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Martin and Yohai provide an interesting study on the effect of atypical
observations on the behavior of estimators in time series. The influence func-
tional given by Definition 4.2 is the infinitesimal asymptotic bias in a one-param-
eter family of contaminations of a given model. The bias was also the starting
point of my own paper (1984, cf. Section 1.2), but I treated only a smaller class of
estimators and I focused on different aspects. So let me explain the differences
between the two approaches and discuss their advantages and disadvantages.

Heuristically the connection between ICH and IF is as follows. ICH is the
derivative in all directions, i.e., the gradient of T. Hence by the chain rule of
differential calculus one gets, formally,

IF d T(p? dT d Y ICH d d
=y (n}) =< grad T, 2> = [1CH(y,) 2y A
If T depends only on the m-dimensional marginal, we can find (d/dy)u?, in the
model (2.4) by the following argument. Ignoring terms of order o(7y), there is at
most one block of outliers intersecting with (1,0,...,2 — m), and the initial point
of this block is distributed uniformly over (1,0,...,3 — m — k). To me, the most
important theoretical contribution of Martin and Yohai is Theorem 4.2 where
they show that the same result also holds for m = oo, at least if { depends only
weakly on values far away. Since the uniform distribution on all integers is not
finite, a bounded ¥ is not sufficient for the boundedness of (d/dy)T(p?).

Some of the arguments in the proof of Theorem 4.2 involve the specific
contamination model while others are valid more generally. Since the latter may
be useful in other situations, I propose to split it in the following way.

THEOREM 4.I. Let T be a y estimate with t, = T(n,) and put m(y,t) =
Ely(y), 0] If

@) T(u}) - to = O(v),

(") m(0,t) is differentiable at t = t, and the derivative C is nonsingular,

(c’) b(t) = im(m(y, t) — m(0, t))/y exists and the convergence is uniform for
It — tol < &,
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then lim(T(pY) — t,)/v exists and is equal to
—C'b(to) = lim, E[ICH(y7)] /7.

PROOF (extracted from Martin and Yohai). First note that because of (Iv)
and (c’) b is continuous at t,. Using m(y, T(pY)) = 0 we thus obtain

(m(0,T(w3)) - m(0,t0)) /v = —(m(v,T(n3)) — m(0,T(k}))) /¥
—b(t,) + b(t,) — b(T(p1)) + o(1)
—b(t,) + o(1).

On the other hand by () and (a’)
(m(0,T(u2)) — m(0,t,)) /v = C[T(n2) — to] /7 + o(1). O

In the situation of Theorem 4.2, the condition (c¢’) above follows from (9.10),
(9.13), and (9.4)—(9.6).

A limitation of the results obtained by Martin and Yohai lies in the special
class of contamination models considered. The general replacement model (2.1)
does not contain innovation outliers, and some of the results from Sections 5 and
6 do not generalized from AQO’s to other types of outliers. For instance if we
calculate the GES for pure replacement outliers instead of AQ’s we get the
following values for the HKW estimators in the AR(1) model at ¢ = 0.5 (cf.
Table 6.1):

k=1 k=20
GM-H —-25 2.3
GM-BS —-1.7 2.6

So it is not always true that the bisquare is to be preferred to the Huber function.
Even in the case of location estimators with i.i.d. observations, the AO model has
some peculiar features. If we choose the constants such that both estimators have
95% efficiency at the Gaussian, the GES for Huber is 1.63 and for bisquare 1.35.

For real data it is impossible to say if one has additive or pure replacement
outliers or if there is some dependence between the (x;), (w;), and (z;). Because of
this and because one time series often contains different types of outliers, the
class P in Definition 6.1 of the GES has to be chosen quite large. The authors do
not discuss this point, but I think that one should take at least all joint
distributions of (x;, w;) with marginal g, and possibly also all block lengths % in
the model (2.4) for the (z;). With such a class Hampel’s optimality problem
becomes intractable, but one possibly will have to live with this situation.
Optimality in such small classes as considered in Section 7 is not very helpful in
my opinion.

A second limitation comes from the fact that—in contrast to the i.i.d.
case—the infinitesimal asymptotic bias does not coincide with the standardized
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influence of one outlier in a long time series. In order to make this clearer, let us
consider a GM estimator for the AR(1) model as an example. If (x,, x,,...,x,)
is a sample from the clean process and 1 <i <n we obtain (cf. (1.27) of
Kiinsch (1984) and (5.10)):

T (%, 2,4+ 0,00,x,) — T(xy,...,x,)
= n"lB—l(l - ¢2)1/2(n(xz - (pxz—l + v, xi—l(l - ¢2)1/2)

(0 = 9%, = 90, (5 + 0)(1 = )

—n(x; = gxiy, x,4(1 - ¢2)7) - (%51 — o, 2,(1 - ¢2)1/2)),

If we take averages, only the second term remains in accordance with (5.6). But
that does not mean that the first term is small or even zero. In the HKW case it
takes any value between inf n and sup 7. If we only look at the infinitesimal
asymptotic bias, we thus underestimate the possible effect of one outlier. These
considerations led me to take sup|ICH| as the sensitivity measure. This gives an
upper bound for the above expression although it may be too pessimistic and gets
worse as the range of ¥ increases.

Finally let me point out an important open problem: How can we assess the
effects of deviations from the assumption of stationarity? The difficulty is that
with most models the effect of the nonstationarity becomes either negligible or
dominant as n increases. One possibility would be to rescale the nonstationarity
with each n in order to get reasonable asymptotics. In the case of a trend this
would mean to consider y, = x; + f(1/n), ¥, = x5 + f2/n),..., y, = x, + f(1).
At least if { has finite range, I can show that the asymptotic value is the solution
of

[ 3y + £(w), 20 + f(w), s 2y + F(), T) di(x,) du = 0

and the present techniques could be applied. However, in this way we have
returned to the land of stationarity, and I wonder if there is a better approach.

In summary, this is an important contribution, particularly because it covers a
very general class of estimators in time series. However, I have some reservations
on the use of the AO model, and I do not think that the infinitesimal asymptotic
bias alone captures the main effects of outliers in large, but finite samples, since it
involves too much averaging.
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