CONSISTENCY OF BAYES ESTIMATES 55

REFERENCES

BERAN, R. (1981). Efficient robust estimation in parametric models. Z. Wahrsch. verw. Gebiete 55
91-108.

Diaconis, P. (1985). Bayesian statistics as honest work. Proceedings of the Berkeley Conference in
Honor of Jerzy Neyman and Jack Kiefer. (L. M. Le Cam and R. A. Olshen, eds.) 1 53-64.
Wadsworth, Monterey, Calif.

Di1aconis, P. and FREEDMAN, D. (1986). On the consistency of Bayes estimates. Ann. Statist. 14
1-26.

Doss, H. (1985a). Bayesian nonparametric estimation of the median. I: Computation of the esti-
mates. Ann. Statist. 13 1432-1444.

Doss, H. (1985b). Bayesian nonparametric estimation of the median. II: Asymptotic properties of the
estimates. Ann. Statist. 13 1445-1464.

FERGUSON, T. S. and PHADIA, E. G. (1979). Bayesian nonparametric estimation based on censored
data. Ann. Statist. 7 163-186.

HiorTt, N. L. (1984a). Nonparametric Bayes estimators of cumulative intensities in models with
censoring. Research Report, Norwegian Computing Center, Oslo.

HiorT, N. L. (1984b). Bayes estimators and asymptotic efficiency in parametric counting process
models. Research Report, Norwegian Computing Center, Oslo.

HJorT, N. L. (1985a). Notes on the theory of statistical symbol recognition. Research Report,
Norwegian Computing Center, Oslo.

HJyorrt, N. L. (1985b). Semi-parametric Bayes estimators. Unpublished.

HJort, N. L. (1985c). Contribution to the discussion of Andersen and Borgan’s “Counting process
models for life history data: A review.” Scand. J. Statist. 12 141-150.

MiLLAR, P. W. (1981). Robust estimation via minimum distance methods. Z. Wahrsch. verw.
Gebiete 55 73-89.

RuBIN, D. B. (1984). Bayesianly justifiable and relevant frequentist calculations for the applied
statistician. Ann. Statist. 12 1151-1172.

NORWEGIAN COMPUTING CENTER
P. B. 335 BLINDERN

N-0314 OsLo 3

NORwAY

WIiLLIAM S. KRASKER AND JOHN W. PRATT
Harvard University

This is one in a series of fascinating papers. They are easily read as painting a
picture of modern Bayesianism in bad trouble but frequentism in fine shape. A
larger historical perspective gives a different view, however. It should therefore
be sketched, even if only impressionistically.

Time began in darkness and “inverse” probability. Then the Rev. Thomas
Bayes let in some posthumous light. The postulate he identified and used was
duly found arbitrary or ambiguous, and unfounded. Likewise Fisher’s reference
sets. Then Neyman and Pearson developed “objective” (frequentist) concepts
even as Ramsey and de Finetti were proving that “subjective” Bayesianism was
the only coherent theory possible. Soon (well before Pratt’s 1961 and 1965
surveys) objective methods too were found arbitrary and theoretically and
practically deficient even in the simplest situations (where uniformly most
powerful tests are randomized).
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56 DISCUSSION

But the new, true Bayesian road, though well lit, is not always smooth. Prior
distributions are hard to assess, practically impossible sometimes. “Reference”
priors, though convenient and objective, (subject-independent), sometimes com-
mit theoretical and even practical improprieties, some of which—we admit
it—frequentism identifies. Bayesian methodology (not theory) has progressed
least in many-parameter inference. With hierarchical structures, it has done well,
extending and clarifying the frequentist models and analysis of random effects.
But with nonparametric structures, including ordinary sample surveys, it has
done poorly.

Suppose, for simplicity, that x,, x,,... are iid with continuous distribution F,
possibly multivariate, and are observed infinitely accurately. A nonparametric
Bayesian might expect his true prior and want an approximate prior to have
these properties, among others, at least for “well-behaved” samples.

(1) P(F is continuous) = 1.

(2) P(F is continuous) = 1, where F‘ is the expectation of the posterior distribu-
tion of F, the predictive dlstnbutlon of x,,, given x,,..., x,,.

(3) F,— F, is of order 1/n in a suitable sense, where F, is the empirical
distribution.

(4) A posteriori F(x) ~ N(F,(x), F(x)[1 — F,(x)]/n) to order 1/n.

(5) In intervals of order 1/n, the information in the sample spacing is dominated
by prior expectation of smoothness.

The reason to expect (3) and (4) is that, even in finite-parameter problems, a
positive prior density affects the posterior distribution only by order 1/n, and
the likelihood dominates the prior in determining the whole posterior distribu-
tion, not merely the location at which it concentrates. That is, the sample
information dominates the prior information in intervals of order 1/n'/2.

The big question is what constitutes “ well-behaved” samples. Are they more
than a set of probability 1 under the true prior? Less?

Diaconis—Freedman consistency demands less than (3), but demands it for
almost all samples from every distribution F. This may be an important property
of a Bayes rule if that rule is regarded as just another way to get a point estimate
of the true parameter. However, a Bayesian wants not an estimate but the
posterior distribution of the parameter given the data. Doob’s theorem says that
the posterior will be consistent for almost all parameter values. But consistency
everywhere is neither necessary nor sufficient for a prior to be a good representa-
tion of prior beliefs.

Dirichlet priors have properties (3) and (4) (by the beta posterior of F(x)), but
not (1), (2), or (5). Maximum possible independence is their beauty—they are
manageable and consistent—but also their curse: They totally ignore smoothing,
which is really the main issue, where prior information counts most. Their
unsatisfactoriness is most telling in small samples (where failure to smooth
matters most) but most provable in large samples (e.g., P(x, is new) < |||/
(llall + » — 1) —> O implies P(F is discrete) = 1, which is undesirable and an
easier proof than we have seen in the literature).

Now the Dirichlet happens to be consistent. Indeed, the case a constant,
lla]| = O (suggested to us by Zellner), is as improper as can be yet gives the
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empirical distribution, while a constant, ||a|| = 1 gives Fisher’s predictive distri-
bution (equal probability in each of the n + 1 intervals defined by the order
statistics). But in a May 17 discussion session of the Seminar on Bayesian
Inference in Econometrics, many found fault with the Dirichlet, no one defended
it beyond consistency, and much progress was reported with more satisfactory
priors. So we do not believe that bad properties of “Jeffreys-style” or symme-
trized extensions of the Dirichlet should faze “practicing Bayesians” as Diaconis
and Freedman imply. As far as we know, all oddities can be attributed to the
priors, not to more fundamental difficulties in Bayesian philosophy. If they could
not, the identification of the unidentifiable would bother us more than the
inconsistency of the symmetrized Dirichlet, because guaranteed symmetry seems
even more unreal to us than a priori independence of location and shape. But
both seem dangerous as philosophical testing grounds.

Returning to one small part of the “big question”: How much consistency
should we expect or require? We might expect consistency for all absolutely
continuous distributions (densities), or all lattice distributions, but we would not
require it beyond what Doob guarantees for the true prior, especially now that
our eyes have been opened to how much this would imply. We would no longer be
surprised, let alone dismayed, by inconsistency for the kinds of samples one
would get for F' continuous but singular with respect to Lebesgue measure. We
would be happy to restrict attention to a topologically small family of prior
distributions, such as those assigning probability 1 to densities. Whether F is
part of an objective probability model, or only in the mind of the beholder, the
“classical”—*subjectivist” distinction of Diaconis and Freedman, seems unim-
portant to us, and irrelevant here, and we would look for merging of opinion to
the same point as a consequence of whatever consistency is present, and merging
in the full sense as a consequence of (4), not vice versa.

The results on the sensitivity of the posterior to the prior (the last part of
Section 3, and Appendix B) represent an interesting approach to the problem of
choosing a convenient prior P that approximates the “true” prior P, in such a
way that, given the sample x, the posteriors P, and P, are close (compare
Krasker (1984)). Under the conditions of Theorem 4, the norm of the derivative
of the map T from priors to posteriors is the ratio of maximum to mean
likelihood. However, T is not even continuous without the somewhat artificial
assumption that f(x|f) is bounded in #. In addition, the results about the
derivative TP use the total-variation norm on both the priors and posteriors. This
is an overly strong topology for the space of priors if the parameter indexes the
set of continuous distributions on R, since the computationally feasible methods
of approximating the true prior—say by a finite-dimensional parametric model,
or even an extended Dirichlet process—assign probability 1 to a set that has true
probability 0. As Diaconis and Freedman point out at the end of Appendix B, the
results can be extended to the weak-star topology, say using the Prohorov metric
d. (This requires a metric on ®; the natural way to provide one is to identify each
# with the distribution it indexes, and use either the Prohorov or total-variation
metric.) Frechet differentiability in this context requires the further assumption
that f(x|0) satisfy a Lipschitz condition in 8. (Continuity does not appear to be
enough to give the necessary property that d(fdP, fdQ) = O(d(P, ®)).) This



58 DISCUSSION

Lipschitz condition in 6 (or even continuity, for that matter) is an additional
severe restriction on the set of densities { f(-|0)}, requiring for example that they
satisfy a Lipschitz condition in x, uniformly in . The norm of the Frechet
derivative—the maximum of the ratio of change in the posterior to change in the
prior, as the latter goes to zero—agrees with the formula ||Tp|| = f(x|0yy,)//f dP
derived using the total variation norm provided P(N/(8)) = o(e), where N(8) is
the e-neighborhood of @ in ©. (This condition should hold if © is more than
one-dimensional.) This ostensibly shows, in situations in which the assumptions
for differentiability hold, that in order to ensure d(P,, P.) < ¢, we should select
P satisfying d(P, P) < &/||T|. However, it is easy to show that ITs|l = o as
the sample size goes to infinity. This says in particular that in large samples the
condition on P will be virtually impossible to satisfy, and says more generally
that, contrary to intuition, it is in large samples that the posterior is most
sensitive to the prior. We can get further insight into the local behavior of T' by
examining the second derivative Tp, which can be regarded as a symmetric
bilinear map priors X priors — posteriors, and which will exist under the as-
sumptions used to obtain 7. We find that

T.(H,G) = —(ffdG/(/fdP)z)de— (fde/(ffdP)2)fdG
fdeffdG/(ffdP)a)fdP.

In particular, in the second-order expansion T(P + H)— T(P) = Tp(H) +
%TP(H , H), the second-order term can be important unless ||TP(H )| < 1. If
|'T5|| is large, as it will be when the sample is large, the first derivative will yield a
good approximation to T only too close to P to be of use.

What, in jargon natural at our institution, is the bottom line? As far as we can
see, it is that satisfactory prior distributions for nonparametric problems are still
unavailable and that it is naive to expect too much in certain directions. This
completes our discussion and Bayesian defense against frequentist analysis. If we
have referred to ourselves unseemly often, it may signify that the foundations of
statistics are personal. If we have seemed unseemly to the authors, be assured
that we would have much pleasure in seconding a vote of thanks to them.
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