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An Edgeworth expansion with remainder o(N!) is established for a

U-statistic with a kernel A of degree 2. The assumptions involved appear to

be very mild; in particular, the common distribution of the summands
h(X,, X;) is not assumed to be smooth.

1. Introduction. Let X, X,,..., X5 be independent and identically dis-
tributed (i.i.d.) random variables assuming values in a measurable space (%, #)
with a common distribution Py. Let h: 2 X £ = R be measurable and symmet-
ric in its two arguments, i.e., A(x, y) = hA(y,x). For N > 2, a U-statistic of
degree 2 is defined as

N-1 N
(1~1) Uy = Z Z h(Xw Xj)‘
i=1 j=i+1

Note that we do not follow the usual convention of dividing the sum in (1.1) by
the number (’;’ ) of its terms. Since our results concern the standardized version

of U, this does not make any difference.
We assume throughout that

(1.2) En(X,, X,) =0, ER*(X,, X,) < o0,
and define

(1.3) g(x) = E(A(X,, X)X, =x),  ¥(x,5) =h(x, ) - g(x) - &(),

N N-1 N
(1.4) Uy=(N-1) Zg(Xi)’ Ay = Z Z ‘P(Xi: Xj):
i=1 i=1 j=i+1
so that
(1.5) Uy=Uy+ Ay

Since E(Y(X;, X,)|X;) = 0 almost surely (a.s.), the random variables g(X;) and
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¥(X,, X;), 1 <i<j < N, are pairwise uncorrelated and hence
of = 0*(Uy) = o*(Uy) + o*(Ay)
= N(N - 1)°Eg*(X,) + sN(N - DEY*(X,, X,).
If it is assumed that
(1.7) ol = Eg*(X,) > 0,

(1.6)

then o%( UN) dominates the right-hand side of (1.6) and oy 'Uy is asymptotically
normal as N — oo [cf. Hoeffding (1948), where U-statistics were introduced].

The speed of convergence to normality was investigated by Bickel (1974),
Chan and Wierman (1977), Callaert and Janssen (1978) and Helmers and van
Zwet (1982) who showed in increasing generality that

(1.8) sup|P(oy'Uy < x) — ®(x)| = O(N~2),

where ® denotes the standard normal distribution function (d.f.). If (1.2) and
(1.7) are satisfied, so that asymptotic normality is ensured, then E|g(X,)|® <
suffices to establish (1.8). Moreover, the assumption Er*(X,, X,) < oo may be
relaxed, provided oy is replaced by o(Uy) in (1.8).

The next step in the asymptotic analysis of a5'Uy, is to obtain an Edgeworth
expansion for its d.f., and for statistical purposes one typically needs such an
expansion up to a remainder term which is o(N™!). To be specific, let

(1.9) Kg = 05»_3{Eg3(X1) + 3Eg(X,)g(X,)y(X,, X2)},
ky = 05»_4{Eg4(X1) - 3"; + 12Eg*(X,)g( X,) ¥ (X, X,)

+12Eg(X,)g(X,)v(X,, X,)¥(X,, X;)}.

Straightforward calculation ‘shows that if EhR%X,, X,) < co—which we shall
not generally require in this paper—then k;N~/2 and k,N~! are asymptotic
expressions with error o(N~') for the third and fourth cumulants of oy'Uy,
respectively. Define

(1.10)

Fy(x) = ®(x) - ¢(x){%zv—l/2(x2 S 1) 4 AN (R - 3x)

24
(1.11) 9
K
+ 7—;N_1(.7c5 — 10x% + 15x)},
where ¢ denotes the standard normal density. We wish to show that
(1.12) sup|P(oy'Uy < x) — Fy(x)| = o(N7Y)
as N — oo.

The validity of the Edgeworth expansion (1.11)—(1.12) was established by
Janssen (1978) and by Callaert, Janssen and Veraverbeke (1980) under a com-
plicated condition which these authors were able to verify only for certain cases
where the distribution of A(X,, X,) possesses an absolutely continuous part. An
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inspection of special cases, however, quickly reveals that the expansion may be
valid even when % assumes only two values. In this respect the situation appears
to be more favorable than it is for sums of ii.d. random variables, where the
lattice case has to be excluded. The explanation of this phenomenon is simple:
the left-hand side of (1.12) cannot be smaller than the largest jump of the d.f. of
Uy and in the lattice case the jumps are of the order N~'/2 for sums, but N~/
for most U-statistics. An exception is, of course, the U-statistic {¥15(X;)}* which
is distributed like the square of a binomial random variable, so that the jumps
are of the order N~ /2,

The aim of the present paper is to establish the Edgeworth expansion under
very mild assumptions that are easy to verify and do not involve smoothness of
the distribution of A(X,, X,). Suppose that there exist positive numbers
8,8,,8,, 85, C and positive and continuous functions x ;: (0, o) — (0, 00), Jj=12
satisfying

(1.13) lim x,(¢) = 0,
t— o0
(1.14) lim x,(¢) > 8, > 0,
t— o0
as well as a real number r such that
(1.15) r>2+8>2,
(1.16) E|lv(X,, X,)| <C,
(1.17) Eg*(X,)1y, . (|&(X,)]) < x.(¢) forall ¢> 0,
(1.18) |Eei8XD| <1 — x,(¢) <1 forall t> 0.

Let A, Ay, ... denote the eigenvalues of the kernel ¢ with respect to Py, ranked
according to descending absolute values and with multiple eigenvalues repeated.
Thus, for some orthonormal sequence of eigenfunctions w,, w,, ...,

(1.19) /xlz(x, y)wi(x) dPx(x) = N0, y), Ayl = Ao = -+

Assume, in addition to (1.13)-(1.18), that there exists a natural number & such
that

(1.20) Al =8, > 0.

Finally, assumptions (1.15), (1.16) and (1.20) are linked by requiring that

(1.21) (r—2)(k—4)=8+8;>8.

We note that (1.18) implies the existence of a positive number 8, depending
only on x, and such that

(1.22) Eg?(X,) >48,> 0,

so that the conditions for asymptotic normality of oy 'Uy are satisfied. We shall
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prove

THEOREM 1.1. Suppose that positive numbers 8,8, 8,, 85, C and positive
continuous functions x, and x, exist such that (1.13)—(1.21) are satisfied. Then
there exists a sequence ¢y |0 depending only on 6, §,, 8,, 85, C, x, and x, such
that for N = 2,3,...,

(1.23) sup |P(oy'Uy < x) — Fy(x)| < eyN7,
X
where o2 and Fy are given by (1.6) and (1.9)—(1.11).

The laborious way in which we have phrased the assumptions as well as the
conclusion of the theorem is caused by our insistence to define uniformity
classes: for any class of pairs (A, Py) for which the assumptions are satisfied for
fixed 8, §;, C and x ;, (1.12) holds uniformly. It will therefore continue to hold if
we let h and Py vary with N, provided (hy, Px ), N =1,2,..., are all in such
a class. If we do not insist on uniformity and simply consider .a fixed pair
(h, Py), then the result is much easier to state:

CoROLLARY 1.1. Suppose that there exist a number r > 2 and an integer k
such that (r — 2)(k — 4) > 8 and that the following assumptions are saftisfied

(1.24) EN(X,, X,)|" < oo,
(1.25) Elg(X)|" < oo,
(1.26) limsup | Ee?#(X)| < 1,
|¢|— o0
(1.27) Y possesses k nonzero eigenvalues with respect to Py .

Then (1.12) holds.

In the theorem as well as in the corollary, the role of all but one
of the conditions is immediately clear. Since Eg?(X,)> 0 [cf. (1.22)] and
Ey%(X,, X,) < o, Uy is the dominating term on the right in (1.5) and the
conditions on g(X,) establish an Edgeworth expansion for Uy. The moment
assumption E|y(X;, X,)|” < oo for some r > 2 allows us to correct the expan-
sion for the remainder term A, in (1.5). The existence of %2 nonzero eigenvalues
of ¢, however, plays a much more subtle part which we shall discuss after the
proof of the theorem has been given. We note that this kind of assumption first
occurs in this context in Goétze (1979).

If we are content to have an Edgeworth expansion with remainder o( N ~1/2)
instead of o(N™!), then we can do without the eigenvalue assumption. At the
same time we may, of course, replace 4 by 3 in (1.17) and delete (1.14) so that
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(1.18) becomes a nonlattice condition. Define
(1.28) E(x) = ®(x) — §r,N~V%(x)(x? - 1),

where k4 is given by (1.9).

THEOREM 1.2. Suppose that positive numbers 8,C and positive continuous
functions x, and x, exist such that (1.13) and (1.15)—(1.18) are satisfied, with g*
replaced by |g|® in (1.17). Then there exists a sequence ¢y |0 depending only on
8, C, x, and x, such that for N = 2,3,...,

(1.29) sup|P(oy'Uy < x) — Fy(x)| < eyN~172,
X

To prove Theorem 1.1 we shall have to study the characteristic function (c.f.)
of o5'Uy. This is done separately for small (and intermediate) and for large
values of the argument in Sections 2 and 3, respectively. After the extensive
previous work on the asymptotics of U-statistics, the arguments in the first part
are almost standard; the essential difficulties arise in the second part. Combina-
tion of the results of Sections 2 and 3 immediately yields Theorem 1.1. Theorem
1.2 follows from an analysis closely resembling that of Section 2, the only
difference being that the use of the fourth moment of g(X,) should now be
avoided. The proof that this can be done is easy and we omit it.

In Section 4 we discuss various aspects of assumption (1.20) and in Section 5
we give an application of Theorem 1.1. Two technical results—a moment
inequality and a concentration inequality—which are needed in Section 3 but
which may be of wider interest, are dealt with in the Appendix.

2. The c.f. for small values of the argument. Let ¢, denote the c.f. of
on'Uy,
(2.1) on(t) = Eexp{itoy'Uy}
and, for k5 and k, as in (1.9)-(1.10), let

(2.2) %(2) =e 021 - i—xgiN-l/?t?’ + ANy -'C—‘%N—lt6
N 6 24 72

be the Fourier-Stieltjes transform [exp(itx) dFy(x) of Fy in (1.11). By Esseen’s
smoothing lemma [cf. Feller (1971), page 538] we have proved (1.23) if we
construct sequences {Ty} and (e} } depending only on 8, 8,, 8,, 8;, C, x, and x,
such that N™'Ty, — oo, ¢y = 0, and

(2.3) fTN M ’

—TN

dt <eyN.

We begin by studying ¢,/(t) for small |¢| and prove
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LEMMA 2.1. Suppose that (1.13)-(1.18) are satisfied. Then there exists a
sequence €%, |0 depending only on 8, 8,, C, x, and x, such that for
(2.4) ty=NC"D/7(log N) ™",
oy |on(2) — oR(2)
(2.5) / -

__tN

dt < e{,N~'.

Proor. To prevent the laborious formulation of our results from occurring
throughout the proofs also, we shall make extensive use of 0 and O symbols
rather than explicit error bounds. It will be tacitly understood that every
statement involving o and O holds uniformly for all 2 and Py satisfying the
assumptions of the lemma to be proved for a fixed choice of the 8, 8, C and x;
involved, and also uniformly for the values of ¢ being considered.

Assume without loss of generality that § € (0,1] and define

(2.6) e = € (0,1/9].

8
3(2+ &)
Combining (2.1), (1.5) and

eix_ Z

(2.7)

2
< —'lxl’"“] for every 6 € [0,1],
m!

we can write
(2.8) ¢n(t) = Eexpfitoy Uy} (1 + itoy'Ay — 1t%0320%) + O(Eltoy'Ay|2?).
Let

n(t) = Eexp{itoy (N — 1)g(X,)}

denote the c.f. of oy'(N — 1)g(X,). In view of (1.6), (1.22) and tlll.e fact that
E|Ay|2T% = O(N?*?) [cf. Callaert and Janssen (1978)] we may rewrite (2.8) as

on(2) = V() + ¥ H(D)itoy (] )Eexp{ito,w(zv - Y g(X,->}¢(X1, X,)

j=1

- 50N B itog' (v - ) L 6| ¢2(X,, %)

=1

(2.9) —3yg—3(t)tﬁo;2(g’ )Eexp{ito{,l(N -D Y g(xj)}

XY (X, X3)¥(X,, X3)

-3y (0)eoy?( )

O(IN— 1/2t|2+8).

Eexp{ito,(,l(N -1) ig(Xj)}¢(X11 Xz)]

J=1
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Next we expand the exponentials and find, e.g.,

Eexp{ito;,l(N -1) ig(Xj)}\p(Xl, X,)

J=1

= E[Jl;]l (exp{ito{,l(N - l)g(Xj)} —1—itoy'(N - l)g(Xj))
+2ito (N — 1)(exp{ito,\_,1(N - l)g(Xl)}

- % {05V - DeCE)) /o e,
—t2%32%(N — 1)°g(X,))e(X,)
= X)) o, )

= —t%0y*(N - 1)2Eg(X1)g(X2)1[/(X1, X,)
—it%oy (N — 1)°Eg(X,)g(X,)¥(X,, X,)
+O(N_2t4 + |N_1/2t|3(1+2€)),
with ¢ as in (2.6). To see this, use (2.7), (1.15)—(1.17), (1.22), (1.6) and

Eg*(X))gX(X,)|¥(X,, X,)| < Eg*(X,){EvX(X,, X;)}"",

2+ 6¢

8 (1+8)/(2+8)
E|g(X,))["""|a(X,)¥(X,, X;)| < | Eg*(X,)Elg(X,)|* "7

§11/(2+86)
x| Ely(X,, X,)[*°] 7.

The other exponentials in (2.9) may be expanded in a similar fashion and after
some further simplification (2.9) reduces to

on(t) = v{(t) + v{~2(8)( - 3it° " N*Eg( X,)a( X;) ¥ (X,, X,)
+ 5%y N°Eg*(X,))g(X,)¥(X,, X,) — 1% N2EY*(X,, X,))
(2.10)  +3¥A () t'oyN°Eg(X,)8(X,)¥( Xy, X3) (X, X;)
— 30 H(8) % N® Eg( X,)g(X,) ¥ (X, X,)]?
+O( ()" 1AP(E)N =13 4 N 12240,

where P is a fixed polynomial.
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For ¢} = Eg*(X,) as in (L.7), let
v(t) = Eexp{ito; 'g(X,)}

denote the c.f. of o, 'g(X;). From the classical theory of Edgeworth expansions
for sums of i.i.d. random variables we know that (1.17) and (1.22) imply that for
sufficiently small ¢ > 0 and for || < ¢N'/2,

.~ ~ ~2

yN(N'l/zt) — e—t2/2 1-— EN—lﬂta + EN—ltzt _ EN—lte

+0(N‘1|t|e“2/4),
where
k3 = 0, "Eg*(X,), ky =0, ‘Eg*(X;) -3

are the third and fourth cumulants of o, 'g(X,). Since yy(¢) = y(g,05 (N — 1)t),
an easy calculation shows that for m = 0,2, 3, 4,

1 ml
(212) N "(t) = yN(NTV%t) + e“z/z[zog'zExV"(Xl, X))+ N-1z2

+0(N‘1|t|e“2/4)

for |t| < ¢’N'/2. Substitution of (2.11), (2.12) and (1.6) in (2.10) shows after some
rearrangement that for |¢| < ¢ N'/2,

(218)  on(2) = 98(2) + o N"Y4P(t)e /) + O(N-1-5/2¢2+9),

where ¢%; is given by (2.2), (1.9) and (1.10) and P is a fixed polynomial. It follows
that for ¢ as given by (2.6),

(2.14) I

— N¢

on(2) : ox(2) ‘dt = o(N7Y).

Obviously,

ox(t)
t

fltlaN’

and it therefore remains to be shown that for ¢, as in (2.4),

‘dt= o(N7Y)

t
(2.15) i 2% )‘dt= o(N-1).
Ne<jt<ty| ¢
Define, for m=1,..., N — 1,
m N
(2.16) Ay(m)=Y X ‘P(Xn Xj)‘

i=1j=i+1
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As E|Ayn(m)|” = O(mN)7/?) [cf. Callaert and Janssen (1978) for r = 3], we
obtain

o U1 (itoy'Ay(m)
ou(0)| <|Bemplito5' (0, - 8, (m))) £ 222
(2.17) B
m\2t|

+0 N ,
where [ 7] denotes the integer part of r. Since (N — 1)L™ ,g(X,) are the only
terms in (Uy — Ay(m)) involving X,,..., X,,, we find that for m > 2»,

|E exp{itoy'(Uy — An(m))}&y(m)]|
(2.18)

<[yZ () |(mN) E|¥(X,, X,)| .
Also, for sufficiently small § > 0 and |¢| < EN'/2, we have
t2 t2
. 1—- — - —
(2.19) ()] <1~ o5 < exp{ BN}
First take N¢ < |¢| < EN'2 and m = m(t) = [3rN log N/t*] + 1. For suffi-
ciently large NN, we see that indeed 1 < m < N — 1 and (2.17)—(2.19) yield

(2:20) onto)] = of (25~

for Nt < |t| < EN'/2,
Next we take EN'/2 < |t| < ty. In view of (1.14), (1.18) and the continuity of
X o, there exists n > 0 such that for sufficiently large N,

(2.21) lyw(t)[ <1~ .

Choose m = —rlog N/log(1 — n). For sufficiently large N, (2.17), (2.18) and
(2.21) imply that

(2.22) |¢n(2)| = O((log N)/*N="|4")

for EN'/2 < |¢| < ty. Since (2.20) and (2.22) hold uniformly not only for fixed §,

8,, C, x, and x, but also for the values of ¢ being considered, (2.15) follows and
the proof of Lemma 2.1 is complete. O

3. The c.f. for large values of the argument. In this section we prove

LEMMA 3.1.  Suppose that (1.13), (1.15)-(1.17) and (1.19)-(1.22) are satisfied.
Then there exists a sequence efi’ |0 depending only on 8, 8,, 83, 8,, C and x,
such that for ty as in (2.4) and

(3.1) Ty = Nlog N,

on(t)
(32) j;Ns |t <Ty ¢

dt <efy N°'.
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Proor. We begin by noting that (1.21) implies that % > 5 and in view of
(1.15) we may assume without loss of generality that
8+ 8,

(3.3) 2+06<r<10+8,, b5<k<5+

Though of course not essential, these restrictions make it easier to go from error
bounds in terms of r and & to bounds in terms of § and §, as required in the
statement of the lemma.

In Section 2, the proof that |¢,(t)] is sufficiently small for N* < |¢| < tN was
based on the fact that for these values of ¢ the behaviour of |¢N(t)| is still
determined to some extent by that of the c.f. of UN, and hence by the c.f. of
&(X,). For larger values of |t], however, the influence of the remainder term A
may completely destroy that of UN It seems that we have no more use for the

&(X;) and we shall remove them by a conditioning argument.

Define random variables Yl, ..., Yy such that X,,..., X,,Y,,..., Y, areiid.
and let V; = (X,,Y), i=1,..., N. Let n be an integer with 1 < n < (N — 1)/4.
Then

lon(8)[* < E|E(exp(itoy Uy} X,,..., Xyn)[

<E|E o X,

-1 N
exp{ito,glx Y h(Xj,X,)}X

J=11l=4n+1

=Eexp{ito,;‘[42n % (n(X;, X,) - h(X,,Y,))

J=1l=4n+1

+ lil % (h(Xj’ X)) - h(Y}, Yz))

J=4n+1l=4n+1

|

4n N
<E|E exp{ito{,l Y X (n(x;,x)- h(Xj,Y,))} Vinstr-+r Vy
J=11l=4n+1
(3.4)
2n N
= Eexp{itag,l Y X (n(x;,Xx)
J=1l=4n+1
—h(Y;, X,) = h(X;, Y;) + h(Y;, YJ)}
2n N
= Eexp{ita,;1 > ¥ (\p(Xj, X,)
J=1l=4n+1

—4,(1/}, Xz) - ‘[’(Xj’ Yl) + ‘P(Yj’ Yl))}
exp{ o'y ¥ ‘I'(V,-,Vz)},

\ Jj=1l=4n+1
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where for v; = (x;, ¥;), j=1,..., N, we have defined
(3'5) \I’(Dj’ 1')l) = ‘l/(xj’ xl) - 4/(}']7 xl) - ¢(xj’ yl) + ‘P(yp yl)‘

Our next step is to truncate the random variables Xj,..., Xon Yoo, Yy,
while losing half of them in the process. Consider a measurable set B € % with

(3.6) a = P(V, € B X B) = P{(B).
For every a € [0,1], x € [0,1] and p € (0,1) we have

b

p/(1—=p)
(8.7) ax + (1 —a) <x°V (f-)
a

where (x V y) denotes the larger of x and y. It follows from (3.4)—(3.7) that

i N 2n
lon() < E LE exp{itaﬁl )y \If(Vl,V,)} Vinetr-s Vi
l=4n+1
N
< E|aE exp{ita;,l Y \I'(VI,V,)} Vipitr--»Vas ViEB X B
l=4n+1 "
2n
(3.8) - a)}
N 2pn
<E|E exp{ito;,l Y ‘I'(VI,V,)} Vins1r---»Vy; VEBX B
l=4n+1

P 2pn/(1—p)
(%)
o

for every p € (0,1). Take p = 3 and define Vj = (X'j, Y}), j=1,...,n,insuch a

way that X,,..., X,,Y,,...,Y, are iid. with common distribution
. . Py(A N B)

3.9 P(X.eA)=P\Y.€A)= ——5—

( ) ( J € ) ( J ) PX(B)

and independent of V,,,. ,,..., Vy. Then (3.8) may be rewritten as

n N
lon(2)]” < Eexplitoy? ¥ L ¥(V, Vl)} + (20) "
(3.10) j=11=4n+1

— E[E(exp(itoy'Z )| Vhy-.., V)Y + (20) 77,
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where

Zn = Z \I,(V;’ VN)
Jj=1

(3.11)

n

= X [¥(X, X)) = 9(F, Xy) - 9(X;, Yy) + 9(T, Yy)].

J=1

It remains to choose the set B and we take

(3.12) B={x: [14(x. [ dP() < Ca),

for a large but fixed 7 > 0 to be specified later. _
Let us now consider the conditional expectation in (3.10). Since |exp{ix} —
1 —ix + jx% < x2/6 + |x|” for r > 2, we have

(3.13) 0 < E(exp{itoy'Z,}IV,,...,V,) < 1 — L% °E(Z3V,,..., V,)

+ton"E(Z,"NV,, ..., V,).
By (3.11) and (3.12)

(3.14) E(¥(V,, Vy)|V,) = E(¥(V,, Vy)[Vy) = 0 as,,
(3.15) E(|¥(V,, Vy)[1V,) < 4Cyr as.

It follows from Lemma A.1 in the Appendix together with (3.3) that for every
integer m > 1

E[E(ZV,,...,V.)]™ = O(n™2).
Taking m = 10k/8;, we find by (3.3) and Markov’s inequality that

(3.16) P(E(Z,"V,,..., V,) = n”/2N%/60) = O( N~-5/2),

Next we turn to the quadratic term in (3.13). Let A}, A,, ... be the eigenvalues
of ¢ with respect to Py with A || > Ay > --- and let w,, w,,... be an
orthonormal sequence of eigenfunctions corresponding to A, A,,..., ie., (1.19)
holds and for all » and »’,

(3'17) fwv(x) dPX(x) = 0’ fwv(x)wv’(x) dPX(x) = 8!/,1/':

where §, ,, = 0 or 1 according as » # »’ or » = »’. Assume (1.20) is satisfied. We
have

k
(3.18) Y(x, ¥) = X Aex)e(y) + R(x, y),
v=1
where R is a symmetric function of its two variables satisfying

(3.19) fR(x, ¥)o,(y)dPx(y) =0 forv=1,...,k.
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As a consequence we find

E(zV,...,V,) = 2[[i (¥(X, y) - (¥, y)}] dPyx(y)

2% £ 35 [ha)al®) - o)

(3.20) +R(X;, y) - R(Y,, y)]

<Moo ()0 X,) - 0(3,)

+R(X,, y) = R(Y;, y)] dPx(y)

We shall have to investigate the covariance matrix = of the random vector
(wi( X)) — w0 (Y7), ..., wu( X)) — w,y(Y))). First note that (1.16) and (1.20) imply
that for v =1,..., &

Elo(X,))| <\,’E

[4(X, oy
(3.21)

< 8;’E{f¢2(X1, y) dPX(y)}r/2 <§,’C.

Let o, , = E(w0(X)) — 0, (YN, (X)) — «,(Y})), »,»" =1,..., k, denote the
elements of 3. For » # »’, (3.21) and Holder’s inequality ensure that

lo

- s|1E<wy(Xl) — (V) (0,( X)) = w, (¥))1
(3.22) «

< 48;2C¥ a7 (1 — a)(r_z)/r,

1 +1
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whereas for » = »’ we find similarly

(3.23) — 48;%C¥a (1 - o) P < 0,,—2<2a'(1-a).
Now we may still choose 7 in (3.12) and since

(3.24) 1—- a2 =Py(B°) <17},

by (3.12) and Markov’s inequality, we can force a to be arbitrarily close to 1 by
taking 7 large. In view of (3.22)-(3.24) and (3.3), we can choose 7 = 7(8, 8, 05,C)
in such a way that

(3.25) 2a > el/2,
(3.26) lo, , — 28, ,| <k™' forallw,» =1,..., k.
If p, denotes the smallest eigenvalue of =, then (3.26) yields
E ok 172
(3.27) pp>=2— { Zl ,Zl(a,,,,,, - 23”,)2} >1.

Also (3.21), (3.25) and (3.3) imply that E|w(X,) — w (Y)I2*%, v =1,...,k, as
well as £ are bounded. It follows that we may apply Lemma A.2 in the Appendix
to the right-hand side of (3.20) to obtain

P(E(Z}YV,,...,V,) < nN-**(log N) ™ %*
(3.28) (E(zav, ) (log N)~*)

= O(N%(log N) > + n~*/2).

Let us now combine the results obtained in (3.10), (3.13), (3.16) and (3.28).
First we note that (3.25) ensures that the term (2a) 2" in (3.10) is O(e ") and
that of is of exact order N* by (1.16), (1.17) and (1.22). Take £, and Ty as in
(2.4) and (3.1), choose any ¢ such that ¢y < |¢| < Ty and then define

o,%,N(“/k)_l(log N)2+(6/k)
t? ’

(3.29) n=n(t) =
where [x] denotes the integer part of x. As ¢y < |¢| < Ty, it follows from (2.4),
(3.1) and (1.21) that

(3:30) oZN“P-31logN)"* -1 <n= O( N#/m+e/n(log NY*+ /M)
3.30

= O( N1=%/kr)(log N)6),

and in view of (3.3) this means that 1 < n < (N — 1)/4 for sufficiently large N,
so that (3.29) is indeed a possible choice of n. Similarly, one easily checks that
(3.29), (1.21) and (3.3) imply that for sufficiently large N,

(3.31) |t|rg;,’n’/2N83/(4k) < %t20&2nN—4/k(logN)—6/k.

Together (3.10), (3.13), (3.16), (3.28), (3.31), (3.29) and (3.30) show that for
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sufficiently large N

lon(8)[ < [1 = 2¢°n0y>N-**(log N)~**] """ 4 O(N~2(log N) ™ + n~*/2)
< exp{—é "N - 4n)(log N)2} + O(N2(log N) * + n‘k/2)
= O(N_2(log N)_3),

so that

(3.32) lon(2)| = O(N~Y(log N)~*?)

uniformly for ¢y < |¢| < Ty. This proves Lemma 3.1 and Theorem 1.1 at the
same time. O

4. The eigenvalue assumption. In Section 1 we noted that the meaning of
assumption (1.20) concerning the eigenvalues of ¢, is not intuitively clear. From
the analysis in Sections 2 and 3, however, we can at least see the part that it
plays in the proof of Theorem 1.1. As we pointed out at the beginning of the
proof of Lemma 3.1, the analysis of |¢y(¢)| for || < N""D/"(log N)~! proceeds
by showing that up to that point, the properties of U, determine the behaviour
of |¢p ()|, because the influence of |t|oy Ay is still small. For larger values of |,
Uy does not play a role any longer and we have to show that |tlon'A 5 is large
enough to take over the task of making |¢5(¢)| small. Since, in general, sums of
independent random variables can be unpleasantly close to zero with probabili-
ties that are nonnegligible for our purposes, assumption (1.20) is there to prevent
this.

Still, we are unable to show that without assumption (1.20), the theorem
would indeed fail. Our search for a counterexample, however, has convinced us
that such an example would have to be extremely pathological.

To compute the eigenvalues A,,..., A, of ¢ can of course be laborious, but
fortunately this is not necessary in order to verify assumption (1.20). Consider
functions f,,..., f, with

(4.1) /ff(x) dPy(x) <1, j=1,...,k,

and define random variables

(4.2) W= [¥(X,, ¥)1,(5) dPx ().

Let 3, denote the covariance matrix of the random vector W = (W,,..., W)
and suppose that it has a smallest eigenvalue A, satisfying

(4.3) A, >8,>0.

LEMMA 4.1.  Suppose that in the set of conditions of Theorem 1.1 we replace
(1.19)—-(1.20) by the assumption that f,,..., f, exist such that (4.1)-(4.3) are
satisfied. Then the set of conditions obtained is equivalent to the original set.
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Proor. If (1.19)-(1.20) hold, we may choose f; = wj, W;=A;0(X,) and
hence A, = A% > 82. Replacing 8, by 6)/2 yields (4. 3)

Conversely, suppose that (4.1) and (4.3) hold for certain f,..., f,. Let %
denote the linear space spanned by f,,..., f, and define || f| and Tf by

712 = [£2dPy,  (TF)(x) = [¥(x, 9)1(5) dPy(y).

For f = Zf=lcjfj, we have

k 2 k
ITf |1 = E( )y cju/;') =cZye2 8 Y o
- j=1
k k k
112 X XIAP<k)Y ¢
j=1"j=1 j=1

in view of (4.2), (4.3) and (4.1). Together this yields

8
(4.4) ITF N2 > fn flI? foreveryfe %.

On the other hand, (4.3) ensures that f,,..., f, are linearly independent in
Ly(Px) and hence # must contain functions orthogonal to w,, w,,...,w,_,
defined in (1.19). But this implies that

77 1
4.5 inf <A,
(45) AR
where A}, Ay, ..., are given by (1.19). Combining (4.4) and (4.5) we find
g 1/2
(4.6) A4l > (f) .

Because of (1.15) and (1.21) we may assume % to be bounded [cf. (3.3)] and the
proof is complete. O

Of course (4.3) will usually be easier to verify than (1.20). The situation is even
simpler in Corollary 1.1 or, more generally, in all cases where i is fixed.
Assumption (1.27) may then be replaced by the nonsingularity of =, i.e., by the
fact that W,,..., W, are not almost surely linearly dependent. A simple suffi-
cient condition for the existence of such W,,..., W, is that there exist points
Y15--+» Y In the support of F such that the functions (-, y,),..., ¥(-, y,) are
linearly independent.

5. An example. Let X|,..., X be i.i.d. random variables with a common
continuous d.f. F on R. Let
N
(5.1) R = X Lixi<ixy

J=1
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and let Wy denote Wilcoxon’s one-sample signed rank statistic for testing the
hypothesis that the distribution of X, is symmetric about zero, thus

N
(5-2) Wf\; = Z l{X,ZO}R:—‘
i=1

If we define

= N(N = 1) [ (F(x) = F(=x)) dF(x),
then U, is clearly a U-statistic. An easy computatlon yields

(5.4) —(N-I)ZgN(X)+ Z Z ¥(X;, X;),

i=1j=i+1
where

gn(x) =1 - F(-x) - [(1 - F(-x)) dF(x)

(5.5) 1
+ m{l[o’w)(x) -1+ F(O)},

¥(x, 5) = 1wz +3) = (1 = F(=x)) - (1 - F(-y))

+ [(1 = F(-x)) dF(x).

Note that Egy(X,) = 0 and E(y(X,, X,)|X,) =0 as.

Having decomposed U, in the manner of Section 1, we check the conditions of
Theorem 1.1. Since both g, and ¢ are bounded, (1.13) and (1.15)—(1.17) are
satisfied for every r. Next, (1.14) and (1.18) will hold if the distribution of
F(— X)) has an absolutely continuous component. It remains to verify (1.20) for
some k > 5. In view of Lemma 4.1 and the fact that ¥ does not depend on N it
suffices to find functions f,,..., f, with | sz dF <1 such that the random
variables,

(5.6)

(5.7) W= [$(Xu DY) AF(y),  J=1,...0k,
are not almost surely linearly dependent. Take

(5.8) f(x)=F(x), j=1,...,k,

so that

(5.9) W= i {F( X,) — F/+Y(~ X)—f(F(—x)—Ff“(—x))dF(x)}.

Then
(5.10) Zk:cW kilaF( -X,),

J=1 =0
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with

ke, ci_
a= Y ——, a=--L" fori=2,....k+1.
j=1.1+1 J

Since the distribution of F(— X)) is supposed to have an absolutely continuous
part, (5.10) can vanish almost surely only if ¢, =a, = -+ = a,,, = 0 which
implies ¢, = -+ = ¢, = 0. It follows that assumption (1.20) holds every k.

Thus we have established the validity of the Edgeworth expansion with
remainder o( N~!) for Wilcoxon’s one-sample rank statistic under the assump-
tions that F is continuous and that the distribution of F(— X)) has an absolutely
continuous component. We stress the fact that previous results on Edgeworth
expansions for U-statistics would fail in this case because Uy has a pure lattice
distribution. Edgeworth expansions for one-sample rank statistics were obtained
in Albers, Bickel and van Zwet (1976) by a completely different method.

APPENDIX

In this appendix we prove a moment inequality and a concentration in-
equality which are needed in Section 3 of the present paper, but which may also
be of independent interest.

LEMMA A.l. Let P and @ be probability measures on arbitrary sample
spaces & and % and let X, ..., X, be i.i.d. with common distribution P. Let y:
ZX Y- R satisfy [Y(x,y)dP(x) =0 for Q@—almost all y € %, and
¥ (x, ¥)dQ(y) = 0 for P—almost all x € Z. Then, for every real p = 2 and
integer k > 1, there exists a positive number A = A( p, k) which is bounded for
bounded p and k and such that

k

dQ(y)} < Ank””E{fIzI/(Xl, NI dQ(y)}

% (X, )

Proor. If the expectation on the right equals + oo, then there is nothing to
prove. Assume therefore that

C= E{f|¢(X1, Il dQ(y)>k < .

Let Y,,...,Y, be iid. with common distribution @ and independent of
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k

P k n
de} _ 8|11 3 u(x.7)

J=1i=1

5 v

i=1

i

Bﬂ

=1 17

Let m,,...,m, be integers > 2 with X;_m,=k—1[, [ >0, and let
I(m,,..., m,) denote the collection of sequences i,,...,i, € {1,2,..., n} which
contain (I + r) distinct values, out of which / occur with multiplicity 1 and r
with multiplicities m,, ..., m,, respectively. Define

k
(A1) Z(my,...,m,)= L% [Ty(x,.7),

and note that each term in this sum has the same distribution. There are at most
n” different ways of choosing the indices with multiplicities m,,..., m, and at
most k! different ways of permuting i,,..., i,. It follows that

E|Z(m,,...,m,)[ < (k!n")’E

ZEI—H( ;)

1<i< - <i<n-— rJ=

P
m, m,

X l—[kb(Xn—rJrl’ Yl+j) X X l_["l’(Xn’ Yl+m1

o + ”'+mr—1+j)
Jj=1 J=1

(a2) < (e TTE( fle(x, )P a@()]

4

XE

ZEH¢( ;)

1<i)j<--- <y<n- rJj=

< (kIn")PC /g |W(n - r)[,
where, for [ =1,2,...,kand t =11+ 1,...,n
W)= L% m( Y))
1<i<ig< -+- <[<tI=

and we define W(I - 1) =0forl=1,2,...,k and Wy(¢) =1for t =0,1,...,n
For fixed [ > 1, Wi(¢), t=1-1,1,..., n, is a martingale with W,({ — 1) = 0.
It follows from an inequality of Dharmadhikari, Fabian and Jogdeo (1968) that
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for/>1and t=011+1,...,n

EW(8)]" < a(p)(t— 1+ 1)”*" glEIWI(s) - Wi(s-1)f

—a(p)(t— 1+ 1) B (X,, Y)Y B W (s — 1)
(A3) s=1

s —1 S;-1—1

G FEN OIS Vi VS
< {a(P)Ely (X, Y,)[") 12

for a(p) = 227°. Clearly (A.3) will continue to hold for /=0 and t=0,...,n
provided we define 0° = 1. Combining this with (A.2) we find

E|Z(m,,...,m,) |p < (kIn")PCH*=b/kgl( p)CU/ kptr/2
and as 2r + [ < k,
B < (k)P 12k0"pk0/20,
The lemma is proved. O

LEMMA A2. Let X,,..., X, be i.i.d. k-dimensional random vectors with
common distribution P with a positive definite covariance matrix S with smallest
eigenvalue p,. Define S, = n~'/?L"_ X,. Then there exists a positive number B
depending only on k and P such that for every ¢ > 0 and n = 1,2, ...,

P(|IS,|| < &) < B(e* + n~*/%).

B is constant over any class of distributions with k bounded, p 1 bounded away
from zero and E|| X||2*° bounded for a fixed § > 0.

PROOF. Let P be the distribution of (X, — X,) and for ¢ € R* let
¥(t) = Eexp{it'( X, — EX,)}.
It follows that

()] = fuakeit,x dP(x) = jn;kcos(t’x) dP(x),

1—|y(e)[ 1 - cos(tx) .
121 _/lenso“ e )

for every 6 > 0. For || <60, we have |t'x| <1 for lx|| < ~' and
1 — cos(t’x) > ;cos(1)(¢'x)% Hence for ||¢]| < § we see that

-l 1 o) (%) 5

(A4) e "2

1 )
Ecos(l)'/dxngo”(q- x)” dP(x),
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where 7 = ¢/||t||, so that ||7|| = 1. By the dominated convergence theorem we
obtain

lim (rx)? dP(x) = E{r"(X, — X,)}" = 26%(7'X,) = 2p,,
lixl<6~"

and hence for sufficiently small 6, > 0 and ||| < 6,, we find

(A5) [9() " < 1= $pseos(1) 18] < exp{ — fpscos(D)Ilt]*}
Let U = (U,, ..., U,) be a random vector which is independent of X,,..., Xy
and which has i.. d components U,,...,U, with a common density g(u)

(1 — cos u)/(mu?) and corresponding cf
v(#) = Ee™V = (1 — |t)1go,1y(12)-

Choose a, such that P(|U,| < a,) = 27'/* and & > a,k'/?/(8,n'/?). It is clear
that

P(|IS, + n~ /265U || < 2¢) = P(|U]| < e,n™*) P(IIS,I| < ¢)
> P(|U| < a,k?)P(|IS,l| < &) = $P(IIS,Il < e),
and using (A.5) we arrive at
P(IIS, | < €) < 2P(||S, + n~ /20, 'U|| < 2¢)

sin(2¢t; )
< 2 LIy T s
.1
(A.6) 9 1
I A 0y n'/? - 2
s S [ 0| = qpeos I at

1 _
< 2(28/77)kf kexp{— Zpkcos(1)||t||2} dt = 22%+(mcos(1)p,) k72 gh
R
for all |¢| > a,k"/%/(6,n'/?). For |¢| < a,k'/?/(6,n'/%) (A.6) yields the trivial
bound
P(IS,)| <€) < P(IS,]| < axk'/*/(8yn*))
2 k/2
(A7) < 92k+1 kaj nk/2.
- 7 cos(1)p,0¢

Addition of (A.6) and (A.7) proves the lemma for fixed P.
If we assume that E||X,||2*® < C, then this implies that for every § > 0 and
il =1,

f (rz)’dB(x) < [ x| dP(x) < 2079CO°.
llx)>6~" llx>071

Returning to (A.4)-(A.5) we now see that we can choose

(A.8) 6, = 27 C+9/%(p,/C)"°
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and ensure the validity of (A.5) for ||f|| < 6,. Substituting (A.8) in (A.7) and
assuming in addition that %2 and p,' are bounded, we conclude that B in
Lemma A.2 is also bounded and the proof of the lemma is complete. O
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