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ASYMPTOTIC BEHAVIOR OF ROBUST ESTIMATORS OF
REGRESSION AND SCALE PARAMETERS WITH
FIXED CARRIERS

BY MERVYN J. SILVAPULLE

University of Melbourne and Bureau of Agricultural Economics,
Canberra

For the linear regression model, y; = x;B + ¢ with fixed x;s, the asymp-
totic normality of (B, §) which minimizes the Huber-Dutter loss function,
Yop{(y, — x;B)/0} + A, 0, is established under rather general conditions.

1. Introduction. Consider the linear regression model y, = x,B, + ¢, where

the x; = (1, x;5,..., %;,), ¢ = 1,..., n are known, B, = (B,,. .., By,) is a vector
of p unknown parameters to be estimated and x,B, is the usual inner product.
The errors, ¢, i=1,...,n are assumed to be independent and identically

distributed with common distribution function, G.

A number of robust estimators of B, have been proposed and investigated over
the last decade. Perhaps the best-known class of these are the so called M
estimators. They are obtained by minimizing a loss function of the form Xp{(y,
— x,;B)/s} where p is some suitably chosen function and s is some estimate of
the scale of the errors ¢,. In most practical applications of M estimation [e.g.,
Andrews (1974)], the scale estimate s is chosen so that it is insensitive to large
errors in the data. The loss function is then minimized with s held fixed. This is
usually called fixed-scale estimation.

An alternative, perhaps more elegant, approach has been suggested by Huber
and Dutter (1974) and Huber (1977). In this approach, B, and a scale for the
errors are estimated simultaneously by minimizing

Q(Bao) = Zp{(yl - XiB)/O}O + Ano’

where p > 0 is convex, p(0) = 0, |¢|"'o(¢) - k as |t| = oo for some %k > 0, and
{A,} is a suitably chosen sequence of constants. We shall call a point (B, 6) at
which Q(B, o) attains its minimum, an HD estimator (HD for Huber-Dutter).

The purpose of this paper is to establish that (B, 6) is asymptotically normal
under rather general conditions. Similar results for the case of random carriers
are established in Maronna and Yohai (1981).

2. Preliminaries. Let us first introduce some notation: 6 = (B, 0); 6=
(B,6); ®={6: B€ RP,0>0} where R? is p-dimensional Euclidean space;
x = (x}...,x%)" with the superscript ¢ denoting the transpose; for any set C, C is
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the closure of C; for an arbitrary function f, f’ and f " are the first and second
derivatives of f, respectively. |[x|| is the Euclidean norm of x.
The estimating equations for (B, 6) may be written as

(2.1) Z‘P{(yi—xiﬂ)/o}xi=0a ZX{(.’)’;" xiB)/U} =4,

where ¢ = o’ and x(2) = t(t) — p(t) = [fx dy(x).

In what follows, it will be assumed that the errors are nondegenerate, n > p +
1, X is of full rank, A, > 0 and v is continuous.

Since we are interested only on estimators having some robustness properties,
it will be assumed that lim|¢|~'o(¢) = 2 < o0, since £ = o leads to an unbounded
influence curve for B. Without loss of generality, we may assume k = 1. There-
fore  is bounded and increases from —1 to +1. It will also be assumed that x
is bounded; otherwise the influence curve of § is unbounded. Although non-
robustness of ¢ itself may not be of much independent interest, we have to ensure
that it is robust since B depends on §.

In fixed-scale estimation, one usually centers the error by Ey(e/s,) = 0, where
S, is the asymptotic value of the estimator of scale, s, under some ideal model,
for example the Gaussian errors (see Huber, 1973 and Bickel, 1975). Here we shall
center the errors by Ey(e/0*) = 0, where o* is defined in the proposition below,
which may be deduced from the results on pages 138 and 139 of Huber (1981).

PROPOSITION 1. Suppose that n <1 — Av™! and A > 0, where n is the
largest jump in the error distribution, v = min{x(), x(— )} and A =
lim n~'A,. Then the equation, E[{{(¢ — p)/o}, x{(¢ — n)/0} — Al =0, has a
solution at (p*, o*) with o* > 0.

We close this section with a result which gives a lower bound on sample size to
ensure that 6 > 0. This result is essentially the same as that of Huber [see Huber
(1981), page 189] except that we do not require x to be symmetric.

PROPOSITION 2. Let p’ be the maximum number of residuals that may be
made simultaneously zero. Then é > 0 whenever (n — p’)> v~ 'A, where v =

min{x (), x(— 0)}.
Proor.
Jlim (9/90)Q(B,0) =n~'4, —n'L lim x{(5 - x)/0)
=n"'A, - n"'x(0) # (5 > x,B)
—nx(= ) #(y < x;B),

where # is the abbreviation for the number of elements. The rest of the proof is
rather easy. O

3. Asymptotic normality of 0. In this section we prove that (B, 6) is
approximately normal for large n. The presentation of the proof is facilitated by
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a linearization result similar to that in Brown and Kildea (1979). Let us first
introduce some notation: 8* = (B,, 0*);

U,(8) = —(8/30)[op{(yi - x,B)/0} + n"Ano]

= [Xi‘l’{(yi -x,B)/0}, x{(¥—xB)/0} - n'lAn]
B,(0) = nT'E{(9%/3090)Q(8)};  T.(8) = —n~'23 U(8);
V,(0) = var{T,(8)};

For the rest of this paper we will assume that the following conditions are
satisfied: (i) lim(n'A,— A)=0 for some 0<n 'A,, A <y where »=
min{x(), x(— o)}, and ¢* > 0; (ii) x%)’(x) and x*}"(x) are bounded; (iii) the
eigenvalues of n 'X’X are bounded above and away from zero, and
n”'max{|x,|%: 1 <i < n) - 0; and (iv) a, ab — ¢? u, uv — w? > 0, where a =
E{y'(n)}, b= E{n*/(n)}, c = E{ny(n)}, u=var{y(n)}, v = var{x(n)}, and
w = cov{y(n), x(n)} with n = (¢/0*).

Now, the linearization result is the following:

THEOREM 1. T, (0* + n~1/%2y) = T, (0*) + yB,(0*) + p,(y), where
sup{|| p.(VIl: lI¥ll < K} = 0 a.s. as n = o for any K > 0.

PrOOF. Note that T,(8)=n"'%(d/38)Q(8). Expanding (9/96,)Q(8* +
n~1/2y) about y = 0, we have
(0/06,)Q(0* + n_l/z‘y)
= (8/06,)Q(0*) + n~'/*y(3/308°)(8/36,)Q(8*) + n™'R,,, (v, \,),

where R (Y, A) = ¥(3%2/30'90)(3/30,)Q(0* + n~'/?Ay)y’, and 0 < A, < 1. This
expansion may be rewritten as

T, (0% + n~'/2y) = T (0*) + yn1(3%2/38%90)Q(8*) + n=32R (v, N).
The rest of the proof follows from the next two lemmas, the proofs of which
appear in Appendix B.

LEMMA 1. {n"Y(9%/90'38)Q(6*) — B(0*)} >, 0 as n — co.

LEMMA 2. ForanyK>O0andl=1,...,p+1
sup{n=*2|R,,(Y,\): [y < Kand 0 <A <1} » 0 a.s. asn > 0.
We now use this theorem to establish that 8 is asymptotically normal.
THEOREM 2. Writing D, = {V,(8*)}"/2B,(8*), we have D,n~'/*(§ — 8*)
— N(0,I) as n > «. Furthermore, the eigenvalues of D, are bounded above

and away from zero.

PRrOOF. " To prove this theorem, we need the following two lemmas; the proofs
are given in Appendix B.
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LEMMA 3. The eigenvalues of B,(8*) and V,(0*) are bounded above and
away from zero.

LEMMA 4. {V,(8*)} /2T (6*) > ,N(0, ).

Now, integrating the expansion in Theorem 2, we have

(3.1) n'2{Q(8* + n™%y) — Q(6*))

=T,(0*)y"' + 27 'yB,(0*)y’ + ¢,(¥),

where ¢,(y) = |lY|lo,(1) on bounded sets. Let the right hand side of (3.1) be
denoted by S,(v). For any K > 0, defined, = T,(6*)I{||T,(08*)|| < K}, where I is
the indicator function. Let s,(y) = d,y’ + 27 'yB,(0*)y"

For a given 8 > 0, let C, = {y: s,(y) < 28}. Since the eigenvalues of B,(0*)
are bounded above and away from zero and d,, is bounded, there exists r = r(K, §)
such that sup{|ly|: Y € C,} < r for every n. Clearly, s,(y) is minimized at
Yon = —d,{B,(8*%)}; further, vy,, € C, since s,(Y,,) = —2d,B,(0*)d’, < 0.

The following arguments hold with probability arbitrarily close to 1 for
sufficiently large K and n:

Since T,(0*) = d,, and |e,(y)| < §/2, we have

(3:2) sup{IS,(v) — s,(Y)I: Iyl < r + 1} < 8/2.

Now,
inf(S,(y): lvll = » + 1} > inf{s,(v): Iyl =r + 1} —8/2 by (3.2)
> 38/2 since C, N {y: ||ly|| = r + 1} is empty
> $,(Yon) +38/2 since s,(vy,) <O
> S,(¥,,) +8 by (3.2).

So, for the convex function, S,(v), the infimum on the circle ||y|| = r + 1 is larger
than its value at a point inside the circle. Therefore, S,(y) attains its global
minimum on |y|| <r+ 1.

Hence, we conclude that ¥ = O,(1). The desired result follows by substituting
¥ into the expansion in Theorem 2. O

4. Some results on the asymptotic behavior of §. A number of useful
asymptotic properties of the HD estimators may be inferred from their asymp-
totic covariance matrices. Let us write the regression model as y; = a + By)z; + ¢,
where Bg) = (Bog,---»Bop)s @ =By + 2,By and z;;,=x,;— % ; for j=2,...,p
and i =1,...,n. Then, the matrix representation of the regression equation
takes the form Y = al + ZB,, + € where1is a column of 1sand Z = (2{,..., 2})"
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Now, with a, b, ¢, u, v and w defined as in condition (iv) at the outset of Section
3, we have

ProposITION 3. n'%(&, 9(2), 6) — (a, Bao)} is asymptotically normal with
mean zero and covariance

(6*)’| 0 nhy(Z'Z)™' 0 |,
R, 0 Ry

where h, = (ab — ¢*)7%(b*u — 2bcw + c¢%), h, = (u/a?), h,= (ab — c?)~2
(a®v — 2acw + c*u), and hy = (ab — ¢*)~%(abw — beu — acv + c2w).

PROOF. (An outline only.) The proof of the asymptotic normality is the same
as that of Theorem 2 with only minor modification; hence it is not given here.
The following matrix result is easily verified:

p 0 p | p(pips—p2) 0  -p(pips-p2)"
0 p, O = 0 Pyt 0
pi 0 py —ppps—p2) " 0 pipips—p2)"

The product of two matrices of the above form is also of the same form. The B
and V matrices corresponding to the (a, B2)) parametrization are of the above
form. Now, it is only a simple matter to evaluate the covariance matrix of

(aa B(2)’6)' a

It follows from the above proposition that (i) ﬁQ, cee, ,fi’p are asymptotically
independent of (&, ¢) and (ii) the asymptotic behavior of (&, §) and that of ({, 6),
the HD estimator of (i, o) in the location/scale model y; = p + ¢,, are the same.
Some properties of 4, and h;, when the error distribution is asymmetrically
contaminated normal, are discussed in Heathcote and Silvapulle (1981).

Although the results established here hold under rather general conditions, the
immediate applications of this method are likely to be when the errors are
symmetric, in which case, it is natural to choose p symmetric. So, let us assume
that p and errors are symmetric. Then ¢ = w = 0, and the asymptotic covariance
of n'/%(f — 6%) is

hon(X’X)™' 0
0 hy |

where h; = (v/b?). Thus, it follows that the robustness properties of the HD
estimators of location and scale, with respect to least-squares estimators, carry
over to the regression model.

5. Discussion. In fixed-scale estimation, the choice of scale s represents
some minor problems which translate to the choice of n~'A, in HD estimation.
As s ranges from 0 to oo the fixed-scale estimator of 8 covers the wide spectrum
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from the extremely robust minimum absolute deviation estimator to the ex-
tremely nonrobust least-squares estimator. Similarly, as n~'A, range from
max{x(o0), x(—o0)} to 0, the HD estimator of 8 also covers the same spectrum.
Of course, this does not mean that for a given estimator of scale s we can choose
n~'A, so that the two estimators are equivalent. It seems that fixed-scale and
HD estimators are unlikely to be equivalent except in very special cases.

Intuitively, a logical choice for A, seems to be (n — p)E(x), where the
expectation is taken with respect to a distribution function “close” to the error
distribution. Huber (1977) favors this when the error is approximately normal.
On the other hand, the result in Heathcote and Silvapulle (1981) may be useful.
These authors obtained the HD-estimating equation for location and scale with
A, = nEy(x) by minimizing a loss function similar to the well known Cramér—von
Mises criterion, where E, is the expectation with respect to the distribution
(¢ +1)/2. Thus, A, = nE(x) may be a potential choice for the regression
model as well. Our limited experience with different data sets and the choices
¥ = {2(normal) — 1}, {2(logistic) — 1} and {2(uniform)— 1} with A, = nE(x)
has been that the fixed-scale and HD methods lead to rather close results. This is
not surprising since, under symmetry, the asymptotic variance of the fixed-scale
estimator of the regression parameter is the same as that of the HD estimator
with plims = o*. .

A point worth noting is on the computation of (B, 6). The algorithm of Huber
and Dutter (1974) performed very well in a number of different situations. We
found that (although not unexpected) whenever the starting value is far away
from (B, 6) the iterates moved towards (B, §) very quickly, thus the choice of
starting values was not all that crucial for the convergence of the algorithm.

Appendix: Proofs of the lemmas in Section 3
Proor oF LEMMA 1. For sufficiently large n and 1 < &, 1, m < p, we have
E{(92/36,36,)Q(0) — E(5%/36,39,)Q(6))’
= n % L x%x3E [¥{(5 - xB)/0} — Ey{(5 - x,8)/0}]"
< M{n‘lZ||xi||2}n‘1max{||x,-||2: 1<i< n}, for some M > 0

-0 asn— o0o.

Similarly, it can be shown that the same holds for 1 < k2, [, m < p + 1.

PRrOOF OF LEMMA 2. Let § = 0* + n='/2Ay, where0 <A <land1 <k, I, m
< p. Then

sup{n~*"|y,(8°/96,36,36,,)Q(8)v: Ilv| < K,0 <A <1}
< Mn"Y?max{|x;|l: 1 <i < n}n"') |x,?, forsomeM >0
-0 asn — co.

Similarly, it can be shown that the same holds for 1 < k,/,m < p + 1.



1496 M. J. SILVAPULLE

PRrROOF OF LEMMA 3. Since the first column of (X‘X) is Yx,,

where P is the same as the identity matrix except that the (1, p + 1)th element
is —ca™ L.

Since ab — ¢® > 0, the determinant of B,(8*) is bounded above and away
from zero, hence so are its eigenvalues.

It follows from the definition that V,(6*) is the same as B,(6*) with u, v,
and w, in place of a, b, and ¢, respectively. Now, by arguments similar to those
above, it may be verified that the eigenvalues of V,(0*) are also bounded above
and away from zero.

PrRoOOF OF LEMMA 4. Let N € R?*! and o > 0. Since ¥, x, and n"'4,, are
bounded, there exists M > 0 such that

1U(0*) = E{U(0*)}I* < M{1 + |Ix,|I’}, 1<i<n.

Since the eigenvalues of V,(0*) are bounded away from zero, there exists K > 0
such that, as n - o

IN{V(8*)) " [U(0%) — E{U(8*)}]12 < KMIAI2{1 + [x,I*} - 0
uniformly on 1 < i < n since n”'max({||x,||%: 1 < i < n} - 0. Therefore,
prob[[N{(V,(6%)} /[U(8*) - E{U,(6*)}]| > on?] =0, 1<is<n
for sufficiently large n, and hence

{V,(6%)} "?[T,(8*) — E{T,(6%)}] -, N(0, I).

Now, it suffices to establish that E{T,(8*)} — 0. To prove this, let (1, 0,) be the
unique solution of

E[y{(e- p)/o}, x{(e—p)/o} —n"'A,] =0,0 > 0.

The existence and uniqueness of (u,,0,) follow by replacing A by n™'4, in
Proposition 1. Applying the mean value theorem to the lLh.s. in the above
equation, it may be verified that n'/?u, and n'/?(s, — o*) converge to zero. This
may be written as n'/%(8, — 8*) — 0, where 8, = (By; + B, Boas - - -5 Bops On)-

Since the equations x,(B —By,)=p,, 1 <i<n have a unique solution
at B = (Boy + Mp Bozs--+»Bop) E{U(B,)} =0 for 1 <i<n and hence
E{Tn(en)} = O’

Now, expanding (d/96,)Q(8,) about 8* as in the proof of Theorem 2 and
taking expectation, we have

0=E{T,0,)} = E{T,(6%)} + n'/%(6, — 6*)B,(0*)
+n~32E (R, {n"%(8, — 6*),\}].
By Lemmas 2 and 3 we have E{T,(8*)} — 0.
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