] 7
*zx,2x
This formula is the analogue of Greenwood’s formula, an estimate of the
asymptotic variance of the Kaplan-Meier estimate of a survival function.

(2) Since the covariance structure (16) has a similar form to that for the
Kaplan-Meier estimator, the techniques of Hall and Wellner (1980) can be
adapted directly in order to construct confidence bands for F*. In particular,
with K(t) = {1+ [FdC/R*}™' and K(t) =1 - K(t), the process Z, con-
volved with K/F*, is a rescaled Brownian bridge with K acting as a natural
time scale. Consideration of this process in light of Theorem 6 leads to large-sam-
ple confidence bands for F* in terms of K that can be estimated from data in
the manner described for V(x) above.

(3) Alternatives to Theorems 5 and 6 can be stated in terms of convergence as
n — oo rather than as m — oo, if we alter the definitions of R and T ap-
propriately.

(4) Two sample tests under random truncation can be constructed by using
the idea that Efron (1967) applied to the two sample problem with censored
data. This yields the test statistic W = [ Fgi (u) dFg(u), where F ,, F,
are the product limit estimators of the distributions underlying sample 1 and
sample 2, respectively. The asymptotic variance of W is straightforward to
deduce using Theorem 6 and can be estimated in the standard way. Other two
sample tests may be derived from (i) considering Lehmann alternatives or (ii)
linear rank methods as for censored data.

(5) Using techniques similar to Meier (1975) should allow our results to be
extended to the case of fixed truncation values rather than random truncation.

Finally, as noted earlier, if sup{x: F(x) < 1} < sup{t: G(¢) < 1}, then Theo-
rem 6 yields the asymptotic distributional properties of F itself rather than F*
by choosing T * suitably. Woodroofe (1985) points out that if

sup{x: F(x) < 1} = sup{¢: G(¢) <1}
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the limiting process of Fg, may not be defined if we take T'* = sup{x: F(x) < 1}.
However, in this case, a limiting distribution exists if [(1 — G) ! dF < . For
further details see Woodroofe ((1985), Section 6).

REFERENCES

BERAN, R. (1982). Nonparametric regression with randomly censored data. Unpublished report,
Univ. California, Berkeley.

BHATTACHARYA, P. K., CHERNOFF, H. and YANG, S. S. (1983). Nonparametric estimation of the
slope of a truncated regression. Ann. Statist. 11 505-514.

BrEsLow, N. and CROWLEY, J. (1974). A large sample study of the life table and product limit
estimates under random censorship. Ann. Statist. 2 437-453.

EFRON, B. (1967). The two sample problem with censored data. Proc. Fifth Berkeley Symp. Math.
Statist. Probab. 4 831-853. Univ. California Press.

HaLL, W. J. and WELLNER, J. A. (1980). Confidence bands for a survival curve from censored data.
Biometrika 67 133-143.

JEWELL, N. P. (1985). Least squares estimation of the slope of a truncated regression. Technical
Report, Program in Biostatistics, Univ. California, Berkeley.

KapLaN, E. L. and MEIER, P. (1958). Nonparametric estimation from incomplete observations. <J.
Amer. Statist. Assoc. 53 457-481.

LYNDEN-BELL, D. (1971). A method for allowing for known observational selection in small samples
applied to 3CR quasars. Mon. Nat. Royal Astr. Soc. 155 95-118.

MEIER, P. (1975). Estimation of a distribution function from incomplete observations. Perspectives
in Prob. and Statist. Applied Prob. Trust, Sheffield, 67-87.

PETERsON, A. V., JR. (1977). Expressing the Kaplan—Meier estimator as a function of empirical
subsurvival functions. J. Amer. Statist. Assoc. 72 854-858.

Tsar, W.-Y. (1982). Bivariate survival time and censoring. Ph.D. thesis, Univ. Wisconsin, Madison.

TURNBULL, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and
truncated data. J. Roy. Statist. Soc. Ser. B 38 290-295.

VaRDI, Y. (1985). Empirical distributions in selection bias models. Ann. Statist. 13 178-203.

WaNg, M.-C. and JEWELL, N. P. (1985). The product limit estimate of a distribution function
under random truncation. Technical Report, Program in Biostatistics, Univ. California,

Berkeley.
WANG, M.-C. (1986). Product-limit estimates: A generalized maximum likelihood study. Unpub-
lished.
WOODROOFE, M. (1985). Estimating a distribution function with truncated data. Ann. Statist. 13
163-177.
MEI-CHENG WANG NicHoLas P. JEWELL
DEPARTMENT OF BIOSTATISTICS DEPARTMENT OF STATISTICS AND
JOHNS HOPKINS UNIVERSITY PROGRAM IN BIOSTATISTICS
BALTIMORE, MARYLAND 21205 UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720
WEI-YANN TsAl
APPLIED MATHEMATICS DEPARTMENT
BROOKHAVEN NATIONAL LABORATORY
Upron, NEW YORK 11973



