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ASYMPTOTICALLY EFFICIENT SELECTION OF THE ORDER BY
THE CRITERION AUTOREGRESSIVE TRANSFER FUNCTION

BY R. J. BHANSALI
University of Liverpool

The autoregressive orders selected by the criterion autoregressive trans-
fer function (CAT) of Parzen (1974), a new version, CAT*, of CAT introduced
by Parzen (1977), and the CAT, criterion of Bhansali (1985) are shown to be
asymptotically efficient in the sense defined by Shibata (1980, 1981). A
generalization of the penalty function considered by Shibata (1980) is intro-
duced. The order selected by the CAT, criterion of Bhansali (1985), with any
fixed a > 1, is asymptotically efficient with respect to this generalized penalty
function.

1. Introduction. In an important paper, Shibata (1980) derived an asymp-
totic lower bound for the mean squared error of prediction of an infinite-order
Gaussian autoregressive process when the order of the fitted autoregression is
selected from data. He then used this bound to show that the order selection by
minimizing the final prediction error criterion (FPE) of Akaike (1970) and the
information criterion, AIC, of Akaike (1973) is asymptotically efficient in the
sense that for either of these criteria the lower bound for the mean squared error
of prediction is attained asymptotically. Shibata (1981) extended his (1980)
results by obtaining an asymptotic lower bound for the integrated relative
squared error of an autoregressive spectral estimate when the fitted order is
determined from data and demonstrating that if the fitted order is selected by
minimizing FPE, or AIC, then again the lower bound is attained asymptotically.

As is well-known, an alternative method for autoregressive order selection
involves the use of the criterion autoregressive transfer function (CAT) of Parzen
(1974). Indeed, this criterion was introduced by Parzen for implementing pre-
cisely the same “nonparametric”’ autoregressive model fitting approach to time
series modelling as considered by Shibata (1980, 1981). In this approach, the
behavior of an observed time series of length T, say, is modelled by an autoregres-
sive process of order k. However, k is interpreted not as an estimate of the order
of a finite autoregressive process, but as providing an optimal finite-order ap-
proximation to a truly infinite-order process; in theoretical arguments, % is
treated as a function of T and assumed to approach infinity simultaneously
with T.

Parzen (1977) has introduced a new version, CAT*, say, of CAT by slightly
modifying the definition of the penalty function used for introducing CAT. Also,
Bhansali (1985) has suggested an extension of the latter penalty function and, by
examining the question of bias, he has introduced a new criterion, the CAT,
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criterion, in which a > 1 is an arbitrary constant. The choice a = 2 corresponds
to adopting the same penalty function as used for introducing CAT. However,
the functional form of the corresponding CAT, criterion is not the same as that of
CAT.

In this paper, we show that the optimality property derived by Shibata (1980,
1981) for FPE and AIC also holds for CAT, CAT* and CAT,. Our result thus
establishes an asymptotic equivalence between these criteria when the generating
process is an infinite-order autoregression. Note that for a finite-order autoregres-
sive process, the asymptotic equivalence of these criteria is established by
Bhansali (1985), who shows that the asymptotic distributions of their selected
orders are the same. Empirical support for these asymptotic results is provided
by Parzen (1977), Beamish and Priestley (1981), and Bhansali (1985), who report
that these criteria frequently select the same orders.

A related reference is Taniguchi (1980), who has suggested that the optimality
property of AIC derived by Shibata for autoregressive model fitting may be
extended to the nonparametric fitting of autoregressive-moving-average models;
however, the proofs given there are not rigorous and appear to be incomplete in
their present form.

2. Definition of optimality of a selected order. Consider a discrete-time
second-order stationary process {x,} with mean 0, covariance function R(u) =
E(x,x,,,) and satisfying the following assumption:

AsSUMPTION 1. The process x, is an infinite-order autoregressive process

0

L a(wr ,=e  a0)=1,

where ¢, is a sequence of independent normal variates, each with mean zero and
variance o2, the {a(u)} are absolutely summable real coefficients, ie, Xla(u)| <
o0, such that the polynomial

0

A(z) = X a(u)2"
u=0
is nonzero for |2| < 1. Also, x, does not degenerate to a finite-order autoregressive
process.

Having observed X,..., X, suppose that the order % is selected from the
range 1 < k < K, where K satisfies the following assumption:

AssuMPTION 2. {K;} (T =1,2,...) is a sequence of positive integers such
that K, —» o0, K2/T > 0as T — oo.

In Section 3, we also require the following assumption.
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ASSUMPTION 3.
o0

Y |ullR(u)| < co.

u=—o0

The kth-order least-squares estimator a(k) = [@,(1),..., G (k)] of the auto-
regressive coefficients is a solution of the equation

(2.1) R(k)a(k) = —#(k),

where R(2) = [DT(w, v)] (w,v = 1,..., k), #(k) = [DT(O0,1),..., D0, k)],
T

D™(u,v)=N""' Y} X, X,

t=Kp+1

—0?

and N = T — K;. The corresponding theoretical parameter a(k) =
[a,(1),..., a,(k)] will also be needed and is defined by

R(k)a(k) = —r(k),

where R(k) = [R(u — v)] (u,v=1,..., k) and r(k) =[R(Q),..., R(k)]. Note
that the a,(j) are the coefficients of the kth-order linear least-squares predictor
of x, given x,_,,...,x,_, and

k

o’ (k) = X a(J)R(J), a,(0) =1,

Jj=0

is the corresponding mean squared error of prediction. An estimate of o%(%) is
given by

k
8%(k) = X a(/)D(0, j),  a,0) =1.
Jj=0
Put
k
€ k= Z ak(j)xt—j-
Jj=0
We may write
T
(2-2) ﬁ(k) - a(k) = _R(k)_l{ Z Xt(k)et,k/N}’
t=Kp+1

where X, (k) = [x,_,,..., x,_,].
For an arbitrary infinite-dimensional vector 8 = [§,, 8,,...71, let

[} 00 /2 -

uwn={2 Z&me—vﬁ
u=1vo0=1,

denote its norm with respect to the matrix R = [R(u — v)] (4, v =1,2,...).

Also, let a = [a(1), a(2),...] denote an infinite-dimensional vector. In the sequel,

it will often be convenient to think of a(k) and &(k) also as infinite-dimensional

vectors with @,(j) = a,(j) =0 (J > k).
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Parzen (1974) suggested selecting 2 by minimising the criterion
(2.3) CAT(k) =1 - {82/6%(k)} + (k/T),
where

6%(k) = T(T — k)" '8%(k),

62 = 2'7rexp[{n_l Y log I(T)(wj)} + y],

Jj=1

T
IM(A) = 27T) 7| L Xexp(—itd)[?,
t=1
y = 0.57721, w; = 27j/T, and n is the largest integer not greater than (T — 1)/2,
ie, n=[T - 1)/2]
As discussed in Section 1, Parzen (1977) later suggested that 2 may also be
selected by minimising the criterion

k
(2.4) CAT*(k) =T 'Y 67%Jj) — 6~ %k).
J=1
The CAT, criterion considered by Bhansali (1985) is of the form
(2.5) CAT,(k) =1 - {62/8%(k)} + a(k/T),

where a > 1 is an arbitrary constant, and %k is selected by minimising this
criterion.

We note that the CAT* criterion has the advantage that its definition does not
depend upon 62, which is the case with the CAT and CAT, criteria. Also, AIC
has been defined without explicitly requiring the evaluation of 62.

When Assumptions 1 and 3 hold, 62 converges in probability to 62 as T — oo;
see Bhansali (1985). As shown by Hannan and Nicholls (1977), Assumption 3 is
strictly not necessary for this result to hold and may be replaced by an
assumption requiring that the spectral density function of x, satisfy a Lipschitz
condition. However, Assumption 3 is made for ease of exposition and it is used
only for ensuring that 62 is consistent for o 2. Also, this assumption has not been
made for establishing the asymptotic efficiency of the CAT* criterion.

Shibata (1980) argues that if the objective of fitting the autoregressive model
is prediction then the goodness of the fitted model may be evaluated by mean
squared error prediction as defined by the following penalty function:

Qr(k) = lla(k) — all

= lla(k) — all} + a(k) — a(k)l|-

Shibata shows that if {k;} is a sequence of integers such that 1 < 2 < K
and k; = o0 as T — oo then

?Em {QT(kT)/LT(kT)} =1,

(2.6)
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where
Ly(k) =0%(k) — o+ ko?/N.

Now, let {k%} (T = 1,2,...) be a sequence of positive integers at each of which
the minimum of L(k) w1th respect to k is attained, i.e.,

Ly(k¥) = lsrgisnK Lr(k) (T=12,...).
T

Then k% — o0 as T — oo.
A remarkable result established by Shibata is that for any random variable %,
possibly depending on X,,..., X, and for any § > 0,

T!I_I}L pr{Qr(k)/Ly(k$) 218} =1.
Therefore, a selected order £, is defined to be asymptotically efficient if
(2.7) glim {QT(i"f)/LT(k?')} =1

This definition is also adopted in this paper.
As is well-known, another motivation for fitting an autoregressive model is the
estimation of the spectral density function,

F(A) = 02(2m) ™| L alu)exp(—iud)] 7,

u=0

of x,. Let

k
fu(A) = 6%(R)(27) | ¥ a4(u)exp(—iur)|~2

u=0

denote the autoregressive spectral estimate corresponding to the fitted %2th-order
model. Shibata (1981) suggests adopting the integrated relative squared error,

Jr(k) = @m)™" [ (RO = F0))/1(A))* dA,

as a penalty function for f,(A) and determines a lower bound, 2 L,(k%)/o?, for
Jr(k). Therefore, an order selection % is defined as asymptotically efficient from
the point of view of autoregressive spectral estimation if

plim (J(k)/Ly(k$)) = 2/0>.

)

This second definition of asymptotic efficiency of a selected order is, however,
related to that introduced at (2.7). Suppose that a selected order, E, is a random
variable such that
(2.8) plim {LT(k)/LT(k”} =1

T—- o0
It follows from Shibata’s results that % is asymptotically efficient simultaneously
from the point of view of prediction and spectral estimation. In particular, (2.8)
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holds for the order selected by the criterion
(2.9) Sp(k) = (N + 2k)é%(k)

considered by Shibata (1980, 1981), and, also, for the orders selected by FPE and
AIC, We show in Section 3 that it also holds for the orders selected by CAT,
CAT*, and CAT,.

We note that although a relationship between AIC(%) and CAT,(%) has been
established by Bhansali (1985), this relationship may not be employed for
deducing our theorems as a direct consequence of Theorem 4.2 of Shibata (1980).
Also, the remark made in lines 7 and 8 of Shibata (1980, page 162) concerning
CAT does not apply to the criterion (2.3), but to the CAT, criterion with a = 1.

3. Asymptotic efficiency of CAT, CAT*, and CAT,. For two arbitrary
random variables X and Y, we write X < Yifpr(Y - X > 0) = 1.

We need the following lemma, which is an extension of Lemma 4.1 of Shibata
(1980).

LEMMA 3.1. Suppose that Assumptions 1 and 2 hold. Then
plim K max {16%(k) — 0%/(NLy(k))} = 0.

T— oo 1<k<Kp

Proor. We have

Kr T 2
K; L E HN“ Y X(k)e,, (NLT(k))}
k=1 t=Kp+1
Kr k k k
Kr L L 2 X la()lads)

X|E[{D™(L, j) — R(I-j)}{D™T(I,s) — R(l - s)}]|
< MK2/T,

where M denotes a bounded constant, and converges to 0 as T — o0. Hence, by
(2.2) and Lemma 3.3 of Shibata (1980),

plim K7 max_{[a(k) ~ a(k) lagw/ (NLo (k)] =0.

The lemma therefore follows by an adaptation of the proof of Lemma 4.1 of
Shibata (1980). O

Let %, denote the order selected by minimizing the CAT, criterion (2.5). The
asymptotlc efficiency of k is established below.
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THEOREM 3.1. Suppose that Assumptions 1, 2, and 3 hold. Then
plim {Qr(k,)/Lr(kf)} =1
and
plim {Jr(k,)/Lr(k$)} = 2/0>

T- o
ProoOF. We have, forall T > 1,

(3.1)  [(62/8%(k$))(1 — (8%(k})/6%(ky)}) + 2T (K, — k3)] <0,

with probability 1, because CAT,(k,) < CAT2(k;) Now as T — o0, 62/6%(k%)
converges in probability to 1. Also as T — oo, 02(k2) converges in probability to
a bounded positive constant, because D(T)(O 0) > 6%(k,) = 6%(K,), where
D™)(0,0) converges in probability to R(0) and 6%(K ;) to ¢2. Therefore, (3.1)
implies that

Jim pr{Sr(k;) — Sr(kf) + 283 (6%(kF) — 6%(k,)) <0} = 1.
— 00
The theorem may now be established from Lemma 3.1 and an argument similar

to that used by Shibata (1980) for proving his Theorem 4.1 by demonstrating
that

glim {Ly(By)/Lp(k%)) =1. |

Let k denote the order selected by minimizing CAT. The asymptotic efficiency
of k. is estabhshed below.

THEOREM 3.2. Suppose that Assumptions 1, 2, and 3 hold. Then
plim {Qr(ke)/Lr(kf)} =1
and
plim {J7(k¢)/Lr(k$)} = 2/0%

T- oo

PROOF. On arguing as in the proof of Theorem 3.1, we have, because
CAT(kC) < CAT(k}),

Jim pr{{(Sr(kc) - Sp(k#)) + 2k#(5%(kF) — 6%(kc))

+ho(62(kF) — 6%(ke))] <0} = 1.
The theorem may therefore be established by demonstrating that the last result
implies
plim {L,(kc)/Lr(k$)} = 1. 0

T—- o0
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Let k. denote the order selected by minimizing the CAT* criterion (2.4). We
have

k
CAT*(k) = T* ¥ (T = j)§7*(j) = T™HT = k)6 (k).

We heed the following lemmas.

LEMMA 3.2. Suppose that Assumptions 1 and 2 hold, and let

(3:2) Uiy = 18%(ke)d(k) X 872() = et (ke
jk;

(3.3) Uyr = |62(7ec)62(k?)j=16_2(j) — k$62(k3)l.

Then

(3.4) plim {Uz/NLp(kc)} =0 (j=1,2).

ProoF. We need only consider (3.4) for j = 1, since the proof for j =2 is
similar. We have

Ur/(NLy(k;)) < F, + F, + F,

where
F, = {NLT(kc)}_lkc|62(k;) - °2|’
ke
By = (NLr(kc)} ™" X 0*()) = 0%
ke
Fy = {NLy(kc)} “ngwz(j) - o2(j)l.
Now

F, < kcl6%(kE) — o?|/(NLr(k%))
<Kp ;nasxr{léz(k) — o?%|/(NLy(k))}

1<k<k

and converges to 0 in probability as T — oo by Lemma 3.1. Also
Fy < max [6%(j) — o®(J)|
1<k<kr

and converges to 0 in probability as T — co by Lemma 2.1 of Shibata (1981).
Finally, consider F,. Since k% — oo as T — oo and {NLp(kc)}™ ' <
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{NL(k¥)}~ ' < (k¥)"', we have, for all T > T, say,

Fy< (k3)” E lo2(j) — o?|

Jj=1

and converges to 0 as T — oo because ¢%(j) > 6% as j —» 0.0

LEMMA 3.3. Suppose that Assumptions 1 and 2 hold, and put

(358) Usyp = (ke — k3){6%(ke) + 82(k3)} — 2kc62(ke) + 2k36%(kE).
Then
gﬁm {|U3T|/(NLT(7"'C))} =

Proor. We have
Usrl/(NLy(k¢)) < 4Kp max {|6%(k) — o®|/NLp(k)}
l<k<ky

and converges to 0 in probability as T' - o0 by Lemma 3.1. O

LEMMA 3.4. Suppose that Assumptions 1 and 2 hold and let

k,
(36) Uy = T7%(ke)3*(kt) L ™))
and J
(3.7) Usr = T7'62(kc)6%(k2) gj&‘?(j).
Then

plim {|Url/(NLr(kc))} =0 (j=4,5).

T- o
PrRoOF. The lemma follows directly from Lemma 3.2, by noting that
K;/T>0asT—-> woandl < kg kF < K. O
THEOREM 3.3. Suppose that Assumptions 1 and 2 hold. Then
phm{QT(k )/Ly(k$ )} =1
and
plim {J;(ko)/Lp(k%)} = 2/02.

T—- o

PROOF. On arguing as in the proof of Theorem 4.1, we have, because
CAT*(K ) < CAT*(k}),

7!im pr{Sy(kc) — Sp(k}) + Up <0} =1,
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where
Ur= Uy — Upp+ Usr + Uypr — Usp

and Uy (j =1,...,5) are as in Lemmas 3.2-3.4. The theorem may therefore be
established from these lemmas by demonstrating that the last result implies

;)lim {Ly(ke)/Lr(kE)} = 1. o

4. Discussion. As in Shibata (1980), let £® be the order selected by
minimizing the criterion

(4.1) SE(k) = (N + ak)s%(k) (1<k<Ky),

where a > 0 is on arbitrary constant. It follows from Theorem 3.1 that the order
selected by minimising CAT is asymptotically equivalent to £® rather than to
EM as suggested by Shibata (1980).

For any fixed a, £ and %, —the order selected by minimizing the CAT,
criterion—are asymptotically equivalent. Hence, by repeating the arguments of
Shibata, it follows that if a # 2 and, as k — oo, {6%(k) — 6%} — 0 geometrically
then %, is not asymptotically efficient in the sense defined in Section 2. However,
E, is still asymptotically efficient if, as £ — o0, 02(k) — 62, goes down to 0
exponentially, which is the case if f(A) coincides in —7 < A < 7 almost every-
where with a function that is analytic for real A and has no real zeroes; see
Grenander and Szeg6 (1958). In particular, if x, is a Gaussian autoregressive
moving average process of order (p, q), with ¢ > 0, to ensure that it does not
degenerate to a finite autoregression, then ¢2(k) — o2 exponentially as k£ — o
and Assumptions Al and A3 hold. Thus, for this important class of processes, %,
is still asymptotically efficient, in the sense defined in Section 2, for any a > 1.

The order of decrease of 6%(k) to a2 is of course usually unknown. However,
whether x, is an autoregressive process of infinite, or finite, order is also usually
unknown. If the order is finite then a choice of a = 2 is not necessarily optimal
because it leads to an inconsistent estimator of the order, and, also, because, with
a finite T, no one choice of a is always optimal for all processes and all values of
T, see Bhansali (1985).

We finally note that if instead of (2.6), a generalized penalty function

(k) = lla(k) — a|lk + olla(k) — a(k)lIR

is defined, where o’ > 0 is an arbitrary constant, then the arguments given in
Section 3 show that for a = @’ + 1 the order selected by minimising the CAT,
criterion is asymptotically efficient with respect to this generalized penalty
function, and so are the orders selected by minimising the FPE, and AIC, criteria
of Bhansali and Downham (1977) and Akaike (1979). A motivation for consider-
ing this generalized penalty function is that by varying o’ the two terms on the
right of (2.6) may be given unequal weights; see Bhansali (1985) for a discussion
of the reasons for considering this possibility. The question of how best to choose
a is considered by several authors; see, for example, Atkinson (1980), Smith and
Spiegelhalter (1980), Akaike (1979), Shibata (1983), and Bhansali (1979).
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