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ON INCONSISTENT BAYES ESTIMATES OF LOCATION

By P. Diaconis! AND D. FREEDMAN?

Stanford University and University of California, Berkeley

In some relatively natural settings, Bayes estimates of location are shown
to be inconsistent.

1. Introduction. Consider the problem of estimating a location parameter
observed subject to errors ¢,. The data are modelled as

(1.1) X, =0+e¢g

where the ¢, are independent with unknown distribution function F. Bayes
estimates are computed from a prior distribution for § and F. One natural choice
is to take # and F independent, F having a Dirichlet distribution with parame-
ter measure a. Ferguson (1974) contains a review of Dirichlet priors. The
posterior distribution for such a prior will be given in Lemma 2.1.

With squared error as loss, the Bayes estimate of 6 is the mean of the
posterior distribution. One of our principal results is that for some prior distribu-
tions, the Bayes estimate is inconsistent: There are F'’s with a density symmetric
about zero such that the Bayes estimate for 8 oscillates between two nonzero
numbers as data accumulate.

To be specific, suppose that the prior density f for 6 is standard normal, while
the parameter measure a for the Dirichlet is Cauchy, having density o’ = g(x) =
1/7(1 + x?). Let m, = 7(X,,..., X,) be the posterior distribution of § and F
given the data X,,..., X,. We will construct a C, density A with compact
support, symmetric about 0 and with a strict maximum at 0, such that if § = 0
and the &’s are independent draws from A, the posterior distribution of 6
oscillates between two false values + v, and is therefore inconsistent. Here, v is a
positive number depending on A. If desired, & can be chosen strictly positive on
the interior of its interval of support.

THEOREM 1. Let X; follow the model (1.1), where 6 = 0 and the ¢; have a
compactly supported C,, density h, which is symmetric about 0, with a strict
maximum at 0. For the prior, 8 has the standard normal density, and F is
independently drawn from the Dirichlet based on the standard Cauchy. For some
h: as n = oo, almost surely, the posterior =, given X,,..., X, concentrates near
+y, where v is a positive number depending on h. For each large n, there is
probability near  that m, concentrates close to y, and probability near ; that m,
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concentrates close to —vy. Moreover, for any n > 0,
limsup 7, {(0,F): |0 —y|<n} =1 a.e,
limsupm,{(0,F): |06 +y|<n} =1 a.e.

Of course under the conditions of the theorem, the median is a consistent
estimate of #, as is any trimmed mean; so the Bayes estimates are worse than
available objectivist procedures. Further motivation and philosophical discussion
is in Diaconis and Freedman (1986). The proof of the theorem is deferred to
Section 2. Estimates of the form considered in the theorem have actually been
suggested in the Bayesian literature; see Dalal (1979a, 1979b, 1980). Dempster
(1976) gives an extensive survey of the Bayesian approach to robust estimation,
which is linked to estimates of the form considered in the theorem. Similar
estimates have been suggested by Fraser (1976) and Johns (1979) from the
frequentist viewpoint. The argument for Theorem 1 shows that for some underly-
ing distributions these estimators are inconsistent.

The theorem remains valid if the normal prior density for @ is replaced by any
smooth, everywhere positive density. Nor is the choice of Cauchy for a crucial.
Any t-density works as well. However, if a has a density a’ and loga’ is convex,
then the posterior converges to point mass at 6, for essentially any choice of A.
This may be shown using the arguments of Freedman and Diaconis (1982b).

The density h constructed for Theorem 1 has a single global maximum at 0;
but A is not strongly unimodal—it has three local maxima (see Figure 1 in
Section 2). Using the arguments of Freedman and Diaconis (1982b), it can be
shown that if A is continuous, strongly unimodal, and symmetric about 6, the
posterior converges to point mass at # almost surely. (A density is strongly
unimodal if it increases to its unique maximum and then decreases.)

In Diaconis and Freedman (1983b) we have an argument proving that any
location mixture of Dirichlets gives a consistent estimate of the sampling distri-
bution. So the marginal posterior distribution of the sampling distribution
converges to point mass at 5, the distribution function with density A. This has
a peculiar implication: Indeed, when , concentrates on 6’s near vy, then «, must
concentrate on F’s which are near 5 shifted to the left by y; when =,
concentrates on #’s near —vy, then 7, must concentrate on F’s which are near
J shifted to the right by y. Thus, 7, gets both # and F badly wrong, but it gets
the law of the data, namely F shifted by 8, nearly right.

One of the issues in this example is the identifiability of the parameters. In
general, of course, the convolution 8, * F cannot be decomposed into its compo-
nents 6 and F; here, §, is point mass at x. However, from the point of view of a
Bayesian with the prior in the theorem, the two parameters § and F are
identifiable, as the next result shows.

THEOREM 2. In the setting of Theorem 1, there is a measurable function ¢
such that ¢(86;* F) = 0 for almost all 8 and F.

In particular, a Bayesian will be convinced that his Bayes rule is consistent at
almost all pairs (6, F). It is therefore of mathematical interest, and we think also
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of interest from the point of view of the foundations of inference, to ask about
consistency at particular (8, F), especially for symmetric F' where 8 is objec-
tively identifiable. That is why we present Theorem 1. We give an extensive
discussion of the relation between consistency and Bayesian inference in Diaconis
and Freedman (1986).

As noted above, one standard way to make 6 identifiable is to require that the
¢’s be symmetric. Then, it seems reasonable to symmetrize the distribution
function chosen from the Dirichlet. If G is the law of X, let G~ be the law of
—X, and let G = 1(G + G7). So G is symmetric. Let D, be the law of F = G,
where G has law D,; this is a “symmetrized” Dirichlet.

For the next theorem, let # have a normal prior density, and let F' be
independent of 6, having the prior distribution D,, where « is Cauchy. Let 7, be
the posterior distribution for #: This will be computed in Lemma 3.1. Again, as
Theorem 3 below demonstrates, 7, can oscillate between two false values +y for
0. This time, the inconsistency spreads to the posterior opinion of the sampling
distribution. Thus, a location mixture of symmetrized Dirichlets can be incon-
sistent for the sampling distribution—even when the latter is symmetric. So, a
straightforward way of putting a prior on symmetric ¢’s does not cure the
inconsistency of the Bayes procedures.

THEOREM 3. Let X; follow the model (1.1), where 8 = 0 and the ¢; have a
compactly supported C,, density h, which is symmetric about 0, with a strict
maximum at 0. For the prior, 8 has the standard normal density, and F is
independently drawn from the symmetrized Dirichlet based on the standard
Cauchy. The posterior 7, given X,,..., X,, is computed from this prior. For
suitable h: as n —» o, almost surely, @, concentrates near +vy, where y is a
positive number depending on h. For each large n, there is probability near 3
that 7, concentrates near vy, and probability near § that @, concentrates near
—v. Moreover, for any n > 0,

limsupm,{0: 10 —y|<n} =1 a.e,
n—oo
limsup7,{0: |6 + y|<n} =1 a.e.
n—oo
If desired, h can be chosen strictly positive on the interior of its interval of
support.

The posteriors =, and 7, are computed by using a theorem about the Dirichlet
due to Korwar and Hollander (1973). Originally, we used a discretization argu-
ment. An abstract version of this is given in Section 4.

In Diaconis and Freedman (1982, 1983a) we discuss breakdown properties of
the rules computed here. Related results appear in Huber (1984).

2. The first construction. The first step is to compute the posterior distri-
bution of # and F given the data; a similar result was conjectured by Dalal
(1979a).
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LEMMA 2.1. With respect to the prior, let § and F in the model (1.1) be
independent, 6 having density f and F being Dirichlet with parameter measure o
which is absolutely continuous; let g = o’ /||a||, where ||a|| is the mass of o. Let
A, be the set where X; + X; for 1 i <j < n. On A,, the posterior =, can be
characterized as follows:

m,(d8) = C,'f(6) [1&(X, - 6) de,
i=1

where
Cu= [ 1(0)[1e(x;~ ) s,

a + Z Sxi_g).

i=1

n{dF|8} is D

PROOF. Write P for the joint law of 4, F and X, X,,... . Thus, 7, is the law
of 8 and F given X,..., X, computed according to P. On A,, we may compute
7, by first conditioning on A,, then on X,,..., X,. But A, = (¢ #¢, for
1 < i <j £ n}, sorelative to P given A,: The parameter 0 still has density f; the
¢; are independent with common density g, and are independent of 6, by
Theorem 2.5 of Korwar and Hollander (1973); and X, = 8 + ¢,. O

REMARK 1. Lemma 2.1 gives the posterior when the observed values are all
distinct. The argument also gives the posterior in general: =,(df) = C, = (d6)
= C,'f(0)IT*g(x;, — ) df, where C, = [©_f(0)T1*g(x, — 0) df; the * signifies
that the products are over distinct values only. Finally, 7, (dF|6) remains the
same.

REMARK 2. Under squared error, the Bayes estimate (X -y X,) of 0 is
the posterior mean. For the posterior computed in Lemma 2.1,

i(x,....X,) = c,;lfioof(o) [Ta(X; - 0)ds.

This coincides with the Bayes rule for the model (1.1) if ¢; has known density g;
in the display, however, g = a’/|||| is a feature of the prior for F.

Here is a sketch of the rest of the argument for Theorem 1; the rigor will
follow. The computation is very similar to the one in Freedman and Diaconis
(1982b). Let

(2.1) M(x) = log(1 + x2),
SO .
g(x) = —exp{~M(x)).
Let
(2.2) H(u) = jM(x — u)h(x) dx.
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The density A will be constructed so that h(x) dx is essentially mass ; at each of
+a, where a > 1. Then H(u) has a local maximum at 0, and global minima at

+v, where y = Va? — 1. Now by Lemma 2.1, the posterior density of 8 is

(2.3) C,'n~"f(8)exp{ =S,(0)},

where

(2.4a) S,(0) = iM(Xi —9) = nH(6) + VnG,(6)
and o

(2.4b) 6.(0) = 7 L [M(X,~ 0) - H(D)

is asymptotically a Gaussian process. In particular, the (unnormalized) posterior
mass on a neighborhood of +y vanishes at the rate exp{ —nH(y)} while the
posterior mass outside this neighborhood vanishes at a faster rate. Thus, the
normalized posterior mass concentrates near +y. The distribution of mass
between the vicinity of y and the vicinity of —y is controlled by the relative sizes
of G,(y) and G,(—7); these two variables have a nonsingular Gaussian joint
limiting distribution, so posterior mass shifts back and forth between the two
neighborhoods.

LEMMA 2.2. Fix a > 1. Recall M from (2.1). Let
H,(0)=1M(a-0)+ iM(-a—-9).
Then H,(+) is symmetric, has a strict local maximum at 0 where H;’ < 0, and
strict global minima at +(a? — 1)/2 where H)! > 0.
Proor. Calculus.O

LEMMA 2.3. There is a compactly supported C,, probability density h which
is symmetric about 0 with a strict maximum at 0. In addition,

H(6) = fM(x — 0)h(x) dx

is symmetric, has a strict local maximum at 0 where H”” < 0, and strict global
minima at +y where H” > 0. Here, vy > 0 depends on h, but is close to
(a? — 1)/2. See Figure 1.

Proor. Choose a sequence h, of densities which are C,, symmetric, sup-
ported on [ —2a, 2a], with strict maxima at 0, such that A,(8)d8 — 38, + 36 _,,.
Now look at the derivatives

HY(8) = (<1 [MO(x - 0)h,(x) ds

- (-1)’4[MY(a - 8) + MO(-a - 0)] = HY(6),

because M is bounded continuous. Now use Lemma 2.2. O
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F1G. 1. Graph of the density h and the function H(6) = [M(x — 0)l(x) dx.

Let X,, X,,..., be independent, with the common density A constructed in
Lemma 2.3. The asymptotic behavior of S,(6) in (2.4) will now be determined,
with a view to proving the oscillatory behavior of the posterior; for inconsistency
alone, see Berk (1966). Some results on the Brownian bridge will be helpful. To
state them, let ¥ be the distribution function of the density A constructed in
Lemma 2.3, and let 5, be the empirical distribution function of X,, X,,..., X,.
Let

B,=Vn(#, - #).

Notice that B, vanishes off [ —2a,2a]. Of course, B, = B, o #, where B is the
approximate Brownian bridge on [0, 1] based on the empirical distribution of a
sample of size n from the uniform. The law of the iterated logarithm (Chung,
1949) implies the following result.

LEMMA 2.4. There is a finite constant A, and for almost all v an N =
N, < o0, such that n > N entails |B,(t)| < A(loglogn)'/? for all t.
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Clearly, B, converges weakly to the Brownian bridge B, = B o s#, where B is
the ordinary Brownian bridge on [0, 1].

LEMMA 2.5. Let ¢ and ¢ be two bounded continuous functions on the line.
Then

(&) E(j6 dB,) = 0;
(b) cov{ [ dBy, [ dB,} = cov[¢( X)), ¥(X,)]-

ProoF. This can be reduced to the corresponding result for the ordinary
Brownian bridge B. Since B(¢) = W(¢) — tW(1) for 0 <t < 1, where W is a
standard Weiner process, the result for B is easily checked. O

LEMMA 2.6. Let X have a symmetric, absolutely continuous distribution.

(a) The distribution of M(X — y) — M(X + v) is absolutely continuous;
(b) PIM(X —v) = M(X +v)} =0;
(c) E{M(X — v)*} = E{M(X + y)*} for k=1,2,....

Proor. (a) Let ¢(t) = (¢t — y) — M(t + y). Then ¢ is smooth, and two-to-one
except at 0.

(b) Immediate from (a).

(c) Use symmetry. O

The notation in the next lemma may seem perverse, but Z, is associated with
behavior near vy, and Z_ with behavior near —y.

LEmMA 2.7. LetZ = [M(u — v)dB,(u)andZ_= [M(u + v) dBy(u). Then
(Z.,Z_) has a nonsingular symmetric bivariate Gaussian distribution.
Proor. By Lemma 2.5(b),
cov(Z,,Z_) = cov[ M(X; - v), M(X, + v)].
Symmetry follows from Lemma 2.6(c); if the distribution were singular, it would
have to concentrate on the 45° line, contradicting Lemma 2.6(b). The mean is 0
by Lemma 2.5(a). O
Turn now to (2.4). Clearly,
(2.5) G,(0) = [M(u—0)dB,(u).
Then
GY(8) = (=1)//M(u —0) dB,(u)
(2.6) , .
= (—1)’+1an(u)M““)(u - 6)du.

Now Lemma 2.4 can be used.
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'LEMMA 2.8. Letj be a fixed integer. There is a finite constant A = A;, and
for almost all w an N =N, < oo, such that n> N entails |G{(0)| <
A(loglog n)/2 for all .

LEMMA 2.9. Under the conditions of Theorem 1, if 1 > 0, then on A,
7,{(0, F): |6 —y|<nor|0+y <n}—>1lae.

ProoF. Let D, = C, 'z ", the normalizing constant. Using (2.3) and Lemma
2.8, a.e. for large n,
7,{(0,F): 10 —y|<n/2 or |0+ <n/2)

>2n-D,- min f(9)- exp{ —np — A(nloglog n)l/z},
10-yl<n/2

where

= max H(E).
P 10—vl<n/2 ()

On the other hand,
7,{(6,F): 10 —y|>=n and |0+ y|=n)}

<D,- ff(0) deo - exp{ —np* + A(nloglog n)l/z},

where p* = min ;#(0), with C = {|0 — y| > n and |0 + y| = 5}. Clearly, p* > p.
O

LEMMA 2.10. Let
Z,,= [M(u-vy)dB,(u), Z_,= [M(u+7)dB,(u),

Y.,= [M(u=v)dB(u), Y_,= [M(u+y)dB,(u).

Fix § positive but small. Choose n positive but so small that for |6 — y| <7,
H”"(y) -8 <H"”(0) <H"(y) + .

Put t = Vn (0 — y). Almost surely, for all sufficiently large n, for all 8 with
|8 — ¥| < m, upper and lower bounds on S,(6) are, respectively,

nH(y) +VnZ,,~ Y, .t + §[H"(y) + 28]¢°
and
nH(Y) + ‘/'7Z+n Y, t+ %[HII(Y) - 28]t2~-

Likewise, putting t = Vn (0 + v), almost surely, for all sufficiently large n, for
all 6 with |0 + y| < n, upper and lower bounds on S,(8) are, respectively,

nH(y) + VnZ_,— Y_,t + L[H"(y) + 28]t
and
nH(y) + VnZ_, - Y_,t + {[H"(y) - 28]¢>.
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ProoF. Only the result at y needs to be proved, for the situation at —vy is
symmetric. Recall (2.4a). To estimate H(#), use Taylor’s theorem. Of course,
H'(y) = 0 because H has a minimum at y; and H"/(y) > 0: see Lemma 2.3.
Expanding around v,

H(y) + 3[H"(v) = 81(6 = v)" < H(8) < H(y) + §[H"(y) + 8] (6 - v)".
Multiplying by n,
nH(y) + 1[H"(y) — 8]¢% < nH(8) < nH(y) + :[H"(y) + 8] 2.
Now G,(8) must be estimated. Expanding M’ around u — v,
M'(u-0)=M(u-7v)+M(u-y)(y—0)+iM"(0)(y - 0),

where {,, is between u — 8 and u — y. Integrate both sides with respect to
dB,(u), and then integrate by parts as in (2.6):

G(0)=2Z, ,+(y-0)Y,,+,(0),
‘/EGn(o) = ‘/’_"Z+n - Y+nt + \/r_zfn(ﬂ),

where
4(8) = = 3(v = 8)° [B.(u)M " (3.) du.
In view of Lemma 2.4, almost surely, for all sufficiently large n,
£,(8)] < A(loglog n)/*(y — 6)° forall 4.
Then
V¢, (8)] < A(loglog n/n)"*t? < 16t*
for n large. O

LEMMA 2.11. Let 02 =1/[H"(y) — 28). Almost surely, for all sufficiently
large n, the posterior 8-mass in [y — 1,y + 1] is bounded above by

1 1
C;'n "exp{ —nH(y) - VnZ,,} - exp{EoQan} - max f-o-V2m- N
n

[y—m,y+n]

Likewise near —v, replacingZ_.,andY,  byZ_, andY_,.
ProoF. In view of (2.3) and Lemma 2.10, the posterior density for 8 is
bounded above by :
C ln"- exp[—nH(y) - \/r_zZﬂ,] - exp[1o2Y?2,]0vV2m
(2.7) ; 1 (t—n,)°
. ma . — — ,
[v—n,vx+n] o2m P 202

where u, = 02Y_ . Integrate (2.7) over y — < 6 < y + n with respect to dé, by
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changing variables, to get

(t—p,)" 1
no‘/2_7-;/_nﬁ [ ledtﬁﬁ O

LEMMA 2.12. Let t2=1/[H"(y) + 28). Let A be the standard normal
distribution on the line. Almost surely, for all sufficiently large n, the posterior
0-mass in [y — 1,y + 1] is bounded below by

Cn‘l'rr‘”exp[-nH(y) VnZz,,] exp{-'rZY2 } min f-7

[y=m,y+n]
E R )
Likewise near —v, replacingZ,, and Y., byZ_, and Y_,
ProOOF. Asin Lemma 2.11.0

ProoF oF THEOREM 1. Almost surely, the posterior concentrates near +y:
see Lemma 2.9. For each large n, it will now be argued, there is chance near }
that the posterior distribution of # concentrates near +y. This follows from
Lemmas 2.11 and 2.12. Indeed, the 4-tuple

Z Z —n’ Y+n) Y
has a limiting distribution, where the first two coordinates are symmetric and

jointly absolutely continuous: see Lemma 2.7. Thus, for K large but fixed and n
large,

+ns

P{IYin|<K}>1_67
1 1
P{Z+n<Z—n_ E} > 5 - 4.

If both events occur, the posterior mass near y overwhelms that near —v, in the
ratio

const.exp{Vn(Z_, - Z,,)} > const e®/X.
Likewise, —y wins with probability near ;.
The final assertions about the a.e. behavior of the limsup follow from the
Hewitt-Savage 0-1 law, because

P{limsupA,} > limsup P{A,} > 3,
where
A, ={m,[10 —vI<n]>1-8}
is a symmetric function of X,,..., X,. These are i.i.d., so P{limsupA,} = 1.0

ProOOF OF THEOREM 2. If F ~ D(a), then 8% F ~ D(B) where B = §,*q,
and a is the Cauchy. Let G ~ D(B) and

W= 0 1 )efo )
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The W, are independent B variables, with parameters p; and q;, where
1 1 ] '(O) 1
e

— 1 i~ 7 1
q;= B(O,m] =B (O)?.

Next, V, = p,(—log W) is asymptotically exponential with parameter 1; espe-
cially, c,e™ < P(V, > x} < ¢[1 — e */Pi]"le™* where c¢; = I(p; + q,)/
p.T(p)T(q;) - 1 because I'(§) = 1/8. Then

1 n
Y V-1

n;_,

for D(B)-almost all G. Thus

121
(2.8) — Y i—z(—logVVi) ~ a.e.

1
i=1 B’(0)
When a is Cauchy, 8 = §;,* a,

1
B0) - ~

al+ 62’
S0

1
2= —— -1
78’(0)
can be recovered a.e. from G = §, * F. Likewise, (1 — 6)? can be recovered, and
then 6. The exceptional null set in (2.8) depends on B, i.e., on 6. By Fubini’s
theorem, (2.8) will hold for a.a. # and F. O

3. The second construction. We begin by computing the posterior distri-
bution 7, of 8 given the data. The posterior distribution of F given # and the
data will not be needed. A result of the following form was conjectured by Dalal
(1979a) who checked special cases for samples of size 2 and 3.

LEMMA 3.1. With respect to the prior, let 0 and F in the model (1.1) be
independent, 0 having a density f and F having the prior distribution D,, a
symmetrized Dirichlet with parameter measure a. Suppose a is symmetric and
absolutely continuous; let g = o’ /||a||, where ||a|| is the mass of a. The data are
Xy,..., X,. Let A, be the set where X; #+ X; for i #j and all 6,; are distinct,
with
On A,, the posterior 7, can be written as

7?n = (Wan + de)/Cn'
Again, the constant C, depends only on the data X, ..., X,,, and normalizes 7,
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to have mass 1. The measure m,, is absolutely continuous, with density
1ot £(0) TL (X, - 0).
The measure m,, is discrete, with atoms at 0;; for i # j; the mass at 0;; is
%[ f(aij)/g(aij)] klillg(Xk - 0ij)’

where
8ij = %(Xi - Xj)-

Proor. It is convenient to represent the joint distribution P of
0, F, X,, X,,... asfollows. Let B8 be the result of folding « onto (0, c0): Formally,
B is a finite measure on (0, o), and

B(0,x) = a(—x, x).

Let 8 ~ f and G ~ D(B), independent. Given 8 and G, let §,, §,,... be indepen-
dent with common distribution G; let {,, {,,... be independent, each being +1
with probability 1. We present F, ¢;, and X; as

We claim
(3.1) on A, no three 8 ’s can be equal.
Indeed, suppose by way of contradiction that, e.g., §, = 8, = §;. Then X; = X,
or X,. Likewise,
(3.2) on A, at most one pair of 8 ’s can be equal.
Indeed, suppose by way of contradiction that, e.g., §, = §, and 8; = §,. Then
$o = —¢§, else X, = X;; and {, = —{5. So 6,, = 0,,, a contradiction.
Let A, be the event that §,,..., §, are all distinct. For i # j among 1,..., n,

let A;; be the event that §; = §;, but all the other §, are distinct from each other
and §,. Abbreviate a = ||aj| = ||8||. Then

(3.3) P(Ay) =a"'/(a+1)---(a+n-1),
(3.4) P(A;;)=a"%/(a+1):--(a+n—-1).

Formula (3.3) is immediate from Lemma 2.1 of Korwar and Hollander (1973);
formula (3.4) is a small variation on that lemma, and can be derived from it by a
symmetry argument. Or both formulas can be derived by discretization.

As (3.1)-(3.2) show, A, Cc A, UU, ;. ;. A, Let X =(X,,..., X,). Bayes’
rule shows that on A, :
(35) P{d6|X) = P(A|X}P{d8|X} + Y P{A,X}P{d6X},

l1<i<js<n

where P, is the law of § and X = (X,,..., X,) given A; likewise, P; is the law
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of § and X given A,;. More specifically, with g = o’ /||a|:

Relative to P,: 6 has density f;

(3.6) X; — 0 has density g; all are independent.

Relative to P,;: 6 has density f; X, — 0 has density g;
(3.7) all are independent, except (X; — 8) = —(Xj - 0), ie,0=20,.

This is because, given A,;, the §,’s for k& # j are independent with common
distribution 8/||B||, while &; = §,. This follows from Theorem 2.5 in Korwar and
Hollander (1973) by a symmetry argument; or a discretization argument can be
used.On A, {;= —{;and ¢; = —¢;. In particular, as will be seen in more detail
below, P, and P,; restricted to A, all put absolutely continuous distributions on
X,,..., X,, with densities f, and f;;, respectively. The 0-term in (3.5) corre-
sponds to ,,; the ij-term to the atom at §;; in 7,,.

an’

Note that P(A,;) does not depend on i and j. Let
(3.8) D, = P(A,)f(Xy,..., X,) + P(Aij) Y fA(X,..., X,).

l1<i<j<n

In effect, D, is the probability density of the data, computed a priori. It will
develop that the normalizing C, in the lemma is D,/P(A;;) = ||la||D,/P(4,); see
(3.3)-(3.4). By Bayes’ rule,

P{AOIX} = P(AO)fO(XU' LN} Xn)/Drn
P{Aij|X} = P(Aij)f,-j(Xl,..., X,)/D,.
The 0-term in (3.5) is easily dealt with: By (3.6),

WX %) = [ 10) T18(X, - 0) s

and
1(6) T1 (X, ~ 0) df
Py{do|X} = f(Xyy..or X,)
So

P(A| X}Py{d0|X} = [P(8,)/D,] {(6) I18(X, - 0) df,
as required.
The ij-term in (3.5) is a bit harder. Let ¢, = X, — 6 for £ # i, j and
e=X,—0=—(X;-9). |
Thus, 6 ~ f, ¢, ~ 8, and ¢ ~ g, all are independent.
X,=0+c¢, k+1,],
X, =0+e¢, X;=0-c¢.

J?
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can be computed by the usual calculus, and is

fij(xl""ixn) = %f(aij)g(sij)kn Ag(xk - 0ij)
#1, ]

= %[ f(aij)/g(sij)] kljg(xk - 0ij)'

Of course,
P,;{d6|X} ispointmassat 6,;.

This completes the proof, up to routine algebra. O
REMARK. Given § and X|,..., X,, the law of F is l_)/f’ where

B=a+ ) 8x
i=1
See Lemma 4.3 of Diaconis and Freedman (1984). This and Lemma 3.1 determine
the joint posterior distribution of 8 and F.
Specialize now to the case where g(x) = (1/7)1/(1 + x2). Then

7an(d8) = am~"f(0)exp [~ S,(8)] db,
where S, was defined in (2.4), and a = |||, and
Tan(dO) = 377"} [f(oij)/g(sij)]exl)[—Sn(oij)]so,.j-

1<i<j<n
By construction, the X,’s will be independent with common density &, where
h is as in Lemma 2.3, with modes at —a, 0, and a. If A vanishes except near its
modes, it will be seen that =, is negligible by comparison with #,,, and the
argument for Theorem 1 goes through unchanged. If 4 is strictly positive on the
interior of its interval of support, however, 7, dominates, and must be carefully
estimated.

LEMMA 3.2. Construct h as in Lemma 2.3, but require h to vanish except

near 0 and +a. Inpartzcular if X and X’ are i.i.d. h, and h is the density of

3(X + X’), require h to vanish in a neighborhood of +y. Under these
czrcumstances 172l |7l = O a.e. as n — oo.

PROOF. The argument is as in Lemma 2.9. Fix a small open interval around y
in which A vanishes. Find § small but positive such that H > H(y) + 8 off that
interval. Keep n so large (depending on w, and possible except for a null set) that
|n~1S,(8) — H()| < § for all 4.

Since f(6) df assigns positive mass to neighborhoods of +y, and S,(0) =
nH(0), the mass of =, is at least

const. 7~ "exp{ — n[H(y) +8]).
On the other hand, 6,; is bounded away from ++y, so the mass of 7, is at most

const. 7~ "exp{ —n[H(y) + 28]}. O
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This completes the proof of Theorem 3 in case the density A of 6,; vanishes
near +v; indeed, 7,, was estimated in Lemma 2.10.

Turn now to the case where A(y) = A(—v) > 0. (For an existence proof, this
case need not be considered—unless, for instance, we want A to be positive on
the interior of its support.) By construction, the X; are independent with a
common density A, which is C, and has compact support, as in Lemma 2.3. The
factors f(6;;)/8(3;;) in m,, are therefore bounded above and below by positive
constants, and can be ignored for the rest of the argument. Thus, let

#(d8) =7 T exp[-5,(6,)]8,

l1<i<j<n

(3.9)
= ‘"(g)exp[ —5.(0)]g.(d8),

where ¢, is the empirical distribution of the ('21) numbers §,,=1<i<j<n,
assigning mass 1/ ( g) to each. This #, is a good-enough approximation to =,,.
Let g be the theoretical distribution of 6,;, so ¢ has density h, and let

(3.10) 7(df) = w‘"(g)exp[—snw)]q(dﬂ).

As will be seen, %, and #, are close.

LEMMA 3.3

(@) [|anll/ll 7]l — O a.e.

(b) 7|6 — y| <nor |8+ y| <n}/|%| — 1a.e.

(©) %10 = Y <n)/IFll = § a.e. and 7,416 + v <) /Il > § a.e.

(d) limsup, _, . #,{10 — Y| < n}/||%,|| = limsup, _, ,7,{|0 + ¥| < 2}/|IF,]| =1
a.e.

ProoOF. (a) Holds because of the factor ,2l .
(b), (c), (d) Can be argued as in Section 2, because A(+vy) > 0. O

The next part of the argument is designed to show that #, — #, is negligible

by comparison with %, near +y. Recall the notation of Lemma 2.10. Fix ¢ > 0.
Define random variables R as follows:

(3.11) Ty —my+n]l= w‘"(g)% exp[—nH(y) - \/l?ZM]RZ,

(312) #[-y—m,-y+n]= n-"(;‘)% exp[-nH(y) — VnZ_,| R;.

LeEMMA 3.4. The distributions of R;, and R, are tight.

PrOOF. This is argued as in Lemmas 2.10 and 2.11, because A(+7y) > 0. O
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Since the X; have common density 4, the H in Lemma 2.3 can be written as
follows: H(0) = E{M(X; — 0)}. Recall that A is C, and compactly supported;
and S, (0) = X M(X; - 0).

i=1

LEMMA 3.5. Almost surely, for each j, as n — oo, SYY(8)/n —» HYY()
uniformly in 6.

PROOF. Starting with (2.4),

1 1z
—S@Y= =Y MU(X -6
—§1(8) = — . MO(X, - 6)

i=1
1
=HY(0) + —G(9).
(8) + 7-G4(0)
By Lemma 2.8,

G(8) = O(loglog n)'>. O
Recall that g, is the empirical distribution of the 6,;, and g is the common
theoretical distribution of each ;. Recall from Lemmas 2.3 and 2.3 that A is
supported on [—2a,2a], where a > 1. Consider the sequence @, of processes

(n'?[q(t) — q(t)]: —2a < t < 2a}. These processes are nearly uniformly
bounded and equicontinuous, in the following sense.

LEMMA 3.6.

. (a)”For any 8 > 0 there is a finite B = By such that P{|Q,(t)]< B} >1- 8§
or all n.

(b) For any § > 0 there is a finite n, = ny; and a positive 8* such that for all
n=n,,

P{|Q,(t) — Q,(s)| < 8 foralls, twith|s — t| < §*} > 1 — 8.
PROOF. Let r, be the empirical distribution of the X;+ X;, and r the
theoretical distribution of each X; + X;. It is enough to prove the assertions for

n'/%(r, — r). Let p, and p be the empirical and theoretical of X;. Thus, r = p *p.
But r, = p, * p,. Indeed, as is easily verified,

VRIr, = % ullos = 0,
where || ||, is supnorm. Thus it suffices to prove the assertions for
Vnlp,*p,—p*p].
This last is
vnlp.*p,—p*p,] +Vnlp,*p—p*p].
The first term at ¢ is

[Vnlpa(t = u) = p(t = u)] p,(du)
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and the second is

JVr Loa(t = u) = o(t = u)]p(du).
But with overwhelming probability, as a function of n,

Vn [p,(t — u) — p(t - u)]
is uniformly bounded and nearly equicontinuous. O
REMARK. n!/%[q,(t) — q(t)] converges in the sense of the invariance princi-

ple to a Gaussian process with mean 0 and the same covariance structure as
H[1(t — X)], where X ~ 5 the distribution function of A.

Recall #, from (3.9) and #, from (3.10).

LEMMA 3.7. (%, — %)y —n, v + 1] =o{7,[y —n, v + 1]} in probability as
n — oo, and likewise at —v.

PrOOF. Multiply across by n'/%z"/ ( g) to get rid of the extraneous normal-
izing constants. The assertion becomes

(313) Vn fy’:"exp[—s,,w)](q,, ~ q)(d8) = o{exp| ~nH(y) - VnZ.,]}.
Integrate the left side of (3.13) by parts as T, + T,, where
T, = Vn exp[~S,(8)14.(0)[, ",
T, = [ Vna,(0)exp] -5, (0)] 5,(0) b,

3.(0) = [q,(0) — q(0)] - [q.(v) — a(¥)].

Take T, first: Vn §,(y + n) is small in probability if % is small, uniformly in =,
by Lemma 3.6; and exp[ —S,(y + n)] vanishes at a faster exponential rate than
exp{ —nH(y)). Next take T,. Again, yn §,(0) is small in probability for all § with
|8 — v| < m if 7 is small, uniformly in n, by Lemma 3.6. Thus, it suffices to prove

"
(3.14) " "exp[-5,(8)]1:(6)] d8 = O,{exp[-nH(y) - VnZ.,]}.

Now a.e. for large n, S, is strictly convex in [y — u,y + 1] and has a unique
minimum on that interval, at say v,; see Lemmas 2.3 and 3.5: S/’ /n is uniformly
close to H’’ in a neighborhood of y, where H""is positive. Thus, S/ is negative on
[y — n,v,] and positive on [v,,y + n]. The contribution from, e.g., the first
interval is

[ expl=5,(0)][-5(0)] d6 = exp[~5,(x,)] - exp[-5,(v = m].
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F1G. 2. The density with six modes.

Now exp[ —S,(y — n)] vanishes at a faster exponential rate, and we are left with
showing that

(3.15) exp|[—S,(v,)] = O,{exp[-nH(y) - VnZ,,]}.
Refer to Lemma 2.10: With ¢t = Vn (8 — y) and ¢ = [H"(y) — 28],
S.(t)=nH(y) +VnZ,,— Y, t+ ict?

=nH(Y) + VnZ,,— 1Y%,/ + de(t - c'Y,, ).
Thus
Sn(Yn) = nH(Y) + ‘/’7Z+n - ’;‘Y_%_"/C

But Y, is tight. O

REMARK. Recall that 2 has modes at —a, 0, and a. But if, e.g., the posterior
o, concentrates on ’s near —v, then it also concentrates on F’s whose densities
(Figure 2) have six modes, not three,at —a — vy, -y, y —aq, a— v, v, a + v.

4. An approximation theorem for conditional probabilities. At one
time, we computed the posterior distributions in Theorems 1 and 3 by discretiz-
ing and passing to the limit. Proposition 4.1 gives a rigorous justification for this
procedure, which may be useful in other contexts: e.g., see Ferguson (1973, 1974).
To motivate the result, consider the following computation of a posterior. Let A
be the set of probabilities A on R, and p a prior probability on A. We wish to
compute the posterior distribution of A given a sample of size n from A, by
discretization. Let & be a large positive integer. Let f, discretize R in the usual
way: f,(x) is the least j/k > x. Let g, lump A to match: g,(A) assigns mass
A(J — V)/k, j/k] to j/k. ‘

To define the posterior carefully, let P, be the probability on A X R" for
which '

(4.1) P(AxB) = [ P(B)a(d)),

where A is a Borel subset of A and B a Borel subset of R”, while P, is the
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power probability A on R”. This is the joint distribution of the parameter A and
the data x € R". Let m be the marginal probability on R”", namely, m(B) =
P (A X B) for Borel B ¢ R". This is the law of the data. The posterior distri-
bution is the ‘“Markov kernel” 7(x, d)\) satisfying

(4.2) P(A X B) = fB w(x, A)m(dx)

for Borel A C A and B c R”. A Markov kernel #(x, A) is measurable in x for
each A, and a probability in A for each x. In sum, 7 is a regular conditional
distribution for the parameter A given the data x. In this case, posterior
distributions are hard to compute, because the family P, is not dominated by a
o-finite measure; there is no likelihood function.

One way to compute the posterior is by discretization. Recall f, and g, above.
Let ¢, discretize R", by applying f, separately to each coordinate. Let ¢, = g,.
The law of ¢, given ¢, is easy to compute, because all the probabilities are
discrete; call the result @,(x, d\). Proposition 4.1 says that if @,(x, d\) con-
verges to a Markov kernel @(x, d\) as & — oo, then @Q(x, d)\) is the posterior.

Discretization arguments can be applied with more complex parameter spaces
A. To prove Lemma 2.1 by discretization, let A consist of all pairs A = (6, F),
where 0 is real and F is a probability on the line. Let P, on R" be F shifted to
the right by 6, raised to the nth power. Let y,(A) = (f,(8), g,(F)). Lemma 3.1
can be handled the same way.

For Proposition 4.1, let (2, #, P) be an arbitrary probability triple. Let &
and % be complete separable metric spaces. In the applications above, & is the
data space and ¥ the parameter space; 2 = #X % and P = P,. Let X and Y be
Borel mappings from @ to & and %, respectively: In the applications, these are
just the projections. Let ¢, be a Borel mapping from £ into itself such that
¢,(x) = x pointwise as £ — oo. Let ¢, be a Borel mapping from # into itself
such that ¢ ,(y) = y uniformly as £ — oco. Let @,(x, dy) = Ry (¢,(x), dy) be a
regular conditional distribution for y,(Y) given ¢,(X) = ¢,(x). Suppose Q(x, dy)
is a Markov kernel. Suppose Q. (x,dy) = Q(x, dy) weak star for each x as
k — oo. For certain discretizations, Pfanzagl (1979) shows this convergence is
automatic.

PROPOSITION 4.1. @ is a regular conditional distribution for Y given X.

Proor. Let g be bounded continuous on %, while & is bounded and uni-
formly continuous on #. Then

J&[ox(X)]Qu(X, hey,) dP
(4.3) @

= fﬂg[‘i’k(x)]h[‘l’k(y)] dP.
As k — oo, the right side goes to [og(X)h(Y) dP; on the left side, h oy, can be

replaced by h, with only a small error. Then the left side goes to
/o8(X)Q(X, h)dP. O
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In the applications, it must be shown that Y ,(A) = A as £ = oo uniformly in
A. The ¢, of interest is the lumping function g, defined above. The key fact is
(4.4) below. Let d be the Lévy distance between probabilities on R: so d(F, G) is
the inf of ¢ > 0 with F(x) < G(x + ¢) + ¢ and G(x) < F(x + €) + &. Then it is
easy to show

(4.4) d[F,g,F)] <1/k forall F.
That is, g,(F) — F uniformly in F.

REFERENCES

BERK, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect. Ann.
Math. Statist. 37 51-58.

CHUNG, K. L. (1949). An estimate concerning the Kolmogorov limiting distribution. Trans. Amer.
Math. Soc. 67 36-50.

DaraL, S. R. (1979a). Nonparametric and robust Bayes estimation of location. In Optimizing
Methods in Statistics (J. Rustagi, ed.) 141-166. Academic, New York.

DaLaL, S. R. (1979b). Dirichlet invariant processes and applications to nonparametric estimation of
symmetric distribution functions. Stochastic Process. Appl. 9 99-107.

DaLAL, S. R. (1980). Bayesian non-parametric theory. In Bayesian Statistics (J. M. Bernardo et al.,
eds.) 521-534. University Press, Valencia, Spain.

DEMPSTER, A. (1976). A subjectivist looks at robustness. Bull. Inst. Internat. Statist. 46 (Book 1)
349-374.

Diaconis, P and FREEDMAN, D. (1982). Bayes rules for location problems. Statistical Decision
Theory and Related Topics III 1. Academic, New York.

Diaconis, P. and FREEDMAN, D. (1983a). Frequentist properties of Bayes rules. Scientific Inference,
Data Analysis and Robustness. Academic, New York.

Diaconis, P. and FREEDMAN, D. (1983b). On inconsistent Bayes rules in the discrete case. Ann.
Statist. 11 1109-1118.

Diaconis, P. and FREEDMAN, D. (1984). Partial exchangeability and sufficiency. In Statistics:
Applications and New Directions. (J. K. Ghosh and J. Roy, eds.) 205-236. Indian
Statistical Institute, Calcutta.

Diaconis, P. and FREEDMAN, D. (1986). On the consistency of Bayes estimates. Ann. Statist. 14
1-26.

Doos, J. L. (1949). Application of the theory of martingales. Colloque Internal du CNRS 22-28.

FaBIUS, J. (1964). Asymptotic behavior of Bayes estimates. Ann. Math. Statist. 35 846-856.

FERGUSON, T. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230.

FERGUSON, T. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615-629.

FRASER, D. A. S. (1976). Necessary analysis and adaptive inferernce. J. Amer. Statist. Assoc. 71
99-113.

FREEDMAN, D. and DI1ACONIS, P. (1982a). de Finetti’s theorem for symmetric location families. Ann.
Statist. 10 184-189.

FREEDMAN, D. and Diaconis, P. (1982b). On inconsistent M-estimates. Ann. Statist. 10 454-461.

HUBER, P. (1984). Finite sample breakdown of M and P estimators. Ann. Statist. 12 119-126.

JOHNS, M. V. (1979). Robust Pitman-like estimators. In Robustness in Statistics (R. Launer and G.
Wilkensen, eds.) 49-60. Academic, New York.

KorwaR, R. M. and HOLLANDER, M. (1973). Contributions to the theory of Dirichlet processes.
Ann. Probab.1 705-711. .

PFANZAGL, J. (1979). Conditional distributions as derivatives. Ann. Probab. 7 1046-1050.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY UNIVERSITY OF CALIFORNIA
STANFORD CALIFORNIA 94305 BERKELEY, CALIFORNIA 94720



