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A COMPARISON OF GCV AND GML FOR CHOOSING THE
SMOOTHING PARAMETER IN THE GENERALIZED SPLINE
SMOOTHING PROBLEM'

BY GRACE WAHBA
University of Wisconsin

The partially improper prior behind the smoothing spline model is used
to obtain a generalization of the maximum likelihood (GML) estimate for the
smoothing parameter. Then this estimate is compared with the generalized
cross validation (GCV) estimate both analytically and by Monte Carlo meth-
ods. The comparison is based on a predictive mean square error criteria. It is
shown that if the true, unknown function being estimated is smooth in a sense
to be defined then the GML estimate undersmooths relative to the GCV
estimate and the predictive mean square error using the GML estimate goes
to zero at a slower rate than the mean square error using the GCV estimate. If
the true function is “rough” then the GCV and GML estimates have asymp-
totically similar behavior. A Monte Carlo experiment was designed to see if
the the asymptotic results in the smooth case were evident in small sample
sizes. Mixed results were obtained for n = 32, GCV was somewhat better than
GML for n = 64, and GCV was decidedly superior for n = 128. In the n = 32
case GCV was better for smaller 62 and the comparison close for larger o2.
The theoretical results are shown to extend to the generalized spline smooth-
ing model, which includes the estimate of functions given noisy values of
various integrals of them.

1. Introduction. We consider the same smoothing spline procedures as in
Wahba (1978b, 1983) and elsewhere, and their extension to the solution of linear
operator equations with noisy data. The (special) spline smoothing model is

yi=f(ti)+8i’ i=1,2,"'1n,tie[071])

where ¢ = (e,...,¢&,) ~ A#(0,0%,.,), 6% is unknown, and f(-) is some function
in the Sobolev space W,"[0, 1],

Wyr[0,11{f: f, f',..., f™ D abs. cont., f™ € £,[0,1]}.

The smoothing spline estimate f, , of f is the minimizer in W;"[0, 1] of

1 n

(1.1) = X (F() =3)" + A [ (1)) dt.
iy 0

f. » is the celebrated polynomial smoothing spline of degree 2m — 1. The

bandwidth parameter A controls the tradeoff between the infidelity to the data as

measured by 1/aY" (f(¢;) — y,)*> and the roughness [;(f™(u))>du of the

estimated solution.
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The generalized cross validation (GCV) estimate of A is the minimizer of V(A),
2
_ (/)T - A0)y
[(1/n) tr(1 = AA))]*
where A(A) is the n X n influence matrix, which satisfies
fn, )\( tl )

(1.3) =AMy, = (e )
fn,)\(tn)

The GCV estimate of A estimates the A which minimizes the predictive mean
square error R(A) defined by

(1.2) V(N)

S|

(. RO) == 3 (7(8) = F(8))"

f. A(2), t € [0,1] is also a Bayes estimate of f(¢), if f is endowed with a certain
zero mean Gaussian prior, which is partially improper.

The purpose of this paper is to derive a maximum likelihood (ML) estimate for
A, based on this prior, which generalizes the usual notion of ML estimates to the
case of improper distributions, and then to compare the properties of this
estimate of A (called the GML estimate) with the behavior of the GCV estimate
of A. We decided to make this comparison at this time because of recent interest
in related ML estimators.

The GML estimate we derive is the minimizer of M(\) given by

¥y (I—A(N))y
[det* (I — A(N))]/" ™

(1.5) M(A) =

where det™(I — A()M)) is the product of the n — m nonzero eigenvalues of
(I — A(M)). The GML estimate reduces the usual ML estimate, as first given by
Anderssen and Bloomfield (1974) when the prior is “ proper,” and is an extension
of an estimate recently given by Barry (1983). The comparisons we make between
GCV and GML also hold for the proper prior case.

Our comparison of the GCV and GML estimates is based on the criterion of
minimizing predictive mean square error R(A) defined in (1.4). Although this
might appear to be a somewhat special criterion, under certain conditions other
loss functions (for example, mean square error in the derivative) turn out to be
minimized by a A close to the minimizer of R(A). Some references are given
below.

Let A, be the minimizer of ER(A), where the expectation is taken over e.
The asymptotic behavior of A, and ER(A,,) has been studied by a number of
authors, under mild regularity conditions on the data points. [See Cox (1983a,b
1984), Craven and Wahba (1979), Ragozin (1983), Rice and Rosenblatt (1983),
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Speckman (1985), Utreras (1981), and Wahba (1975).] The results include
1
fe aml = >\opt = 00, ER(Aopt) = O(;)

f c VV2m = ER(}\th) — O(n~2m/(2m+1))
and this rate is achieved with
>\ — O(n»2m/(2m+l))
f € €, = ER(A,,) = O(n~2mp/emo+0)
and this rate is achieved with
A= O(n~—2m/(2mp+1))‘

Here 7™~ ! are the polynomials of degree m — 1 or less and ¢, = %,(W,") is the
class of functions in W, with 0 < [J( f ™ (u))*du < o, and satisfying certain
additional smoothness conditions indexed by p € (1,2], to be defined more
precisely later. If mp is an integer, then it is conjectured that f € €, entails that
f € W,°* and f satisfies the homogeneous boundary conditions
fO0)-f9(1)=0, j=m,m+1,...,mp—1.

Let f be fixed and let Agyy, and Ay be the minimizers of EM(A) and EV(A),
respectively. Let the “expectation inefficiency” of Ay relative to Ay be Iy y
defined by

IX/Y = ER(}‘X)/ER(}‘Y)-
In this paper, we obtain information concerning Igy, op @S 7 — o0 under
three (distinct) “smoothness” assumptions on f, namely
1 feam
(2) f € €, for some p € (1,2],
(3) f behaves like a “sample function” from a stochastic process with the given
prior.
The results are
(1) = IGML/opt =1,
(1.6) (2) = IGML/opt - 00,
(8) = Igmi opt = 1 + 0(1).

The “borderline” case f € Wy" with 0 < [(f™(u))*du and f & %, for any
p > 1 is unresolved at this time. (We call this the borderline case because
%, ® span7™ ! = W)

It is well known that if f satisfies (1), (2), (3), or is a borderline case

(1.7) Igev jope = 1 + 0(1).

For numerical and theoretical results, see Craven and Wahba (1979), Erdal
(1983), Golub, Heath, and Wahba (1979), Utreras (1979, 1980, 1981, 1983), Wahba
(1977b), and Wahba and Wendelberger (1980). Speckman (1982) has recently
obtained stronger theoretical results, without the “expectation,” and Li (1983)
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has recently related GCV and Stein’s unbiased risk estimate. All of the results in
this paper relate to ER, EV and EM rather than R, V and M. We believe that
the “E” can be removed, possibly without strengthening the hypotheses, but
that is not done here.

In the light of (1.7), it follows that

(1) IGML/GCV =1,

(1.8) (2) IGML/GCV = 0,
() Igmi gev =1 + o(1).

Following these theoretical results we present a small Monte Carlo study with
three example fs satisfying (2). The inferiority of the GML estimate is percept-
ibly evident at n = 64 and strongly evident at n = 128.

Cross validated spline methods have been used with some success in the
solution of linear integral equations with noisy data. [See Crump and Seinfeld
(1982), Halem and Kalnay (1983), Merz (1980), O’Sullivan and Wahba (1984), and
Wahba (1977b, 1979, 1982b).] One of the reasons for this success is that under
various circumstances the A that minimizes R(A) also minimizes (or nearly
minimizes) other, possibly more interesting loss functions, for example R ,(\) =
Jo( £, N(u) — f'(u))? du. [For theoretical results see Cox (1983a), Lukas (1981),
Nychka (1983), and Ragozin (1983).] Special cases of this may be obtained by,
e.g., comparing the optimal A for ER(A) and ER (M) using the results from
Theorems 1-4 in Rice and Rosenblatt (1983), or by comparing the optimal As in
Theorems 1 and 2 of Wahba (1977b). Numerical evidence supporting this result
may be found in Craven and Wahba (1979) and Wahba (1979b, 1982b).

It is fairly straightforward to state and prove most of our results comparing
GML and GCV in the context of the generalized smoothing spline model, which
includes spline smoothing on the plane and in several dimensions, and on the
sphere [Cox (1982), Utreras (1979), Wahba (1979a, 1981a, 1982a), and Wahba and
Wendelberger (1980)], as well as the integral equation case discussed above. We
will do that here.

The generalized smoothing spline model (of which the special spline smoothing
model is the most widely known special case) is

(1.9) y,=L,f+¢, i=1,2,...,n,

where ¢ is as before, f is assumed to be in some reproducing kernel Hilbert space
Mg of real valued functions on some index set .7, and the L, are bounded linear
functionals on . The (generalized) smoothing spline estimate f, , of f is the
minimizer in 5, of

1 n
(1.10) — L (Lif = 2)" + NP I,
i=1
where || - ||o is the norm in 5, and P is the orthogonal projection operator in
g onto the orthocomplement of the span of m given linearly independent basis
functions {¢,},~ . [See Kimeldorf and Wahba (1971), Wahba (1984), and refer-
ences cited therein.] The reader only interested in the special spline smoothing
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model may make the associations: I =1[0,1], ¢(t)=¢"'"/(v — 1!, v =
L,2,...,m, #y=W[0,1], L;f = f(¢,), and ||Pf||§ = [J(f ™ (w))? du.
When solving (first kind) integral equations, we have

L,.f=fK(s,.,t)f(t)dt, i=1,2,...,n,
T
where K (-, -) is known.

In the general case V(A) and M(A) are still defined by (1.2) and (1.5),
respectively, where now A(A) satisfies

Llfn,)\
c | =AMy,
Ln fn,)\
and R(MA) becomes
. 12
(1.11) R(N) = — ¥ (Lif = Lifya)"
i=1

The truth of (1.6) and (1.8) will actually be argued in this more general setting,
with the extra smoothness condition f € %, appropriately generalized.

In Section 2 we derive the GML estimate of A for the model of (1.9) and
discuss the related maximum likelihood estimates of Barry (1983) and of Wecker
and Ansley (1982). In Section 3 we obtain the asymptotic behavior of A, under
conditions (1)—(3). In Section 4 we compare Agny, Agey, and A, Section 5
presents the Monte Carlo results and Section 6 discusses the extension to the
model of (1.9).

For the results under (2) (1.6) we have given very general hypotheses under
which the conclusions hold. A limitation of this general approach is that verifica-
tion of the hypotheses in many interesting cases requires further work.

We briefly indicate both the generality and the limitations of the analytical
results of (2). First we note (see details in Section 3) that in both the special and
generalized smoothing spline model I — A(A) has a representation

I—A(N) = nAW(D + n\ )~ 'W,
where W

oxn—m Satisfies WW =1 and D = diag(A,,,...,A,_, ,)with A >
0. Here both W and D depend on (¢,,...,¢t,)or(L,..., L,). Writing (¢,,,,..., t,,)
or(L,,,..., L,,)instead of (¢,,...,¢,)or (L,,..., L,) to denote the emphasis on
n, define

gl,n f(tln) Llnf
: =W or W
gn—m,n f(tnn) Lnnf

Our hypotheses for (2) are stated in terms of the conditions (as n — oo, and
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A—0)
"o g
(112 -—————— < J, independent of n, for some p € (1,2],
) vgl (Avn/n)p i ( ]
1 . lnom( o\ /
—trA(A) == % (—
A+ A
(113) " Tt ABAT R
const( /) :
= —W——(l + 0(1)) for j=1,2and somer > 1.

The expressions on the left depend on (¢,,,...,t,,)or(L,,,..., L,,) as well as f

and a certain reproducing kernel. In certain very special cases, for example, the
special spline smoothing model with ¢;, = (i/n) these conditions can be rigor-
ously related to readily understandable smoothness conditions on f and the
(known) eigenvalues of @), the reproducing kernel for H, \ {span¢,,..., ¢,}.
[See Rice and Rosenblatt (1983) and Utreras (1983).] Conjectures relating to the
general spline smoothing model may be found in Wahba (1977b, 1977¢) and in
Sections 4 and 6 to follow. Since this paper was written, Nychka and Cox (1984)
have provided further information on convergence properties of the solution to
the generalized spline smoothing problem.

Throughout the paper we assume “some regularity conditions” on the {t;} =
{t;.}. We believe that in the case ¢ € [0, 1] sufficient regularity conditions for the
results in (2) and (3) of (1.6) are: the {¢,,} satisfy

;’;(1 +o(1)) = fo“"w(t) dt

for some strictly positive bounded density w; and that the arguments do not
always hold if the {¢;,} accumulate to a fixed finite number (independent of ») of
accumulation points.

2. The GML estimate of \. The Bayesian model behind the estimate f, ,
goes as follows:
(2.1) y,=L;f+¢, i=1,2,...,n,
where the ¢; are as before but f(t), ¢t € 7 is supposed to be a certain zero mean
Gaussian stochastic process with a partially improper prior. The meaning of L;
will be given shortly. Let @(s, t) be the reproducing kernel for J#, and let
Q\(s, t) be the reproducing kernel for the orthocomplement of span{¢,} in
that is,

(2:2) Qu(s, t) = Q(s, t) = X .(s)a,(t)k",
n,v=1
where k" is the prth entry of the inverse of the Gram matrix {(¢,, ¢,)q} of the
{9}
Let

(23) X(£) = 3 6,(t) + 57°2(t),

Jj=
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where 6 = (6,,...,0,) ~ A0, &1,,.,,), b is some constant, and Z(t), t € .7 is a
zero mean Gaussian stochastic process independent of § with

EZ(s)Z(t) = Q\(s, t).
In the pelynomial spline case, @, is the covariance of the m-fold integrated

Weiner process. We let f have the prior distribution of X, as £ — oo. It is shown
in Wahba (1978b), in the case L, f = f(¢,), that

(2.4) fu(8) = Jim B{{(6)l,-- 3}

with A = 0%/nb.

Now, the sample functions X, are not in J#, (see below), so that the exact
meaning of L; must be clarified. According to Parzen (1962) [for further details,
see Wahba (1982a)], L, is a bounded linear functional on J%, if and only if L, X,
is a zero mean Gaussian random variable well defined in quadratic mean. Then
the covariances will be

(2.5) E(LX,)(L;X,) = Ly,L;,{EX,(s)X,(t)},

where L,., means L, is applied to the operand (in braces) considered as a
function of s.

Letting T be the n X m matrix with irth entry L,¢, and 2 the n X n matrix
with th entry L, L, @:(s, t), we have, using (2.3) and (2.5),

(2.6) (E(LX,)(L,X,)} = ¢TT + b3.
Using this fact, straightforward substitution in Wahba (1978b) [see also Wahba

(1983)] can be used to show that (2.4) holds for the {L,} any set of bounded linear
functions on 5, such that rank T is m. If L,f = f(¢t), etc, then

Li(s)Lj(t)Ql(sy t) = Q\(t; t)).
Using (2.1) and (2.6), it follows that

y~H(0, ETT + bE + o?I).
Setting A = 6%/nb and 1 = ¢/b, we have
(2.7) y ~A(0, b(nTT + = + nAI)).
We find the GML estimate of A by letting n — oo in (2.7) in an appropriate
manner. We do this by letting R be any n — m X n matrix satisfying

n—mxXn

RR =1, ,,and RT=0,_,,,,- Let
x B
= 1
u — T’ Y
Vn
Then
Exx’ = b(RER’ + n)I),
(2.8) nlerzQ Exu’ =0,
lim Euuw' = b(T'T)(T'T).
n—> o0

Since in the limit the distribution of u does not depend on A, we claim it is
appropriate to define the GML estimate of A as the (usual) ML estimate based
on the distribution of x. Peter Green has kindly pointed out to us that this
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argument has previously been used by Patterson and Thompson (1971) in a
different context. A straightforward calculation gives, that the ML estimate of A
based on x ~ A0, b(RZR’ + nAl)) is the minimizer of M(A) defined by

x’(RER’ + nAI) 'x
[det(RER’ + naT) ']

Substituting in x = Ry and det( REZR’ + nAI)"! = det"R'(RZR’ + nAI)" 'R
gives

(2.9) M(\) =

y'R(RSR' + n\I) 'Ry
[det*R(RSR’ + nAT) 'R]"" ™
To put M(A) in final form for further study, we observe that

(2.10) M(A) =

2.11) R(RSR +nX) 'R= (2 +nAl) ' =(Z + nAl)"!

XT(T'(S + nAI)"'T) 'T(2 + nAI) "

To see this, note that both sides of (2.11) have the same action on the m columns
of T and the n — m columns of (£ + nAI)R’. It can be shown from, e.g.,
Kimeldorf and Wahba (1971) that I — A(A) is equal to nA times the right-hand
side of (2.11). Thus for A > 0, M(X\) can be rewritten

y'(I-A(N)y
[det* (I — ANV ™

Anderssen and Bloomfield (1974) were the first to suggest the use of a
maximum likelihood estimate for A in a smoothing context, and (2.12) will reduce
essentially to their estimate in the case of a proper prior, that is, when the set of
{$,} is empty, equivalently || Pf||3 = || f ||5- Barry (1983), in a forthcoming thesis,
has recently obtained the equivalent of (2.12) in two cases where the dimension of
the null space of P is one. In the two cases he studied, the joint distributions for
the n — 1 variables (y, — ¥1,.--, ¥, — Y1) O (¥y — ¥,---, ¥,_, — ) are proper,
and he exploited this fact to obtain his estimate. Thus the GML estimate
generalizes the estimate obtained by Barry.

We compare this result with a maximum likelihood estimate for A given by
Wecker and Ansley (1983), (4.5). By making the associations, their A is our 1/nA
and their A is our (nA)” X2 + nAl), and using (2.11) it can be shown that their
maximum likelihood estimate is the minimizer of M ,(A) given by

y'R(RZR + n\I) 'Ry
[det(= + nAI)]V"
which is to be compared with (2.10) and (2.11). The difference results from the
fact that they include the estimation of (8,,...,0,) of (2.3) as part of the
likelihood equations while we do not. [See O’Hagan (1975) for more on the role of

nuisance parameters in ML estimation.] We remark that Wecker and Ansley are
in error in their claim that GCV cannot be done with repeated observations.

(2.12) M(\) =

(2.13) Mya(X) =

b
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Neither the GCV nor the maximum likelihood estimates require = to be of full
rank. The only condition on the observations is that the matrix T' be of rank m.

3. Asymptotic behavior of \gy;. Let R, , ., be defined as in the previ-
ous section and let the eigenvalue eigenvector decomposition of RZR’ be

(3.1) RSR = UDU'
where UU" = I,_,, and D,_,, is diagonal with diagonal entries A,,. Let
Wisn-m = RU’
(wln""’wn—m,n), = wn—m = W/y
Then
I— A(\) = nAR(UDU’ + nA\UU’) 'R
= nA\RU'(D + n\I) 'UR
= n\W(D + n\I)'W’
and
(3.2) M(A) = ——= e
(HP-l (1 - Al/n/(n'A + Avn)))
Letting
h, Lf 81, n
(3.3) =1 | = Wh
hn Lnf gnfm,n
we have
£or[nd/(nh + X, 82, + 0%Zi2ad/(nh + ),,,)
(3.4) EM(\)===HLE Sdlias
Letting
n-m gQ
3.5 A= .
22 0= L Gri
1 rnzm ) 1
3.6 }\ = wn = A —_
( ) p‘l( ) n-m Vgl n)\ + )\”n n—-m [trA( ) m]’
n—-m )\ 1/(n-m)
3.7 D(\) = - =
(32) 0 =TH - 5
gives
1 AG(A) +52(1 — (M)
3.8 > —EM(MN) =
(38) —EM(\) 500 ,

where 62 = (n — m)/n)o?.
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We first assume f € ). We must consider the cases || Pf ||, = 0 and || Pf ||Q >0
separately. Now || Pf ||Q = O if and only if f = X" 0,4, for some 6 = (4,,...,90,,),
then h=T6, g = Wh =0, and G(A\) = 0, all >\ . Then

(1/(n — m))L}_"n\/(nA + 7,,)
———EM(\) =
o*(n—m) ™) (22N /(A + A,,)) "™

and the right-hand side, being the ratio of an arithmetic to a geometric mean, is
bounded below by 1. Assuming that the X,, are not all equal, this expression
achieves its lower bound for A = .

We now return to the case || Pf || > 0. Differentiating the right-hand side of
(3.8) with respect to A, using the fact that

(3.10) vy - 22, ),

and setting fhe result equal to 0 gives
[AG() +8%(1 - m))][ S ulm]

= D(N)[AG'(N) + G(N) = &%3m(M)],
&% [ (N) + (M) = p2(N)] = AG(A) + RG/(A) = AG(N)py(A).

(3.9)

)

(3.11)

Now
1 n=m )\ nii
A) +Api(A) = S .
pa(A) + Api(X) n_m[vgl nA+A\,, (n>\+>\,,n)QI
(3.12) Lo A,
. _n_m,’:l n>\+>\vn
= y(A), say,
and
n—m }\g2 >\g
AG(N) + NG'(A) = S y
() (A) ;’; (X +X,,) (kA +A,,)°
n-m A 2
(3.13) =A oy

El (nA +A,,)

= AG,(N), say.
Thus, (3.11) can be written

(3.14) §%5(N) = AG,(A) = py(M)[6%,(N) = AG(N)].

It is well known that if 0 <||Pf|o < oo it is necessary that A — 0 and
po(A) = 0 in order that R(A) — 0. Since py(A) > p%(N), we will only consider
roots of this equation for which A — 0, p,(A) = 0, and p,(A) - 0.

We now want to impose a further “smoothness” condition. Further discussion
of this condition will appear in Section 4. Define

" G/

Jpn - vgl (Avn/n)p
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and suppose that J* < J, for some p € (1,2] independent of n. Then

n\  Pg, "Im 2nA .
G,(0) - G,(1) = E[m} T > mgfn
vn vn v=1 vn
nomo gl/n
< 3\P71 ———— < 3\P |
vgl (Avn/n)p P
nmonh gl g./n

GO =60 = 2 G a, =N TRy

and so, as A = 0, G(A) = G(0) + o(1), G,(X) = G,(0) + o(1), independent of n.
Now

<APT,

G.0)=G0)= % 2

v=1 vn

It can be shown that

n-m g2
8un

(3.15) Yy X

v=1
where f, is that element in 5, which minimizes || Pf|| @ subject to L,f, = h,,
i =1,2,..., n. The demonstration proceeds by showing that

(3.16)
I1PFJI3 = k(271 = S7'T(T'S'T) 'T'S')h = WR(RSR') 'Rh.

Thus, as n — o0, G(0) and G,(0) increase monotonically but are bounded above
by ||Pf||5- (Assuming, of course, that the set {L,,..., L,,,} contains the set
{L,,...,L,}.) We have the following

= 1PflIG < I1Pf G

vn

THEOREM . Suppose

gl/n
>

m <, forsome p > 1, independent of n

and
(3.17) i(A) = == (1 + 0(1)),
I
(3.18) pa(A) = —ir (1 +o(1)),
as n — oo for somer > 1. Then,
62Z r/(r+1)
(3.19) AomL = m W(l + 0(1))

is a zero of (3.14).
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ProOF. Substituting (3.17) and (3.18) into (3.14) gives
~2

I 1 | 64
(3.20) |62 —— -~ - AG,(0)|(1 + 0(1)) = )\V’[ NG )\G(O)](l + 0o(1)),
which is satisfied by (3.19). O

In the case L,f = f(¢,,), with ¢t,, =i/n, it is generally believed that the
asymptotic behavior of p,(A) and py(A) can be related to the asymptotic
behavior of the eigenvalues of the reproducing kernel @,. [See the heuristic
argument in Wahba (1977b).] In the special spline smoothing case with H, = W;",
it is known that (3.17) and (3.18) are satisfied with r = 2m. [See Craven and
Wahba (1979) and Utreras (1980, 1981, 1983).] Roughly, the A,, behave like n
times the eigenvalues of the reproducing kernel.

Let w(s) be a strictly positive smooth density on [0,1], let

F(t) =f0’w(s)ds, K.(s, t)
= Q,(FY(s), F7\(t)), and t,, satisfy i/n = /ti"w(s) ds.

Then by the same reasoning as in Wahba (1977b) one could argue that the
behavior of p;(A) and p,(A) can be related to the behavior of the eigenvalues of
K. Letting {£,} and {{,} be the eigenvalues and eigenfunctions of K, we have

£0,(8) = /0 'QUF (), F-\(s))¥,(s) ds,

and making the change of variables y = F~!(¢), x = F~(s) gives

ENF())w/(y) = [w/2(5)Q( 3, x)w'/2(x)y,(F(x))w!/*(x) dx,

which shows that the eigenvalues of K, are the same as the eigenvalues of

K (y,x)=w") )@y, x)w'*(x). Now 1f Q1 is the Green’s function for a 2mth
order self-adjoint differential operator, K, is also the Green’s function for a
2mth order self-adjoint differential operator, its eigenvalues are £, = O(v 2™)
and the same heuristic argument gives (3.17) and (3.18) satisfied with » = 2m. In
the case of thin plate splines in d dimensions with

am 2
2 = ... —_——— ...
1P = ._'Zﬂfmf /( P axgd) dx, -+ dxy,
partial results are available to the effect that (3.17) and (3.18) are satisfied with
r=2m/d. [See Cox (1984) and Wahba (1979¢).] For information concerning
tensor product splines on the plane, see Barry (1983), Micchelli and Wahba (1981)
and Wahba (1978a); for splines on the sphere, see Wahba (1981). Behavior of
p,(A) for other L, is discussed in Section 6, and very recent results of Nychka and
Cox (1984) shed light on this question.

Inspection of the proof of the Theorem reveals that if 0 < || Pf|| < o0, and the
L, are such that || Pf,||* 1| Pf g, further smoothness assumptions of f cannot
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change the asymptotic behavior of Agy; . A simple example will be given in the
next section.

To complete our study of the behavior of Agy, we now consider the case f
“behaves like” a sample function from the original prior. If f is a random
function from the original prior, it can be shown that

E[gl?n = b>\vn7

where E; is expectation with respect to this prior. Then

E,G(0) = “=b(n—m)

vn

and
E||Pf||5 =

Of course ||Pf ||Q = oo entails f & 5, To see quickly what will happen, set
= bA,, in (3.4) giving

' nZMaA/(nA + A A 2/b
iE,EM(A) _ Zv—l_ (n /(n + pn))( vn +lj(n<m)) i
b [Z2o7(1 = AL/ (RN + X,,))]

Differentiation of the right-hand side of (3.21) or substitution into (3.14) gives
that (3.21) is minimized by

(3.21)

02

AGML=E'

It appears that Wecker and Ansley’s ML estimate, call it Ay, would be only
approximately equal to 0?/nb in this case as n > o0, and slightly suboptimal in
the case f € #™ !, It appears that we will have A gy, = O(1/n), if f is a fixed
function (not in 3, !) and the L, are such that

1 n—m

Z }\— = const.

Conditions under which this will occur are suggested in the next section.

lim
n—-oo N —M

v=1 vn

4. Comparison of Agy, Ny and Ngey. We first consider the case
f € 5#,. The predictive mean square error R(\) is defined by
Q

12 )
R(\) =~ ¥ (Lify - Lif )
i=1

and
1 , o
(4.1) ER()\)=;I|(I—A()\))h|| +—;trA2()\)
or
. o’m 1n-m nA 2
(4.2) ER(N === =0 X | oy | &t 6%ma(M).
v=1
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If Sg2, = 0, then
2

(4.3) ER(M) = %trA2(>\),

which is minimized for A = Ay, = o, in which case f,, is that element in
span{¢,} best fitting the data in the least squares sense and

m
(4.4) ER(OO) = 02;.
Thus, from (3.9)
(45) (1) fe Span{¢u} = IGML/opt =1.

Returning to the general case we have

,m 1o ni z s oy
(4.6) ER(A) —o*— =~ )y | B T TRARN)
v=1 vn
' n—-m g2
(4.7) <A }\"" + 62u,y(N)
v=1 vn
(4.8) < NIPFIB + 6%5().

If py(A) = (I/nX/")1 + o(1)) for some r, the right-hand side of (4.8) is mini-
mized by setting

P 22' r/(r+1)
4.9 A* = - ———(1+ o(1

“9 (rquué) a1+ o)
and ER(A ) < ER(\*) = O(n~"/"*V) (= O(n~?™/*m* 1) in the special spline
case). If no further assumptions are made on f it appears that this rate cannot be
improved upon.

However, it is well known that if f satisfies certain additional smoothness
conditions then higher rates of convergenece can be obtained by choosing A to go
to 0 more slowly. We always have, for any p € [1, 2],

1 n-—m ni 2 n-m (g‘?n/n)
4 - ( A A gv2n S AI’ Z A P
( 10) n r=1 na + vn r=1 ( un/n)
= AP,

If J.' is uniformly bounded by ¢/, independent of n, and py(A) = (I/nN/71 +
0(1)), then
(4.11) ER(M) — 02—”1 < AP+ i2l——(l + 0(1)).
n~ P N/
The right-hand side of (4.11) is minimized by
¢4

pd,

r/(r+1)

A* = W’*_”(l + 0o(1))

p
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and
1
(4.12) ER(A,,) < ER(\) = O(WW—H))_
Thus
(4.13) It jope = CONSE R7P/UP DI/ o o

The condition J <, is satisfied in some interesting cases. For example,
suppose J#, = Wy"(per), the space of periodic functions in W,"[0, 1] satisfying
the periodic boundary conditions f*(0) = f (1), » = 0,1,..., m — 1, and sup-
pose L;f = f(i/n). Then, very roughly [for details, see Craven and Wahba (1979)
and Utreras (1980)],

g2 =nf? f, = flf(s)cos(277vs) ds or flf(s)sin(2vrvs) ds,
. 0 0
A, =nX, A, = (2m0) 72",
Then if f € W/*P(per) for some 1 < p < 2, we have
8on/

[ (Fms)) ds = D@m)™f2 = X =005 1+ o(1).

This example, with f(¢) = f,cos27y,t, say, can be used to show directly that
ER(Agpy) is still O(n=2m/@m* D) while ER(A ) = O(n~*"“™* 1) by observing
that in this example

9 2m ;9
}‘Gl()\) = ( 7”’0) f(; ~
(1 + A(27y,) m)
and
— 2 4m ;¢
i Z nA 2 = A2 (277V()) f(j -
no,Zy\ A+ }‘ (1 + A(27v,) m)

and carrying through the minimizations directly.
For the case L;f = f(t;), we state as a conjecture a general condition for
=3yr_m(gk /n)/(X\,,/n)? to be uniformly bounded. Suppose @ (s, t) possess
the Mercer-Hilbert-Schmidt expansion

Q(s, 1) = X ha(s)u (o)

where the {A, u,} are the eigenvalues and the eigenfunctions of @,. (For this it is
sufficient that [/, ,Q%(s, t)dsdt = ¥ |\, < oo [see Riesz and Sz. Nagy (1955)];
this condition is being implicitly assumed throughout this paper.) Let J*(f) be
defined by

© (Pf,u,)

(1) g = X (fw) = [HOu0) de

We say that f € € if 0 < J*(f) < o. It is conjectured that f € € and some
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regularity conditions on the {¢;} = {¢,,}i-,, 1,2,..., imply that there is
some constant c, such that

0<J(f) < e, dx(1).

To see the behavior of R(A) when f behaves like a sample function, we only
consider the case g,, = +bA,,; we suggest that the results can be extended to
functions f for which lim,_ _1/(n — m)Lr_"gZ /\,, — const, and we conjec-
ture that it is sufficient for this that some regularity conditions hold in the L,
and

Pf~ 3 fu,, f=(fu),

p=1

with lim,, _, ,(1/n)X"_,f,>/A, = b for some 0 < b < oo. Letting g2, = bA
(4.2) gives

vn

nb[ER(\) — mo?] =

(nA + )\,,n)

14

" A,,,{("” +(a?/b)A, }

Differentiating the expression in braces on the right with respect to A and setting
the result equal to 0 gives

[(nx)“’ + fgxm]nm +Nn) = (nA 4 8, n(nN)],

which is satisfied for

02

0pt=;l_5

for every A,,. Thus, in this example (assuming A,, and Agy,, are global
minimizers), Igmy, ope = 1-

We can summarize the result of the last two sections as follows:

Let #, and L,,..., L, be such that

A

l
‘LLI(A) - n}\l/”

!
MZ(A) - nAl/r

for some r > 1,as n - o0, A > 0, and let %, be defined by

- 2
&un/ M
¢, - {f IPflg> 0and T 00 < (1)1 + (1)
for some constant o, independent of n. Then we have the results in Table 1.

We remark that we do not prove, but merely state as a conjecture that in the
special spline case with ¢, = i/n, and mp an integer, that the definitions of %,
here and in the introduction are equivalent, and that the methods in, e.g., Cox
(1983b) and Rice and Rosenblatt (1983), can be used to show it.
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TABLE 1

(1) fespan{¢,} = IgmL opt = 1
(2) f€¥, forsomep>1= IgML jopt =

(3) [ “behaves like” a sample function = Igpy, /ope = 1 + 0(1).

To compare Ay, and Ay, we have, from Craven and Wahba, that

(1) f € span{e,} = Igcy jop = 1.
(2) f € X, ’ [’Ll(}\opt) — 0 and “%(}‘opt)/pQ(Aopt) -0 1mply IGCV/opt =1+ 0(1)
Although the arguments are carried out for a special case, it is seen by following
them that the results hold in the generality of this paper.

Now, suppose f behaves like a sample function from the stochastic process.
V(A) is given by

rorwz(nA/(nA + 7))

nV(\) = 5
(Zr(1 = A,/ (RN + 1))

and
Zrom(nh/(nh + ,,)) 82, + 02Zo2(nA/(nA + A,,))

(£ = A,/ (nA +1,,)))°

Replacing g2, by its expected value bA,, under the prior in (4.5) gives

227 (nM/(nA +A,,))°(A,, + 02/b)
(Z227aN/(r) +A,,))°

and a straightforward calculation [which appears in Wahba (1977a)] shows that

the right-hand side of this expression is minimized for A = ¢2/nb. It appears

that, for g2 /\,, ~ const, we have A .y = O(1/n). The proof of Theorem 4.2 in

Craven and Wahba shows that A = O(1/n), Agecy = O(1/n) and py () =

I/nN/7, uy(X)=1I/nN/" for some r > 1 entails that Iocv jope = 1 + 0(1). We
conclude that

(415) nEV(M) =

(4.16) %E,nEV()\) =

(3) f “behaves like” a sample function = Iy /0 = 1 + 0(1).

Thus, in each of the three entries in Table 1, we may replace Iy, Jopt DY
Iomi cov

5. Monte Carlo results. A Monte Carlo study was carried out to see
whether some of the preceding asymptotic results would be manifest in small to

medium sized samples. Three experimental test functions were used, given in
Cases 1, 2, and 3 below.

CasE 1. f(t) = 3Bio,5(8) + 5B7,7(2) + 485 10(2).
CASE 2. f(t) = %Baqn(t) + %183,11(”'
CAsE 3. f(t) = %Bzo,s(t) + %1812,12(’5) + %:87,30(0’
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where
I'(p+aq)
.o = T(o)(a)

We considered only m = 2, all of these functions are in W'(per), and the periodic
smoothing spline in W;? was implemented. The study reported here was done
simultaneously with the Monte Carlo study in Wahba (1983) but not published
at that time. Plots of f of Cases 1-3 above and sample Monte Carlo data appear
there, and some of the values of Iy, appearing here for comparison purposes
are also reported there. We considered only L;f = f(i/n), i = 1,2,...,n, and
n = 32,64, 128. (Some examples with n = 16 were also tried but the results were
erratic.) Five values of ¢, 0 = 0.0125, 0.0250, 0.05, 0.1, and 0.2, were tried. Since
fo1f(t)| dt = 1, the smallest two values of o represent “engineering accuracy,” or
two-figure data, while a o of 0.2 is one-figure data. For each of the 3 cases X
3 ns X 5 as, 10 replicates were generated from the model

P (1-8)7, 0<t<1.

i
”=4‘)+% 6~ H(0,0%), i=12..,n.
n

For each replicate the GML and GCV estimates Ao, and A ey, the minimizers
of V(A) and M(A), were computed, along with A, the minimizer of R()). Then
the inefficiencies gy, ope @0d ey /ope defined by
j _ R(AGML) j — R(}‘GCV)
GML _R(X—OPJ ) Gev = 7 R——(xopt)

were computed. The Appendix gives a complete table of fGML and jc.cv for each

~ ~ TaBLE2
Igmy,s Igev, and the GML score.

o = 0.0125 o = 0.0250 o = 0.05 o =010 o= 020
GML
score
out
of GML GML GML GML

n Case Igyy Igov 10 Igmy Igov score Igyy Igoy score Igyp Igey score Iy Igov score

1 149 141 1 132 133 3 122 194 8 125 120 2 1.39 1.40 5
32 2 138 124 3 183 127 1 141 1.09 1) 123 1.07 2, 105 107 6
3 150 145 4 151 113 0 162 143 1 117 111 3 1.12 2.02 5]
1 140 107 2 140 109 0 123 105 0 148 183 5! 122 1.32 8
64 2 209 131 1 149 133 2 143 116 1 124 105 2 1.18 1.06 2
3 194 110 0 151 106 0 130 114 1 120 121 1 1.12 145 4
1 167 1.06 1 139 1.09 1 129 106 2 1.32 116 2 1.07 1.50 3
126 2 1.75.103 0 159 107 0 138 103 0 126 1.06 1 1.30 1.18 0
3 169 1.09 1 134 107 0 128 107 2 120 1.04 0 123 1.19 3
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of the 3 X 3 X 5 sets of 10 rephcates A summary of this data appears in Table 2.
For each n, o, and case, Table 2 gives I, and Iy, where Iy, is the average
of the 10 replicated values of Iy, and similarly for I5y. Table 2 also gives the
GML score, defined as the number of times out of 10 replicates, that Iy, < Igoy-
A tie is counted as }. It can be seen that in the extreme NE corner of the table,
n=232 0=02 GML appears to have a modest edge over GCV (perhaps not
“significant”), and mixed results obtain in other entries towards the NE. For
smaller o and all of the n = 128 entries except the o = 0.20 case, the GCV edge is
fairly striking. The results of this experiment, with n = 32 and 64, are in rough
agreement with the Monte Carlo results of Barry (1983) and Davies et al. (1983).
Barry considered n = 20 and 40, and Davies et al., considered n = 50.

6. The case of general L,. We may study the asymptotic behavior of Ay,
Agevs and A, with general L, if the {L;} can be imbedded in a nice family L.,
s € %, of bounded linear functionals on 5. This generally can be done if one is
trying to solve a so-called Fredholm integral equation of the first kind. To show
how this study proceeds, we first review some relevant facts from Nashed and
Wahba (1974).

Let &% be an index set and, for each s € %, let L, be a bounded linear
functional on J#,. Later we shall let L, = L,. We can deﬁne a linear operator ¢~
with domain J#, and range contained in the real valued functions on & by

Hf=g, &(s)=(X[)s)=Lf, [€Hy s

The most interesting case concerns ¥* an integral operator,

(#f)(s)= [K(s,O)f(t)dt, s,
for some known K. It was shown by Nashed and Wahba (1974), that
H(H) = A,
where S, is the reproducing kernel space with reproducing kernel R(u, v) with
R(u, U) = Lu(s)Lv(t)Q(s’ t)’
which, if )¢ is an integral operator, becomes

R(u,v) = /fK(u, s)Q(s,t)K(v, t) dsdt.
We also have X#'(#, ) = #% where

R,(u,v) = Lu(s)Lv(t)Ql(sr t).
The null space of X" in 5, consists of all f €, with L,f=0, s €. Let ¥
be the null space perpendicular of %" in 3. If we endow % with its
reproducing kernel space topology, then there is a 1:1 inner product perserving
map between ¥~ and 5 = X (¥") under which
(6.1) feEV~g=H[eHy
and .
(6.2) (fir o) = {81 82)r
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whenever f,, f, € V", Xf, =g, Xf, = &, Thus the geometry of ¥" and 4
are the same under the 1:1 correspondence “ ~ ” given in (6.1).

We assume that the dimension of the span of {A¢,} is m. (If it is not, T
cannot be of rank m.) Let P be the orthogonal projection in Hp onto Hp
(which is the orthocomplement of span {#'¢,}). Letting #* be defined, for g in
My, as that element in S, of minimal norm which satisfies J#'f = &, we have
K (Hp) = V"= A (Hy) ® (3,), PX'g ~ Pg, and so | PX"g||} = | Pg} Let
&, » be that element in Qf which minimizes

12 -
— X (8(s:) = %)" + M Pall
=1

Using g(s,) = L,f, || Pg|l% = ||Px"* g||%, and the fact that f, , must be in ¥/, it
can be shown that X’f, , =g, , and X"'g, \ = f, \. Furthermore,

W= llo=1"HF = f, A+ I f =K
and

17 Hf = fu Al = 18 — &nallR

by (6.2). Further details may be found in Nashed and Wahba (1974).

Now consider the problem of studying the behavior of Agyy, Agey, and A,
for the case of general L;, and suppose the L; can be embedded in a family L,
s €%,by L, = L. The problem then reduces to examining the properties of g
and g,, in J %, with the loss function of (1.11) becoming R(A) =
(1/n)L (8(s;) — &, x(5,))". The entries of = are R(s,, s;). Thus if the s, are
regularly distributed, the behavior of the {A,,} will be related to the eigenvalues
of R, (instead of @,). This can be used in some cases to establish the asymptotic
behavior of p;(A) and py(A) [see, e.g., Lukas (1981), Rice and Rosenblatt (1983),
and Wahba (1977b)].

Conditions (1)-(3) on f can now be transported to conditions on g = ¢'f and
we have

(1) g € span X{¢,} = Igmp op = 1.
(2) g € €, forsome p > 1= Igy o0 = 0.
(3) g “behaves like” a sample function = Iomi ope = 1 + 0(1).

With some abuse of notation, we are letting %, be defined by

% { g}\n/

g I1Pally > Oand L (50 )p_J<g>(1+o<1)>}

for some constant </, independent of n.

Let Jp*( &) be defined by

. = (Pg,u,)
JHg) = —3F
v=1 v

where (A, and #,} are the eigenvalues and eigenvectors of R,, and say that
g€ ¢ if 0<JXg)< 0. It is now conjectured that g€ ¢* and some
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regularity conditions on the {s;}, i = 1,..., n, imply that g € €. Since
I8 = &a AR = I HF = £, Al

the study of the optimal A with certain other loss functions referenced to f can be
studied by examining the problem in 5#. For example, compare the methods and
conclusions of Theorems 1 and 2 of Wahba (1977b). There is some continuing
research in this area [see Cox (1983a) and Nychka (1983)]. We remark that the
generalized spline smoothing problem has recently been extended to nonlinear
functionals and non-Gaussian errors by O’Sullivan (1983).
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Appendix. Values fGML and [y for all replicates. ISUBM = Igmy; ISUBV
= I;cy; REPL = replicate number.

CaseE 1

o = 0.0125 o = 0.025 o = 0.050 o =010 o = 0.20

REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

n=32 1 1.501 1015 1.698 1.410 1481 1218 1.623 1.461 1769  1.331
2 1317 1.018 1066 1.013 1016 1.195 1.040 1625 1.030 1307

3 1.101 1109 1.184 1.002 1.092 1004 1.072 1.047 1002 1.016

4 1282  1.087 2071 1442 1210 4219 1.961 1.340 1.084 1.021

5 1.343  1.022 1176 1.001 1268 1.856 1.067 1065 1.112 1019

6 1.440 1.034 1054 1.108 1.027 1.069 1262 1129 1.010 1.243

7 2714 1959 1190 1055 1.000 1314 1007 1.044 3.576 3.762

8 1.637 1200 1.117 1124 1.792 2953 1.109 1.048 1.026 1.241

9 1303 1.019 1550 3.120 1.002 1351 1246 1205 1137 1.011

10 1226 1.000 1.094 1.003 1310 3.317 1.096 1014 1239 1.065

n =64 1 1276  1.001 1.357 1.065 1265 1.101 1.082 1988 1.012 1.088
2 1.351 1.010 1156 1.058 1.068 1.027 2597 1.811 1000  1.239

3 2.105 1.000 2035 1347 1204 1.062 1.060 1.652 1279  1.052

4 1230 1.004 1155 1.069 1107 1.000 1187 2.100 1.045 1.095

5 1426 1.074 1.068 1.064 1.117 1.049 3363 3.363 1.000 1.277

6 1.879 1.087 1730 1178 1175 1.008 1.083 1.024 1.002 1.136

7 1.096 1236 1320 1.002 1450 1.076 1.078 1.003 1.031 1.021

8 1118 1073 1152 1007 1422 1096 1223 3262 1.012 1.181

9 1357 1.010 1.648 1.139 1281 1.014 1.075 1004 1220 1.288

10 1114 1235 1396 1.006 1210 1.019 1000 1.109 2556 2.865

n=128 1 2,040 1127 2310 1.428 1.051 1129 1000 1.217 1094 1.010
2 1.511 1.000 1394 1179 1344 1.027 1.269 1.027 1.186  1.020

3 1286 1.062 1.211 1.009 1.168 1.000 1749 1.440 1.058  1.001

4 2.124  1.091 1419 1.020 1422 1.039 1159 1.009 1.053 1.676

5 2,063 1115 1132 1.026 1.689 1.124 1020 1.091 1.036  1.009

6 1208 1007 1072 1112 1586 1.156 1.113 1010 1.177 1.023

7 1918 1.035 1375 1.000 1286 1.015 1198 1.023 1.013  1.007

8 1933 1.085 1.191 1.000 1.093 1.041 2492 1810 1.000 1.192

N 9 1.101 1116 1.689 1.141 1154 1003 1.075 1003 1.003 5.036

10 1513 1.000 1145 1.023 1.077 1.078 1.094 1.007 1.088  1.023
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CASE 2

REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

o = 0125

o = 0.025

o = 0.050

o =010

o =020

n=32 1 1.674 1.389 1.600 1.600 1.318 1.318 1.369 1.173 1.046 1.293
2 1.234 1.234 1.860 1.860 1.503 1.000 1.114 1.004 1.003 1.007
3 1.989 1.504  2.053 1.018 1.207 1.029 1.084 1.001 1.224 1.171
4 1.601 1.601 1.772 1.013 1.317 1.001 1.001 1.107 1.000 1.027
5 1.382 1.382 1.487 1.232 1.468 1.035 1.774 1.205 1.093 1.045
6 1.176 1.176 1.841 1.133 1.369 1.063 1.137 1.050 1.017 1.047
7 1.000 1.000 1.430 1.042 1.082 1.030 1.253 1.063 1.075 1.052
8 1.275 1.093  3.454 1.149 1.043 1.223 1.306 1.032 1.002 1.012
9 1.509 1.039 1.599 1289 2.186 1.240 1.220 1.017 1.001 1.009

10 1.000 1.000 2.205 1.387 1.607 1.021 1.068 1.044 1.037 1.000

n =64 1 2.280 1.008 1.567 1.000 1.437 1.041 1.243 1.023 1.042 1.005
2 1.676 1.004 1.139 1.073 1.547 1.053 1.470 1.134 1.130 1.010
3 1.673 1.021 1.729 1.088  2.162 1.235 1.104 1.000 1.003 1.082
4 2220 2220 1.843 2630 1.480 2219 1.434 1.070 1.431 1.137
5 2219 1.005 1.820 1.143 1.473 1.047 1.091 1.001 1.039 1.004
6 2.789  2.730 1.241 1.025 1.389 1.000 1.285 1.012 1.566 1.227
7 2.237 1.004 1730  2.209 1.215 1.000 1.172 1.024 1.219 1.002
8 1.564 1.010 1.302 1.050 1.255 1.005 1.491 1.089 1.098 1.000
9 2.002 1.034 1.122 1.051 1.291 1.013 1.036 1.057 1.227 1.047

10 2.186 1.047 1.440 1.050 1.124 1.026 1.027 1.081 1.002 1.101

n=128 1 1.767 1.024 1.573 1.006 1.336 1.000 1.070 1.025 1.499 1.285
2 1.315 1.019 1.379 1.011 1.638 1.107 1.166 1.031 1.087 1.002
3 1.974 1.185 1.618 1.022 1.257 1.000 1.151 1.023 1.778 1.719
4 1.736 1.005 1.744 1.038 1.271 1.004 1.285 1.016 1.258 1.133
5 2.036 1.107 1.503 1.022 1.711 1.052 1.015 1.144 1.184 1.044
6 2.365 1014 2315 1.486 1.188 1.001 1.122 1.000 1.021 1.036
7 1.518 1.000 1.346 1.012 1.334 1.001 1.278 1.051 1.153 1.029
8 1.485 1.000 1.438 1.006 1.351 1.000 1.765 1.250 1.806 1.446
9 1.769 1.000 1.560 1.080 1.547 1.026 1.291 1.012 1.052 1.002

10 1.490 1.002 1.433 1.019 1.205 1.062 1.416 1.004 1.109 1.076
CasE 3
o = 0.0125 o = 0.025 o = 0.050 o= 0.10 o =020

REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

n=32
n =64
n =128

1

—_ —
C W DMUMD N A WN ~OWOIDUN AW~ OWOW®EINN A WN

—

1.061
1.494
1.329
2.156
1.380
1.293
1.543
1.431
1.654
1.661
1.882

1.736
1.992

1.935

1.061
1.491
1.329
1.931
1.096
1.293
1.543
1.431

1.963
1.597
1.453
1.653
1.203
1.206
1.387
1.615
1.376
1.593
2.298

1.429
1.446

1.637
1.432
1.481
1.153
1.292
1.356
1.596
2.024
1.320
1.230
1.198
1.291
1.407
1.466
1.221
1.110
1.157

1.249
1.169
1.069
1.071
1.154
1.090
1.002
1.188
1.287
1.075
1.348
1.007
1.023
1.084
1.046
1.019
1.014
1.007
1.018
1.024
1.274
1.021
1.058
1.030
1011

1.044
1.150
1.048
1.024

1.081
2913
1.165
1.542
1.331
2.105
1.042
1.166
2.643
1.228
1.283

1.141
1.070

1.601
1.605
1.034
1.143
1.634
1.426
1.086
1.256

1.536
1.043
1.214

1.103
1.340

1.745
1.262
1.046

1.023
2.448
1.005
1.244
1.069
2.105
1.083
1.045
2.643
1.062
1.008

1.000
1.015

1.371
1.337
1.076
1.004
1.527
1.018
1.018
1.000
1.002
1.126
1.234
1.007
1.012
1.000
1.224
1.024
1.072

1135
1.247
1.000
1.301
1.292
1.001
1112
1.117
1.110
1.400
1.094

1377
1.022

1.258

1.228
1.444
1.024
1.152
1.093
1.539
1.086
1.366
1.031
1.044

1.368
1.127

1.224
1.135
1.062

1.046
1.272
1014
1.161
1.244
1.178
1.018
1.019
1.001
1192
1.002

1.140
1.004

2.660
1.072
1.084
1.141
1.017
1.010
1.023
1.236
1.005
1.049
1.018
1.019

1.073
1.006

1.016
1.008
1015

1.005
1.117
1.699
1.042
1.126
1.018
1.021
1.007
1.025
1.093
1.082
1.240
1.091

1.116

1.055
1.117
1.479
1.469
1.223
2.703
1.001
1.002
1.039
1.079
1.006

1.183
4.089

1.029
1.746
1.000
1.153
1.007
1.050
1.201
1.121
1.157
1.022
1.728
1.047
1.188
1.284
1.017

1.300
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