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TESTING LINEAR REGRESSION FUNCTION ADEQUACY
WITHOUT REPLICATION

By JAMEs W. NEILL AND DALLAS E. JOHNSON

The Upjohn Company and Kansas State University

The well known pure error-lack of fit test, which can be used to assess
the adequacy of a linear regression model, is generalized to accommodate the
case of nonreplication. The asymptotic null distribution of the proposed test
statistic is derived. Also, the proposed test statistic is shown to be asymptoti-
cally comparable under general alternatives to the test statistic obtained in
the case of replication. Consistency properties associated with pseudo lack of
fit and pure error mean squares are given which parallel those obtained in the
case of replication. In addition, the test statistic is invariant with respect to
location and scale changes made to the regression variables.

1. Introduction. A linear regression model with replication can be repre-
sented by

p
(1) Y, = Z Bjxij + &,

J=1
where i = 1,2,...,M; k=1,2,...,n; and n, > 1 for at least one i. The random
errors ¢;, are assumed to be independent and identically distributed with E(e;,)
= 0 and E(e},) = o where o” is an unknown real-valued parameter. The x,; are
fixed observable real numbers and the B; constitute a p X 1 vector of unknown
parameters defined in R”. For notational simplicity, only the case for which
n,=n,i=12 ..., M, will be discussed; the extension to the unbalanced case is
straightforward. Thus, the total number of observations is N = Mn.

The model given by (1) and some reasons for taking repeated observations at
fixed values of the regression variables are discussed by Graybill (1976). One
important aspect of this model is that it allows one to test for linear model
adequacy against a general alternative. _ _

LetYX?_Bx;;, i = 1,2,..., M, be written in matrix form as Xp where X = [x,,]
has size M X p and rank p. In this paper, I denotes the identity matrix of
appropriate dimension, and J and j represent n X n and n X 1 matrices of ones,
respectively. Also, X~ is the Moore-Penrose generalized inverse of the matrix X
and the notation ® represents the Kronecker matrix product (Graybill, 1983). To
test

Hy: E(Y)=(X®j)B
vs.
H,: E(Y) = (X ®j)B +(X* ® j)B*,
first partition the residual sum of squares for the model given by (1) into two
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parts: the so-called lack of fit sum of squares,

(2) SSLOF = Y'[(I - XX7) ®(1/r)J]Y,
and the pure error sum of squares,

(3) SSPE = Y'[I1 ® (1 —(1/n)J)]Y.
Next observe that

(4) F=[(N-M)/(M - p)](SSLOF /SSPE)

is distributed according to the noncentral F distribution F(M — p, N — M, \)
under H, and normally distributed errors where

(5) A= (n/20%)(X*B*)'[1 - XX~ ](X*B*).

Thus, assuming that the matrix [X, X *] has full column rank, a strictly unbiased
size a test of H, vs. H, is: Reject H, if the observed value of F exceeds
Fy s _p,n-m> Where F, \  ~ , is the (1 — a)th quantile of the central F
distribution F(M — p, N — M). _

This pure error-lack of fit test is general in the sense that X* need not be
specified, except for power calculations. Thus, X* may even consist of unknown
parameters. As a result, the test described above is a test of the adequacy of XB,
the deterministic portion of the model given by (1).

Replication is not always possible or available in many experimental applica-
tions. Several procedures exist that may help one to assess the adequacy of a
proposed model for the case of nonreplication; Neill and Johnson (1984a) pro-
vided a review of such procedures. In particular, the works by Green (1971),
Lyons and Proctor (1977), Shillington (1979), Daniel and Wood (1980), Draper
and Smith (1981) and Utts (1982) were cited. Each of these test procedures is
based on a pseudo pure error estimator of the error variance. However, the
proposed estimators are biased under the hypothesis of model adequacy and /or
the alternative, and, as a result, the power of the procedures may be adversely
affected.

The pure error—lack of fit test is generalized in this paper to accommodate the
case of nonreplication. The generalization is based on a pseudo pure error
estimator that is consistent for o® regardless of whether or not the specified
model is correct. An extension of (1) to the case of nonreplication is defined in
Section 2, and a test statistic for model adequacy is developed. Consistency
results and asymptotic distributions are derived in Sections 3 and 4, respectively.

2. The nonreplicated case. A linear regression model without replication
can be represented by

p
(6) Y= 2 Bixjr + €,
J=1
where i = 1,2,...,M; k=1,2,..., n,. As in Section 1, only the case for which

n,=n, i=12,..., M, will be discussed. The models given by (1) and (6) are
identical except for the additional subscript k£ on the regression variables in (6)
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that allows for nonreplication. Also, x,, is considered to be of the form x,; + §,,
where x,; and §;, are fixed observable real numbers. Thus, §,, characterlzes the
perturbatlon in the jth regressor variable for the kth observation in the ith
group. Let X = [x,,,] denote the N X p matrix of regression variables for model
(6), and note that X = (X ® j) + Awhere X = [x; ;;Jand A = [§, ;,]. The matrices
X and X are assumed to have rank equal to p. A test of

Hy(A): E(Y) = [(X®j)+A]B
H,(A,A%): E(Y) = [(X®j) + A]B +[(X* ® j) + A*] B*

will be discussed in the remainder of this section. In the following, X* will
represent the matrix (X* ® j) + A* where [X, X*] has full column rank.
Suppose the model given by (6) is correct and let Y* = Y — AB. Notice that
Y *, if observable, would conform to the model with replication as given by (1).
Model adequacy could then be determined by the usual lack of fit test with Y
replaced by Y* in (4). Since Y * is not observable, one might replace Y * with an
observable vector Y* that, at least asymptotically, is comparable to Y*. Let
Y* =Y — AB where B is the least squares estimator of B under model (6). Then,
under conditions to be stated below, Y;} — ¥;} — 0 with probability one (w.p.1)

as N — co. Now replace Y in (4) with ¥ * and denote this statistic by #*. Model
adequacy is then rejected if the observed value of F'* exceeds Fom-p n-m

In order to obtain asymptotic properties of this proposed test statistic,
suppose that the design space is partitioned into M cells. The partition is then
refined in such a way that the volume of the largest cell converges to zero as
M — oo where n is either fixed or n = o0. To facilitate the proofs of certain
results given in the following sections, it will be assumed that the partition
sequence is regular. The data points for a common cell would comprise a group of
near replicate observations, and asymptotic repeatability is assured since the cell
volume converges to zero. With the preceding scheme of asymptotics, it will be
shown that the test procedure described above provides an asymptotic size a test
of Hy(A) vs. Hy(A, A*). In addition, F* will be shown to be asymptotically
comparable, under general alternatives, to the test statistic obtained when
replication actually exists.

The test procedure based on F* is naturally implemented by choosing

=[x,;;] and X* = [x* ]. This choice for X and X* will be used for the

remalnder of this paper. In addition, it will be assumed that X'X/M — =__ as
N — oo where 2, is a positive definite matrix and X'X*/M - 2 _..as N - c.

The test based on F'* is general in the sense that X* need not be specified,
except for power calculations. Thus, X* may even consist of unknown parame-
ters. As a result, the test based on F'* is a test of the adequacy of XB, the
deterministic portion of the model given by (6). As in the case of replication, F'*
is invariant with respect to location (for models with an intercept term) and scale
changes made to the regression variables.

A simulation study by Neill and Johnson (1984b) has suggested that the test
procedure based on F'* is useful for small samples as well. The approach
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consistently provided a test with the desired size, and the power was observed to
be comparable to the power obtained in the case of replication. Included in the
study were extreme cases in which the sample points were not near replicates but
uniformly separated.

3. Consistency results. In this section some cons1stency results useful in
proving the asymptotic distributional properties of F* will be presented. These
results parallel those obtained when replication actually exists.

LEMMA 1. (a)UnderHo(A),B XY—»BwplasN—»oo
(b)UnderH(AA*),B B+Z2 2. ..B*wplasN — .

PRrROOF. Since (a) is a special case of (b) with X*B* = 0, only part (b) will be
proved. Under H, (A, A*),

B=XY=B+XX*B*+X"e.
By Lemma Al in the appendix,
X X*g* > 2 '3 .B* as N — .
It is next shown that X & converges strongly to the p dimensional zero vector.
From the proof of Lemma Al it can be observed that
X'X/N—->3 . asN- oo,
where 2 is a positive definite matrix. Since the random errors ¢, are assumed

to be independent and identically distributed with E(e;,) = 0 and E (%) = o2
follows by Lemma 1 of Christopeit and Helmes (1980) that

X¢e—>0 wpl asN - oo.
Part (b) is a consequence of these observations. O

In the following, let F and E denote the matrlces for the quadratlc forms given
by (2) and (3), respectively. Thus, Y*FY*/(M - p) and Y*EY*/(N - M)
represent the pseudo lack of fit and pure error mean squares whose ratio forms
F*. In Lemmas 2 and 3 it will be assumed that the random errors have finite
fourth moments. Also, the notation tr(-) will denote the trace function of a
square matrix.

LEmMAa 2. Y*EY*/(N — M) —po%as N —> oo under H(A) and H (A, A*).

PrROOF. Since Hy(A) is a special case of H (A, A*) with X*B* = 0, only the
case for H (A, A*) will be proved. Under H,(A, A*),

Y*=Xo®jB+(X*®jp*+ A(B —B)+A*B* + .
Then, since E(X ® j) = 0 and E(X* ® j) =
Y*’EY*/(N M)=¢Ee/(N - M) +(A(B B))EA(B-B)/(N-M)
+(A*B*)'EA*B*/(N — M) + 2¢/EA(B - B) /(N - M)
+2¢EA*B*/(N - M) + 2(A(B B)) EA*B*/(N — M).
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Next note that
E[¢Ee/(N - M)] = [¢0*/(N - M)|tx(E) + [E(e)|'EE(e) /(N — M) = o

and

var[¢Ee/(N = M)] = [(p = 30*) /(N = M)*|ete + [20%/(N — M)]tx(E?)
= (p,—30%)/N + 20*/(N - M)

for each N where p, = E(e},) and e is the N X 1 vector of the diagonal elements

of E (Seber, 1977). Since var[¢’Ee/(N — M)] - 0as N — oo,
¢Ee/(N—-— M) >p0® as N> oo.

Also,

(A(B - B))EA(B - B)/(N - M)

M n
= Z Z Z (.3,'— :éj)(ﬁj' - .é,) 2 8ijk8ij’k/(N_ M)
i=1/=1j=1 k=1

As shown in the proof of Lemma Al, ¥ a,,,/M — 0 as N —» c where a;,, =
2% -10:;20;;+/n. Thus, by interchanging summations and using the convergence of
B — B derived in Lemma 1,

(A(B~B))EAB-B)/(N-M)—=,0 asN - co.
The convergence of (A*B*)EA*B* /(N — M) to zero is similar. By the Schwarz
inequality and the fact that E is a projection matrix,
|(A(B — B))'EA*B*/(N — M)’
< [(A(B - B))'EA(B — B)/(N — M)][(a*B*)'EA*B*/(N — M)].
Since the quadratic forms in the preceding inequality converge to zero in
probability,
(A(B — B))EA*B*/(N~ M) >,0 as N - co.
The convergence of ¢ EA(B — ﬁ)/(N — M) and ¢EA*B*/(N — M) to zero in
probability is similar. Hence,
Y*EY*/(N—-M)—>p02 as N— counder H (A, A*).
This completes the proof of the lemma. O

Lemma 2 shows that the denominator of F* is consistent for o2 regardless of
whether or not the specified model is correct. Lemma 3 provides consistency and
expectation properties for the numerator of F'*,

LEMMA 3. (a) Under Hy(A), Y*FY*/(M — p) > p0? as N > 0.
(b) Under H (A, &%), E[Y*'FY*/(M — p)] = 02 + 202\/(M — p) for all N
where A is given by (5).
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ProoF. Under H (A, A*),
Y*=Y,+A(B-B)+Apx,
where
Y, = (X®j)B+(X*®j)B* +e.

Then Y*FY* = Y;FY, for all N by the fact that F is a projection matrix and
FA = 0 and FA* = 0. Since

E[YO,FYO/(M _P)] = [02/(M - P)]tr(F) + [E(Y())],FE(YO)/(M -p)
=02 + n(X*p*)'[1 - XX J(X*B*)/(M ~ p),
it follows that
E[Y*FY*/(M —p)]l = 0%+ 20%\/(M — p) forall N under H,(A, A*),

where A is given by (5). This completes the proof of part (b). To establish part
(a), first note that E[Y*’FY*/(M p)] = 0% under H(A) by part (b). In
addition, since Y*'FY * = Y/FY, for all N under Hy(A),

var[¥*F¥*/(M - p)] = [(n, — 30*) /(M — p)|t't + [20*/(M — p)*|tr(F?)

for each N where p, = E(¢j},) and f is the N X 1 vector of the diagonal elements
of F (Seber, 1977). Since £'f < tr(F)=M — p, var[Y*’FY*/(M p)]— 0 as
N — oo and thus,

Y*FY*/(M—p) —>po? as N - co under Hy(A).
This completes the proof of part (a). O
4. Asymptotic distributions. In this section the asymptotic null distribu-
tion of F'* will be derived. In addition, a result which relates #* under general
alternatives to the test statistic obtained when replication actually exists will be

proved. Since the proof of the following theorem makes use of Lemmas 2 and 3, it
will be assumed that the random errors have finite fourth moments.

THEOREM. (a) Under Hy(A), F, — F'* -, 0 as N - co where F, is defined
by (4) under Hy(A = 0).

(b) Under H (A, A*), F*/F —p 1 as N = oo where F, is defined by (4) under
H/ A =0, A* =0).

PROOF. (a) With Y, defined by Y, = (X ® j)B + ¢,
Fy— F* = [(N - M)/(M - p)][YsFY, - (YyEY,/Y*EY*)Y*FY*] /Y/EY,.
By Lemma 2 and the fact that YJEY, = ¢’Eg,

Y*EY*/(N—- M) - po02 as N — oo under Hy(A)
and
Y,EY,/(N — M) -, 02 as N — oo under Hy(A = 0).
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By Lemma 3,
Y*FY*/(M —p) >po? as N — oo under Hy(A).

Part (a) follows from the preceding results and the fact that Y *’ FY* = Y, FY,
for all N under H(A), as noted in the proof of Lemma 3.
(b) With Y, defined by Y, = (X ® j)B + (X* ® j)B* + ¢,

F*/F, = [Y*’FY*/YOFYO] [Y;EY,/Y*EY*].

By Lemma 2, ?*’E?*/(N M) and YJEY,/(N — M) converge to o2 in
probability as N — co under H,(4A, A*) and H, (A =0, A* = 0), respectively.
Part (b) follows immediately since Y *'FY * = Y FY, for all N under H (A, A*).
a

Since F;, under H,(A = 0) and normality is distributed according to the central
F dlstrlbutlon with M — p and N — M degrees of freedom, Theorem (a) implies
the test procedure based on F* is an asymptotic size a test of Hy(A) vs.
H (A, A*). By Theorem (b), F* is asymptotically comparable under general
alternatives to Fj, the test statistic obtained when replication actually exists.

APPENDIX

A matrix limit result useful for establishing Lemma 1 will now be proved. The
notation is given in Section 2.

LEMMmA Al. X"X* > 33 . as N - co.
ProOOF. Observe that
XX* = {[Xej)+Al'[(Xej)+A]}) '[(X@j) +A]'[(X* ® j) + &*]
= {XX/M+(X®j) A/N+&X®j)/N+&A/N} !
{X'X*/M +(X ® j)’A*/N + X(X* ® j)/N + AA*/N}.

Since 8uk Xijp — Xy, X ® j)A = [Z{‘ilim&j,]px}, = 0. Similarly, (X ® jyA* =
0 and (X* ® j)A = 0. Next note that

M
NA/N=| ) )y 8,100/ Mn

i=1k=1 pPXp
The term X}_ 18,49, 4/n = a,,; = 0 as N — oo by the Schwarz inequality and
the manner in which the partition is refined. Since the partition sequence is
assumed to be regular, {a,;: i = 1,2,..., M} are uniformly convergent to zero.
Thus, ¥ ,a,,,/M - 0 as N >  and hence &AA/N — 0 as N — co. Similarly,
AA*/N - 0 as N — . Slnce X'X/M — = where Z__ is a positive definite
matrix and X’'X*/M - Z_.. as N - oo, it follows that X X* - Z!3 . as
N - 0. O
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