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THE RANDOM AVERAGE MODE ESTIMATOR!

BY GARY W. OEHLERT

University of Minnesota

This paper proposes an estimator for the mean of a positive random
variable given a sample from that random variable. The positive mean
estimation problem is common, but there are few results for this problem in
the literature. This paper shows the proposed estimator to be less sensitive to
outlying values than the sample mean and determines its asymptotic mean
squared error.

1. Introduction. There are many times when a statistician wishes to non-
parametrically estimate the mean of a positive random variable; for example,
estimating total income tax collected from a sample of returns, or deadwood
biomass of a forest from a sample of quadrats. Unfortunately, the mean is a
difficult parameter to estimate well, and the sample mean, which is the natural
estimate of the population mean, is very nonrobust. Standard robust estimates of
location are not designed for this situation and can give poor results. This paper
studies the large sample error properties of a new estimator of the population
mean, the random average mode estimator, which can be used as an alternative
to the sample mean in the positive mean estimation problem, and which is robust
in a weak sense.

It is worthwhile to stress that there are situations when the mean is the
parameter of choice and other location parameters will not do. This is because
these situations use the mean not only as a measure of location but also as a
measure of total in the population. Measures of location other than the mean,
such as quantiles or averages of quantiles, do not possess this relationship with
total and cannot be used in place of some estimate of the mean. Efron (1981) and
Collins [in the discussion of Efron (1981)] discuss the point. This is considerably
different from the usual robustness setup, where, for example, we want to
estimate the center of symmetry of a distribution regardless of the shape of any
contamination present. In the present situation, we have positive observations
which come from a distribution which is typically asymmetric and heavily
skewed to the right. For example, in the case of observations on deadwood in a
forest, most observations correspond to some twigs and branches, but very few
observations correspond to large fallen trees. These large observations are not
outliers in the sense of being “rogue” or suspect, and thus we do not want to
disregard them entirely when estimating the mean. In fact, overly down-weight-
ing these values can lead to severe underestimates of the mean.
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When the mean is not needed for its special interpretation, some other
measure of location should nearly always be used. In the case of a symmetric
distribution with possible contamination, the center of symmetry is the natural
parameter. Bickel and Lehmann (1975) discuss alternative location parameters
for nonparametric, possibly asymmetric, situations. See also Collins (1976).

Standard robust estimates of location do not perform well in the present case.
This is not surprising, as they were not designed for estimating means. Unfor-
tunately, the robustness literature gives little insight into what should be used to
estimate the mean. Hampel (1968, 1973), Bickel (1976), and Huber (1981) all
mention the problem of estimating the mean and give essentially the same
advice: “... there is little choice except to pray and use the sample mean” (Huber
1981). However, the sample mean is unsatisfactory in the present situation for
the same reason it is unsatisfactory in the usual estimation problem: The sample
mean is not robust. We need an estimator of the mean which will be less
influenced by the large values than the sample mean, yet still allow them to have
some effect.

Let us formalize the model. We have X, X,,..., X, independent identically
distributed (iid) positive random variables with distribution F, mean p, and
finite variance o2. Denote the higher moments of X, if they exist, by u, = EX}.
We wish to estimate p using an estimator that is both robust and accurate. Our
concept of robustness is informal and differs from the function analytic approach
of Hampel (1968, 1971) and others. (We must, in fact, use some other concept of
robustness than Hampel, since the mean is a discontinuous functional on the
space of distributions, and hence cannot be estimated robustly in Hampel’s
sense.) We will say that an estimator is robust if it is less influenced by large
values than the sample mean, that is, if the estimator has a sensitivity curve that
is sublinear. Note that this definition of robustness still admits unbounded
sensitivity curves, and thus is in contrast with the bounded and even redescend-
ing influence curves of standard robustness theory. We will measure accuracy of
an estimator by its mean square error (MSE). Mean square error is a convenient
combination of bias and variability; other measures of accuracy may of course be
used.

Any consistent estimator of the mean for this model must be asymptotically
equivalent to the sample mean. Within this class of estimates however, the
robustness and accuracy properties vary considerably. The random average mode
estimator that we propose performs well for small samples, has sublinear sensitiv-
ity, and will be shown to have good MSE properties asymptotically.

There are some philosophical difficulties involved in evaluating estimators of
the mean. For example, the mean is useful because of its relation to total, but
total only makes sense for finite populations. The finiteness of the population
reduces the usefulness of asymptotic calculations and makes small sample results
more important. Also, much of the difficulty in trying to estimate the mean in a
nonparametric framework is inherent in the problem and cannot be removed by
clever choice of estimator or criterion. Bahadur and Savage (1956) have derived
some important limitations to the estimation of means; minor modifications of
their results are appropriate for positive random variables.
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The next section defines the random average mode (RAM) estimator and
presents several of its properties. These include asymptotic equivalence with the
sample mean, a logarithmic sensitivity to large values, and an asymptotic
formula for the MSE of RAM. The last section summarizes the RAM estimator,
discusses possible extensions, and reports the results of some sampling experi-
ments comparing the RAM estimator with several competitors.

2. The random average mode. Let e}, e,,..., e, be iid mean 1 exponential
random variables independent of the sample X, X,,..., X,. (We will denote the
observed value of the random variable X; by x,.) Conditional on the sample, the
random variable u = Y7 ,x;e; is unimodal. For n > 1, the RAM estimate is
the mode of u/(n — 1); for n = 1, RAM is just x;,. RAM is not a randomized
estimator; it is a function of the xs expressed in a random-looking fashion.

Consideration of the RAM estimator can be heuristically motivated by a
number of arguments. If we take y, =0, y,,, = 0,and y, <y, < --- <y, the
ordered observations, then p=ZY"*lc, ,[F(y)— F(y,_,)], where ¢, , is the
conditional mean of X, on [y,;_,, ¥;). Neither the subinterval means nor probabil-
ities are known, but the subinterval means may be approximated by the left
endpoints, and for continuous F, the subinterval probabilities have a joint
Dirichlet distribution. Making these approximations, the mean should be close to
a known approximating random variable. For theoretical and practical simplicity,
a further approximation is made, and the Dirichlet random variables are replaced
by independent scaled exponentials. Now the mean is approximated in distribu-
tion by the random variable u defined above; to estimate the mean, take the
mode of the approximating random variable.

There is also a Bayesian interpretation for RAM. Suppose there is a Dirichlet
prior D(a(x)) on the distribution F (Ferguson, 1973). If the prior is diffuse,
a = 0, then p given the observations is distributed as L?_,x;s;, where the s; are
distributed uniformly on the positive simplex summing to 1. Since for large n the
simplex random variables are close in distribution to independent scaled exponen-
tials, the RAM estimate is a convenient approximation to the mode of the
posterior distribution of the mean. Breth (1979) has used similar formulations to
get Bayesian nonparametric lower confidence bounds for the mean.

From this Bayesian point of view, it is possible to see that RAM is a cousin of
resampling schemes such as the jackknife, bootstrap, and random subsampling.
Each of these resampling schemes takes the data and some function of the data
and creates some new data called pseudovalues, bootstrapped values, or subsam-
ple values. The distribution of these new values can often be expressed in terms
of a posterior distribution given the data (see Efron, 1981), and inference on the
parameter of interest is based on this posterior distribution, either analytically or
via Monte Carlo techniques. For example, inference on the mean for the bootstrap
is based on the distribution (1/n)X7_ ,x,m;, where (m,, m,,..., m,) have a joint
symmetric multinomial distribution with marginal means equal to one. The
RAM estimator, in essence, performs an analytic resampling, and inference is
made using the mode of the distribution of the resampled values, rather than the
mean.
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Let the random variable u = L. x,e;, conditional on the xs, have density
h(u; x,, x,,...,x,), abbreviated h,(u) when there is no confusion about the
sample. In the case where all the xs are positive and distinct, the density may be
expressed:

n
h(u; 21, %4,..0,%,) = 2 xr [T (x, - x,) e v/
j=1 k#j

(Johnson and Kotz, 1970, page 222). There are a number of properties of the
RAM estimator that can be deduced directly from expressions for the density.

PROPOSITION. (a) The random variable u has a unique mode, and the RAM
estimator is thus well defined.

(b) The mode of u is a strictly increasing function of each x,.

(¢) For ordered distinct observations 0 <y, <y, < --- <y, andn > 1,

(n — 1)RAM
yn—llog( yn)
and the other y’s are held fixed.

-1 asy,—> o,

ProOOF. (a) For n =1 or 2, the mode of u is expressed in closed form as 0 or
x,xy(log x, — log x,)/(x, — x,), respectively. For n > 3, express the density

u —2/x dz
o) = [T (= 2)e </

X

Note that the density is zero at zero for n > 1, and differentiate with respect to u
to get

1
h'(u) = x—e‘"/x"‘/ouh’n_l(v)e”/x" dv.

Hence there is at most one sign change in A/, and part (a) is true by induction
on n.
(b) Suppose that h/(u,) = 0 and that h’,_,(z,) = 0. Then

0= fzoh;_l(v)e”/x" dv + fuoh;_l(v)e”/x" dv,
0 EN

where the first term is positive and the second is negative. If % > x,, then
h'(uy; xq, x49,...,%,_, %) is 1 /% exp(—u,/x) times

[ Ri(0)e*=p (o) do + [“hy_y(0)e*/*p(v) do,
0 29

where p(v) = exp[v(1/% — 1/x,)] is a strictly decreasing positive function. This
implies that A'(u; x,, x,,..., x,_,, £) > 0, which implies that RAM is increas-
ing in each x,.
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(c) We first show that RAM is unbounded as y, — 0. By dominated conver-
gence for n > 2 as y, = o,

u
Yo (U5 Y1seevs ¥p) —>f0h’(u — 0} Yiyeens Yooy) do

=h(u; ¥,y Yo_1) > 0.

Thus for any u, RAM will eventually be greater than that « as y, » . RAM is
1/n — 1 times the u that solves the equation

n y!l—3

0= Z [ A

o Ty =)
k+J

e_u/yj

1+0

1+O(;))+ Zy,,

! ) eyt -y 'l
In

l))e—u[}'n‘ll_}';l](l + O(e—u[y;_'z—y;_ll])) ,

Yn

=(1+O— +¥,,.1{1+ O

n

for constants c¢; = — Y3, . i, k<n(Y; — Yi), where the last step is valid be-
cause u is unbounded as y, — oo. Taking logs, we get

1
O(y ) log(3,) + log(c,_,) —u[y -yt + O(e_u[y;12_ygjl]).

Solving for u, we get result (c) for n > 2. For n = 2, (c) follows immediately from
the closed form given for RAM in (a). O

This logarithmic sensitivity to large values qualifies RAM as robust according
to our criterion, though it is a weak form of robustness. The properties we have
deduced so far imply that RAM behaves as we would like it to behave; RAM
increases as each x value increases, but increases more and more slowly as an x
value begins to separate itself from the other values. Unfortunately, it is not the
case that as two x values increase they will have logarithmic influence. The RAM
estimator is linear in the second largest observation. Sampling experiments show
that this is not usually a serious problem in practice; we will return to this topic
in Section 3 when we discuss a generalization of the RAM estimator.

We have stated that asymptotically any estimator of the mean must be
equivalent with the sample mean x. We now show that this is the case for RAM.

THEOREM 1. For iid nonnegative finite variance observations X,, X,, ..., X,
n'/2(RAM — x) - 0,

almost surely.
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PrOOF. Since E|X,|?/? is finite, lim
surely (Loeve 1977, page 255). Thus

n n
Y %3 n=32Y x3
12 12
i=1 . i=1
53 = limsup —— =5 =0, as.

3/2 ’ ’
n—oo

n n
Z x.e; — in

i1=1
=1 @ =1 »N(0,1),

n 1/2
i=1

conditional on the x sequence, for almost all sequences. Continuing,

n
n1/2( Y x,

i=1

n~%?2%"  x? must equal zero almost

n— oo

lim sup

o oo n 3/
£

i=1

S| =

and

e;

n—1 _f) _’DN(O"‘Q)’

conditional on the xs. Now both sides of the last expression are random variables
with unique modes. Since they are converging in distribution to each other, their
modes must converge also, and we get the result. O

We now turn our attention to the mean square error of the RAM estimator.
We would like this MSE to be substantially less than the MSE of the sample
mean, though this is possible only when the sample size is small. What we show
now is that RAM has an MSE which is 62/n plus an order n~? correction term
which is a function of the moments of X, and is usually negative for distributions
with long right tails, plus an o(n~2) error term. We prove this under the
condition that Ee'*' < oo for all ¢ in some neighborhood of zero. In fact,
EX} < o for a finite (though rather large) % is sufficient for the proof of our
result, but the moment generating function assumption streamlines the proof and
will be retained.

THEOREM 2. Let X, X,,..., X,, be iid nonnegative random variables with
positive mean. Assume Ee'®' < oo for all t in some neighborhood of zero. Then
the MSE of the RAM estimator can be expressed

2
g -1 —
MSE = — +(n%u3) " [315 = 2wtz — 2mipona + 23 — pit] + o(n”?).

The details of the proof of the theorem are tedious, but the idea is simple. For
“good” x sequences, the mode of 4, is very close to the mode of an approximat-
ing Edgeworth expansion. The MSE of the mode of the Edgeworth expansion as
an estimator of the mean can be found by the delta method and is equal to the
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MSE given in the statement of the theorem. Finally, “bad” x sequences occur
with probability exponentially small in n, so that their contribution can be
ignored.

Before proving the theorem, we state a few lemmas. Proofs of lemmas will be

omitted when obvious. We will use the notation S, =X xf and ¢; ,=

S,/(8,)77*.

LEMMA 1. For positive numbers x,, x5, ..., X,

¢)) Cin=Cisqns

@) forj>1,1>¢c;,>n'"72
ProoFr. The Cauchy-Schwartz and Jensen inequalities. O

The good sets where the approximations will work are defined as follows. For
¢ > 0, say that conditions A hold if both the following inequalities hold:

1
(A1) {—Sk—uk <e fork=1,2,...,7,
n
1 n
(A2) — L A(x < p) =~ Fp)|<e
i=1

LEMMA 2. For given ¢ and xs as in Theorem 2, the probability that
conditions A do not hold decreases exponentially with n.

ProoF. The result follows from the first Bonferroni inequality and standard
large deviations results (Feller, 1971, page 549). O

LEMMA 3. (Johnson and Rodgers, 1951). For any unimodal distribution with
unique mode u, mean p., and variance o2, (u — p)? < 302 holds.

We next derive the specific Edgeworth expansions we will use in the proof of
Theorem 2. The proof of the uniform approximation is based on Feller (1971,
page 533), but we show it in some detail because we need explicit bounds on the
error. Let H,(u) be the jth Hermite polynomial defined by

Dje—u /2 — (_1)J}Ij(u)e—u /2.

LEMMA 4. Let X, X,,..., X, be as in Theorem 2, and suppose e, ey, ..., €,
are iid exponential random variables independent of the Xs. Let f.(u) be the
density of u = L7_,x(e; — 1)(S,) /2, conditional on the xs. If conditions A hold
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for e > 0, then

1 ) 1 1 1
Nors e /211 + 3%, oHy(u) + 1'04,nH4(u) + 5. Hs(u)
1 1

6 H (u) + - 18 (u) + 20‘3 nc4 nH7(u)
1 1 1 9
162 Q(u) + 15 7% €3, nCs, n}IS(u) + §C4JzH8(u)
1 1
72 c3 nC4,n H(u) + 1944 oHyo(u)

<Bn"%2+ Bye ™",

for positive constants B,, B,, and r depending on ¢ and the moments of X, but
not the particular x sequence.

ProoOF. The difference between the densities is uniformly less than the
integral of the absolute difference of their characteristic functions. Split the
interval of integration into |¢| < jc; /® and the complement of this interval.
Under conditions A, the end points of the interval go to infinity at least as fast as
Rn? for some 0 < p < §, and real constant R. On the outer interval, we only
need to bound the absolute integrals of each characteristic function. For f,, this

is
n
‘/|;|2 Rn? j=1

22\ 712 22\ V2
z dt < IT [1+=2 dt
SQ |t|2RnPj: x;i>p Sz

R2n2”u2 ) —1/2[Z%_ I(x;2p)—2]

1+

1+
S

-1
X f (1 + —) dt.
Under conditions A, the last integral is bounded by a constant times n!/? and
I(x > p) must be going to infinity as fast as n, so this term is bounded by
—B e —n - Since the c; , are bounded, the integral of the Edgeworth characteristic
functlon on the outer 1nterval is also bounded by a term 1Be™".
On the inner interval, tx;(S,)""/? is less than }, so the log characteristic
function of f, may be expanded in a Taylor series, rearranged, and back
exponentiated to be expressed

e"2/2(1 +

1 <\ 3 1 -\ 4
E(lt) C3 .t Z(lt) C4’n+

o

1 1 ..
g(lt) C3 .t Z(lt) C4pnt
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We may bound certain sums appearing in the characteristic function. Since
|tx;/(S;)'/?| < 3, we have

1 N\ k \k+1
e, + k+1<zt) et

1 e %
Z[ @ (S)’“ Era gE

Jj=1

IA

_k_ltlkck,n’

Further, |t|%; , < 1 on the inner interval, so geometric sums with this term are
bounded. Using the these facts, we find (after some algebra) that the absolute
difference of the two characteristic functions on the innter interval is bounded by

—t2/2 7 9 9
e £/ [%‘tl c7,n + %Itl c3, nc6,n + %Itl c4,nc5,n

10,2 11,2 11 2
+%|t| c5,n + 4*1";|t| c3, nCS,n + j'tl c3,nc4,n

|14 2

12,3 13,3 1 2
+$lt| C4n + ﬁltl C3 nC4,n + mlt €3 nCa,n

|15c3, nc:l‘, n + ?Eliﬂtlwci, n + Zl(j [%Itl3c3, n] 5] .

Since conditions A hold, the coefficient of each |¢|* term in this expression is
bounded by B,n~ %2, where B, is independent of the xs. Integrating over the
interval we conclude that the lemma is true. O

waalt

Using the same methods of proof, we get Lemma 5.

LEMMA 5. Under the assumptions of Lemma 4,
(a) |f,” — ¢"| < Byn~'/? + Be™™,
(b) |f, = ¢ < B;n™'/% + Bge ™™,
where ¢ is the standard normal density, and the Bs are independent of the xs.
ProoFr oF THEOREM 2. Let u, be the mode of the f, density in Lemma 4.
Then RAM = (n/n — 1)[x + (1/n)(S,)"/%u,). Let a, be the mode of the ap-

proximating Edgeworth density g,, and let Ra be the estimator we get using a,
instead of u,. For this approximation,

E(RAM - Ra)’ = O(n"2)E[S,(, — a,)’]
1/2

< O(n_l)[E(%sg)zE(uo - ao)“]

= 0(n" )| E(uy - a,)*]".
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By Lemma 3, |u,| < V3. The solution a, is a root of a degree 13 polynomial.
From the form of this polynomial and Lemma 1, we can infer that all roots are
bounded by Bn, so that |u, — a,| < Bn. (We will use B as a generic positive
constant that does not depend on the xs.) When conditions A hold, we may get a
much tighter bound on {u, — a,|. By Lemma 5, |u,| < Bc}/Z, and for some p > 0
and large n, f/(u) < —p for |u| < p. By Lemma 4, |g,,(u) — f(u)] < Bn=%2,
which, combined with Taylor’s theorem, gives

fulug) — Bn™%?% < g,(a,) < f(u,) — p(u, - a0)2 + Bn= %2,

which implies that (u,— a,)® < Bn~%?% for large n. Thus E(u,— a,)* =
O(n~") + O(n*)Pr (conditions A do not hold) = O(n°) by Lemma 2. Hence,
E(RAM — Ra)? = O(n~"/%). This implies that
MSE(RAM) = E(RAM - Ra + Ra — p)*

~=E(Ra - p)*+ 2E[(Ra — p)(RAM — Ra)] + E(Ra — RAM)?

= E(Ra - p)" +o(n"?),

using Cauchy-Schwartz to bound the cross product term.

The mode a, is the root of a degree 13 polynomial. If we write a, = —c¢; , + d,
then, when conditions A hold, we must have that
1 1 1 1
0=d 1+O(;) +BO( )+a§BO( )+~~+a})3BO(—2).
n

Since under conditions A, a,, itself is O(n~'/?), we must have that |d| < Bn~3/2,
for n sufficiently large.
Consider a third estimate Rb which uses —c; , instead of a,. Then

E(Rb - Ra)’ < O(n ") E(d")]"*.

Since |d| < Bn~3/2 under conditions A, and |d| < Bn otherwise, we have as
before that

E(RAM - u)® = E(Rb — p)* + o(n™2).
The estimate Rb can be expressed as a rational function of the sample:
1

1
Rb= ——8, — ——8,/8,.

We need the expected value of (Rb — p)?% this may be found by using the delta
method (Oehlert, 1983). To use the delta method, we must find polynomials P1
and P2 in the sample moments such that n?(Rb — p)? — P1| - 0, in probabil-
ity, n?((Rb — p)?— P1)< P2, and EP1'*? and EP2'*? are finite for some
pos1t1ve 8. Under these conditions, n2E[(Rb — p)? — P1] > 0. Let v,
“12yn (xf - ;)- After some algebra, the approximating polynomial is found
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to be
Pl:ﬁ_ﬁ{ﬁ+ % _ﬁ}+_1_#_%
no n¥py opn pln ) n® g
2oL, 2o by
n2 nd/2 pon? n?’

Rb lies between zero and x, so that x? + u? bounds the squared error and P2
may be constructed from this bounding polynomial and P1. All moments exist
due to the moment generating function assumption. Following the chain of
equalities back, we find that

MSE(RAM) = E(Rb — p)* + o(n"2)
o’ 2 2\ g 2 3 2 2
= — +(n%5) " [3u5 — 2maps — 2ppans + 20 — piu]

+o(n"2),

as required, and the theorem is proved. O

3. Summary and remarks. The mean is important due to its connection
with total in a population or interpretation as a long-run sum of observations,
but there is little guidance in the literature as to how to estimate a mean. The
most obvious estimate of the mean is the sample mean, but the sample mean is
not robust and will occasionally err drastically due to the influence of a few
points. A second reasonable possibility is an asymmetric trimmed mean, with a
small fraction of the large observations not included in the mean. Symmetric
trimmed means work well in the standard robustness problem, and we might
suggest (symmetric or asymmetric) trimmed means for the positive mean estima-
tion problem. However, the bias introduced using trimmed means is typically
much larger than the reduction in variance obtained (Oehlert, 1981), so trimmed
means cannot be recommended wholeheartedly. One possible solution to the
problem is to employ some form of stratified sampling scheme, rather than
sampling from the whole population at once. This enables the researcher to
concentrate on the tail, but this type of sampling is not always possible. The
random average mode is an alternative estimator which can be used when the
mean must be estimated and fancy sampling is not possible. The RAM estimator
is influenced only logarithmically by a large value and has good MSE properties
for distributions with long right tails.

One important criticism of the RAM estimator is that while it is reasonably
robust against one large value, it is not robust against two large values. RAM is
robust against one large value because the mode of an exponential random
variable is at zero, and not robust against two large values because the mode of
the sum of two exponentials is larger than zero. This suggests that the RAM
estimator be generalized to be the mode of X" ,x,d;,, where the d random
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variables are iid and independent of the xs. Different choices of distribution for
the ds will lead to different properties for the resulting modal estimator; some
choices of distribution for d may lead to estimators which are robust against
more than one large value. The only requirement on the ds is that the convolu-
tion be unimodal. For example, analogy suggests that letting the d; be iid gamma
random variables with shape parameter n™% 0 < a < 1, would result in an
estimator which was sublinearly sensitive to the [n*] largest observations. A
second method of increasing the robustness of the RAM estimator is to compute
an estimate in stages. For example, for n points, compute the RAM estimate of
the mean of the smallest n — 1; call this value R1. Then compute the RAM
estimate of R1 repeated n — 1 times and the largest original value. This leads to
a logarithmic sensitivity to the two largest observations.

The RAM estimator and the bootstrap distribution for the mean are more
than superficially similar; both make a correction of the same order to the simple
normal approximation to the distribution of the mean. Singh (1981) has shown
that the bootstrap distribution for the mean corresponds to an Edgeworth
approximation with a skewness correction. (See also Bickel and Freedman 1981.)
Our proof of the MSE of the RAM estimator showed that asymptotically RAM
was equivalent to the mode of the corresponding Edgeworth approximation with
skewness correction.

Finally, we briefly report on some small sample experiments which compare
the RAM estimator with three alternatives. [See Oehlert (1981) for a more
complete discussion.] The estimators will be evaluated by empirically calculating
their mean squared errors (based on 500 trials) for three sample sizes, n =
10, 30,100, and three distributions: the exponential and two exponential mixtures
[(1 — p)exp(1) + p exp(5), for p = 0.1,0.05]. The three alternative estimators are
the sample mean X, a trimmed mean formed by taking the mean of the n — 1

TABLE 1
Scaled mean squared errors

shrunken trimmed
n x mean mean

Distribution: exp(1l)

10 1.064 0.983 1.198*
30 1.009 0.984 1.176*
Distribution: 0.9 exp(1) + 0.1 exp(5)
10 1.650* 1.108 1.203*
30 1.283* 1.048 1.215*
100 1.085 1.011 1.214*
Distribution: 0.95 exp(1) + 0.05 exp(5)
10 1.573* 1.067 1.226*
30 1.414* 1.090* 1.209*
100 1.234* 1.095* 1.135*

*p < 0.01.
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smallest observations, and an adaptively shrunken mean x%/(%2 + s%/n). [The
optimal shrinking factor of X toward zero is p?/(u? + 0%/n).]

To facilitate comparison, for every sample size and distribution the MSE of
each of the alternative estimators is divided by the MSE of the RAM estimator.
The ratios are displayed in Table 1, and ratios which are significantly different
from 1 (two-sided, pairwise ¢ test on the squared errors, a = 0.01) are marked
with an asterisk.

Table 1 shows that the sample mean and the trimmed mean have significantly
larger MSEs than RAM for these kinds of asymmetric distributions. The adap-
tive shrunken mean can compete with RAM in terms of MSE, but only on the
shorter tailed distributions.

The asymptotic MSEs of the RAM estimator for these distributions are
1/n + O/n + o(n~?) for the exponential, 4.84/n — 49.6/n2 + o(n"2) for the 0.1
mixture, and 2.96/n — 78.3/n® + o(n"?) for the 0.05 mixture. For n = 100, the
observed MSEs for RAM on the mixtures were 0.0459 and 0.0252, respectively,
about halfway between 0?/n and the order n~2 correction.
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