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A MEASURE OF VARIABILITY BASED ON THE HARMONIC
MEAN, AND ITS USE IN APPROXIMATIONS'

By MARK BROWN
The City College, CUNY

Let X be a positive random variable and assume that both a = EX™" and
u = EX are finite. Define ¢2 = 1 — (au)™". This quantity serves as a measure
of variability for X which is reflected in the behavior of completely monotone
functions of X. For g completely monotone with g(0) < co:

0 < Eg(X) — g(EX) < c%(0) and Var g(X) < c%%0).

1. Introduction. Given a random variable X and a function g, crude
approximations to the mean and variance of g(X) are obtainable by Taylor series
arguments. The variance of X, ¢? is a key quantity under this approach, both in
approximating the bias (Eg(X) — g(EX)) and the variance (Var(g(X))). For X
positive and g rapidly decreasing, the bias and variance of g(X) should be
relatively insensitive to the tail behavior of X, and ¢” should therefore not play
an important role. In practice, when o® is very large the approximations for
rapidly decreasing functions are often poor.

We take the point of view that ¢ is not measuring that aspect of variability
which is relevant to the behavior of rapidly decreasing functions of X. For this
purpose, a possibly more informative measure of variability is

(1.1) c2=1-(EXEX™")™.

For X positive and g completely monotone, we derive
(1.2) 0 < [Eg(X) — g(EX)]/8(0) =< c*
(1.3) Var{g(X)/g(0)] = ¢*.

Thus if EX! is close to (EX)™* (as measured by c?) then for g completely
monotone, g(X)/g(0) is close to a one-point distribution at g(EX)/g(0).

The quantity c¢? has an additional interpretation. For a positive random
variable X with distribution F, consider a stationary renewal process on the
whole real line, with interarrival time distribution F. Define T to be the length
of the interval which covers {0}, and V = T~'. Then

(1.4) o} = (EXEX™ — 1)/(EX)? = (EX"Y/EX)c?
(1.5) o3/EV? = 2.
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Moreover, defining h(x) = (EX)xg(x™"), it follows that g(EX) = h(EV) and

(1.6) Eg(X) = ER(V).
Use of (1.6) and a Taylor series argument yields
1.7) 0 < Eg(X) — g(EX) =< (c*/2)EX 'sup(x3g”(x)).

Inequality (1.7) is less restrictive than (1.2) in that g need only be convex with
sup x°g”(x) < o (rather than completely monotone).

2. Definitions and preliminary results. A function g on [0, «) is defined
to be completely monotone if it possesses derivatives of all orders and (—1)"g™(\)
= 0 for all A > 0. In the above g” = g. Some examples are (x + a)™* with a > 0,
k>0, e with « > 0, and e~ with A > 0. Lemma (2.1) below is due to
Bernstein. An interesting discussion and proof of Bernstein’s theorem is given
in Feller (1971) page 439.

LEMMA 2.1. A function g on [0, ©) is completely monotone with g(0) =
m < o« if and only if it is of the form

(2.1) gx) = f e ™™ dH(x),
0
where H is a positive measure on [0, ) with H([0, ®)) = m.

A distribution F on [0, ) is defined to be NWUE (new worse than used in
expectation) if y = EX <o and E(X —t| X >t) = EX for all t = 0. This property
is easily shown to be equivalent to F stochastically smaller than G, where
G(x) = u* [ F(t) dt is the stationary renewal distribution corresponding to F.
Lemma 2.2 below is proved in the Appendix. Lemma 2.3 presents a Laplace
transform inequality.

LEMMA 2.2. Suppose that F is NWUE with mean vy and is absolutely contin-
uous with failure rate h. Define b to be the essential supremum of h, assumed to
be finite. Then, for x = 0

(2.2) 0=<F(x)—eb™=<1-(by)"

LEMMA 2.3. Let . be the Laplace transform of a probability distribution on
[0, ) with a = [§ Z(a) da < ®© and u = —%'(0) < . Then .
(2.3) O0=La)—e™*=1—(ap)™ forall a=0.

PROOF. Let X be a random variable with distribution F, and & be exponen-
tially distributed with mean 1 independent of X. Then #(a) = Pr(X~'& > «),
thus . is the survival function of a completely monotone distribution, i.e., a
mixture of exponential distributions. Completely monotone distributions are
DFR (decreasing failure rate), which in turn are NWUE (Barlow and Proschan
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(1975, pages 103, 159)). Since X~'&¢ is DFR, its maximum failure rate is
achieved at zero and equals —%¥’(0) = y = EX. The mean of X ¢ isa=EX ' =
J¢ Z(a) da. The result follows by applying Lemma 2.2 with F = % b = g,
and v = a.

3. Derivation of inequalities. Consider a positive random variable X
with a = EX™" assumed finite, as well as 4 = EX. Define ¢2 = 1 — (au)™". Note
that 0 < ¢® < 1 with equality if and only if X is a constant.

THEOREM 3.1. Let g be a completely monotone function on [0, ») with
g(0) < . Then
(3.1) 0 < Eg(X) — g(u) < c’g(0)

(3.2) Var(g(X)) = ¢’g%(0).

ProoF. By Lemma 2.3,
(3.3) 0<%a)—e*=<c? forall a=0.

Since g is completely monotone, by Lemma 2.1 there exists a measure H on
[0, o) with H[0, ) = g(0) and

(3.4) g(x) = f e dH(a).

Now

(3.5) Eg(X) = ff e ** dH(a) dF(x) =f£’(a) dH(«)
(3.6) g(u) = f e dH(a).

Since g is convex, Eg(X) = g(u). Thus from (3.3) and (3.5)

(3.7 0 =< Eg(X) — g(p) = J; (Z(e) — e™*) dH(a) = c*g(0).

Since g is completely monotone so is g® (Feller, 1971, page 441). Applying (3.7)
to g% we obtain

(3.8) 0 < Eg¥(X) — g%() < c’*(0).
From (3.7) and (3.8),
Var(g(X)) = Eg*(X) — (Eg(X))* = (g%(n) + c’8(0)) — g°(n) = c’g(0).
This concludes the proof. -

Given X > 0 with distribution F, consider a stationary renewal process on the
whole real line with interarrival time distribution F. Define T to be the length of
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the interval containing 0. It follows from Feller (1971) page 371 that
(3.9) dFr(x) = x dF(x)/u.

From (3.9) we see that ET ! = p ' and ET 2 = au™"! where a = EX!. Defining
V = T ' it follows that 6% = (ap — 1)u~2 = c%au™?, while ¢%/EV? = ¢2. Also from
(3.9) we see that Eg(X) = E(uVg(V™!)) = Eh(V) where h(x) = uxg(x™'). Note
that h(EV) = h(p™!) = g(EX). Finally since

(3.10) h(V)=h(EV) + (V—-EV)h(EV) + (V- EV)%/2)h"(V*)
with V* between EV and V, it follows that
(3.11) Eg(X) = MEV) + (a¥/2)sup(h”(x)) = g(u) + (c’au™"/2)sup(h” (x)).

But A”(x) = ux~3g”(x'), and thus sup h”(x) = u sup(x®g”(x)). Thus from (3.11),
for g convex with sup x3g”(x) < «,

(3.12) 0 < Eg(X) — g(n) < (c*/2)a sup(x’g”(x)).
4. Comments and additions.

1. The relationship between X and V = T discussed in Section 3 is sym-
metric. A renewal process with interarrival time distribution V has a distribution
of X! as the length of the interval covering zero in its stationary renewal process.
Thus the dual identity to (1.5) is 6%/EX?=1— (EVEV™) =1 - (ETET™ ")

2. The identity ET' = (EX) ™! is a special case of a more general identity. If
S, = >t X; where X, ---, X, are i.i.d. as X, then

ES,+T)'=[(n+ 1u]™
This can be seen by noting that the Laplace transform of T equals —%"'(a)/pu.

3. Lemma 3.3 is in the spirit of inequality (xi) page 422 of Brown (1983).
Lemma 3.3 is more general in that it applies to the larger NWUE class, but more
restrictive in that it bounds the sup norm distance between cdf’s rather than the
sup norm distance over all Borel sets.

4. The value of c? is identical for X and X™*. Thus (3.1) and (3.2) hold with
X replacing X, and a = EX ™" replacing u in the left side of (3.1).

5. I do not know to what extent inequalities (1.2), (1.3) and (1.7) can be
improved.

5. Appendix. A proof of Lemma 2.2 is now given. Note that h(x) < b
implies that F is stochastically larger than b™'& (an exponential distribution with
failure rate b), and if F is NWUE then F is stochastically smaller than G, the
stationary renewal distribution corresponding to F. Thus

(5.1) e "< F(t)<G(t) forall t=0.
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From (5.1)
(5.2) sup; | F(t) — e™| < sup,| G(t) — e™*].

Define A = {t: y7'F(t) < be™®} and D = supg|G(B) — [ be™ dt|, the sup
taken over all Borel subsets of [0, ). Since G has pdf v ~1F(¢) it follows that

_1—
(5.3) sup;|G(t) —e™®| <= D = f [1 - l?,ftt)]be'b‘ dt.
A be
But F is stochastically larger than b7, thus
(5.4) [1—~y7'F(t)/be ] <1 — (yb)~.

Thus
D=[1-(yb)YPr(b'¢ €A)<1— (yb)"L
The result now follows from (5.2), (5.3) and (5.4).
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