CONSISTENCY OF BAYES ESTIMATES 63

for submission of this comment has passed. Diaconis and Freedman have done us
a service in exploring the consequences of apparently innocuous assumptions so
carefully.
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Introduction. We would like to thank the discussants for their careful work.
For context, we summarize our position.

(a) As a team, our motives are mixed to an unusual degree, because we differ
on many issues in foundations, including the interpretation of some of our results.
However, we are unanimous that the mathematics in our paper should be of
interest to Bayesians, ex-Bayesians, and never-Bayesians alike.

(b) Frequentists can use the Bayesian approach, like maximum likelihood or
optimality, as a powerful heuristic engine for generating statistical procedures.
No such engine is foolproof, so you should always look to see how well the
procedure is going to do. Even the crustiest subjectivist ought to follow this
advice, when the prior is only an approximation (and possibly quite a crude one,
chosen for computational convenience) to the true subjective belief. Besides its
practical importance, checking operating characteristics is good, clean mathe-
matical fun.

(c) Pitfalls in the classical approach are well known; those in the Bayesian
approach perhaps less so. We have given some examples where plausible applica-
tions of Bayesian technique lead to disaster. It is particularly easy to lose your
way in high dimensional parameter space.

(d) We view consistency as a useful diagnostic test. If your procedure gives the
wrong answer with unlimited data, probably you will not like it so well with a
finite sample either.

(e) We show how putting conditions on the underlying model and modifying
the prior can sometimes rescue Bayes procedures. As a general heuristic device
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for developing such patches, we propose a kind of Bayesian sensitivity analysis,
the “what if” method.

To our dismay, the negative reactions came from Krasker-Pralt, and we
answer them first.

Krasker-Pratt. Krasker and Pratt accuse us of false cheer with respect to
classical procedures. For one of us (who is seldom accused of cheer with respect to
anything) the change of pace is refreshing. They cite hierarchical regression
models as a Bayesian success story, despite substantial evidence to the contrary
(Freedman and Navidi, 1985). And they carefully avoid committing themselves
on the question of whether consistency matters. As a final point of rhetoric, they
take us to task for bench-testing a Bayesian solution to the simplest textbook
problem of them all: estimating a location parameter with symmetric errors. Our
view is conservative: If your procedure runs into trouble on that problem, you
may have worse troubles on other problems.

Their main point, however, is that “all oddities can be attributed to the priors,
not to more fundamental difficulties in Bayesian philosophy.” Indeed, they
continue, “in a discussion session of the Seminar on Bayesian Inference in
Econometrics, many found fault with the Dirichlet, no one defended it beyond
consistency, and much progress was reported with more satisfactory priors.”

We do not know of any substantially different priors for use in nonparametric
situations, meeting the minimum tests of consistency and computability. That is
why the Dirichlet and its analogs were introduced; that is why people use them;
and that is why we pitched our examples in those terms. If Krasker and Pratt
know better, they should say explicitly what priors they like. Then somebody can
do the asymptotics.

The main objection to the Dirichlet seems to be that it assigns full probability
to the discrete distributions: The Dirichlet priors “totally ignore smoothing,
which 1is really the main issue, where prior information counts the most.” Well,
Krasker-Pratt, lots of luck. The Dirichlet works on a divide-and-conquer strategy.
You can divide the line up into a finite number of pieces, and forget what goes on
inside each piece: This reduces an infinite-dimensional problem to a finite one.
Then, you can repeat the process inside each piece.

Smoothing forces data in different parts of the line to interact, and this creates
a whole new level of technical complexity. Indeed, this interaction across inter-
vals is probably what differentiates the location problem from the problem of
simply estimating an unknown distribution function, where the Dirichlet per-
forms very well indeed—despite its marked preference for discrete distributions.

On the whole, the discreteness issue seems to us to be a red herring. Consider a
Dirichlet with a normal rather than Cauchy base probability: This prior still
concentrates on discrete distributions but the posterior is consistent. The prob-
lem is caused by multimodal densities and a base probability which is not log
convex, rather than by discreteness.

At a more speculative level, we think there are counterexamples involving
priors which have full support and concentrate on smooth distributions. How-
ever, detailed calculations are difficult, and we have not done them. The first idea
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is to smooth the Dirichlet, as proposed by Lo. Fix a kernel density k&, choose F at
random from the Dirichlet, and look at the convolution k& * F. We will use
k * D(a) to denote the law of k* F when F has the law D(a). Such priors
are necessarily inconsistent, because they do not have full support: Indeed,
max k * F < max k.

The next idea is to consider mixtures. Fix a sequence k, of kernel densities
tending to point mass at 0, for example, normal with mean 0 and variance 1/n.
Consider nonnegative weights w, adding to 1. Look at

Yw,k,* D(a,).

This prior has full support, but concentrates on smooth densities. We think it is
consistent for some choices of w, and «,, and inconsistent for others (if w, tends
to O sufficiently rapidly, and the mass of «, tends to infinity). Furthermore, the
prior may be consistent for estimating an unknown distribution function, but
inconsistent in the location problem, where the unknown distribution function is
just a nuisance parameter.

Here is another construction, which starts from the Dirichlet but forces the
random distribution function to be absolutely continuous; compare Kraft’s (1964)
modification of Fabius (1964).

(i) Use a Dirichlet on the integers to distribute mass to the intervals[n, n + 1),
but not within.

(ii) Within [n, n + 1), use a beta to randomly split the mass between the left
half and right half; the beta may depend on n.

(iii) Keep on going, with different betas at different stages. Make the variances of
the betas decay to zero very rapidly, so the random distribution function is
nearly equal to its expectation; this can be, for example, either normal or
Cauchy.

If the decay of the variances is rapid enough, almost all the random distribu-
tions will be smooth (absolutely continuous, maybe differentiable except at
binary rationals). This prior will be consistent for estimating an unknown
distribution function on the line, by the divide-and-conquer argument. Now
consider the location problem; we guess this prior is consistent when its expecta-
tion is the normal, and inconsistent with the Cauchy.

The real mathematical issue, it seems to us, is to find computable Bayes
procedures and figure out when they are consistent and when they are incon-
sistent. We wish Krasker and Pratt would use their considerable talents to help
solve the problem, instead of burying it deeper in a pile of rhetoric.

Hartigan. Is Hartigan part of the problem or part of the solution? He seems
to reject the idea that dimensionality of the parameter space matters. He is being
uncharacteristically disingenuous, when he reproduces Freedman’s (1963) original
counterexample using a countable set of parameters. The only sensible way to
think about those parameters is as a sequence in an infinite-dimensional
space—the way it was set up originally. The question about entropy neighbor-
hoods is answered (positively) in that same paper. For our part, we confess to not
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giving any careful, formal treatment of dimensionality. This leaves a clear field
for Hartigan.

Berger. Berger asks, “How likely is it for one to encounter a consistency
problem in practice?”’ In nonparametric problems, we think that inconsistency
will be the rule not the exception, unless great care is taken in specifying the
prior. Even in high-dimensional problems, details of the prior can have substan- -
tial and unanticipated effects on the behavior of the procedure.

Berger and others sometimes suggest that subjective judgements can and
should be quantified as probability distributions. This is a cornerstone article of
faith for some Bayesians. In certain problems, this kind of quantification is surely
possible and helpful. However, in other problems, it may not be. Indeed, the
attempt to develop a full-blown subjective probability distribution may be
counterproductive, while informal use of intuition could help.

Berger (and Krasker—Pratt too) wonder whether inconsistency on a null set
matters. We think it can. Man may be the measure of all things, but then one
man’s null set can be another’s support. Freedman (1965) used category because
it is neutral between measures, and because sets large in the sense of category are
large for ““most” measures.

Finally, Berger asks for more details on our claim that estimates of the form
proposed by Box-Tiao, Fraser, and Johns can be inconsistent. The proposed
estimators are all of the form

JOT1f [( X, — 8)/0; A] »(d8, do, d\)
JTIf [(X; - 8)/0; \] »(d8, do, dN) ’

h—

where f(x; A) is a family of densities and » is formal prior. For example, Fraser
takes the family of all z-densities: const(1 + x2) .

These estimates are Bayes rules based on non-log-convex densities. We have
checked that for some choices of prior », the rules are inconsistent. We have not
shown that the rules actually suggested are inconsistent, but we believe them to
be.

Derivatives. Le Cam, Krasker—Pratt, and Clayton all make useful com-
ments about derivatives. As they indicate, it is possible to calculate higher-order
and even mixed partial derivatives with respect to the prior, the model, and the
loss function. Clayton asks for a derivative of the predictive distribution with
respect to the prior. We find this easiest to think about in the context of
exchangeable processes. There, the predictive distribution is a linear function of
the posterior, so the calculus is straightforward: If P;° is the product measure at
parameter 6, p is the prior on 6, and fi,(d@) is the derivative of the posterior
given x, the derivative of the predictive distribution with respect to the prior is
the signed measure

[P ()i(a9).
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Envoi. We will not comment further on the many other interesting points
raised. We hope discussants not singled out for reply will be relieved rather than
insulted, on the theory that no news is good news. Finally, we warmly thank the
Editor, Associate Editor, and discussants for their encouragement and support.
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