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NONNULL AND OPTIMALITY ROBUSTNESS OF SOME TESTS!

BY TAKEAKI KARIYA AND BIMAL KUMAR SINHA
Hitotsubashi University and University of Pittsburgh

This paper first characterizes the invariant structure of a model for which
nonnull robustness holds. Applications of this result yield the nonnull ro-
bustness and optimality robustness of some tests for covariance structure
including a test for sphericity. Second, we show the optimality robustness of

_the LBI tests in the GMANOVA(MANOVA) problem, and the problem of
testing independence. In the GMANOVA problem, a robustness property of
an essentially complete class of invariant tests is also shown.

1. Introduction and Summary. The robustness of a test in a hypothesis
testing problem is usually studied from two viewpoints: (1) robustness under a
null hypothesis and (2) robustness under an alternative hypothesis. Broadly
speaking, robustness under a null hypothesis is regarded as the stability of a
critical point of a test of level «, but here a test is defined to be null-robust if its
null distribution remains the same for a class of distributions including the
distribution under which the test is considered. Similarly, we define the nonnull
robustness of a test by the invariance of its nonnull distribution for each value
of the parameter under the alternative hypothesis in a class of distributions
including the underlying distribution. Further, we shall call a test optimality-
robust if an optimality property the test enjoys, such as UMP (uniformly most
powerful), UMPI (UMP invariant), LBI (locally best invariant), etc., can be
extended to a class of distributions including the distribution under which the
optimality holds. Of course, optimality robustness is robustness under an alter-
native hypothesis. The null robustness in our sense has been considered in a
class of elliptically contoured distributions or left orthogonally invariant distri-
butions by many authors (e.g., Dempster, 1969; Kariya and Eaton, 1977; Dawid,
1977; Chmielewski, 1980; Kariya, 1981; Jensen and Good, 1981; Eaton and Kariya,
1981). On the other hand, the optimality robustness of some UMP or UMPI
tests is treated in a similar set-up by Kariya and Eaton (1977), Kariya (1977,
1981), etc. Sinha (1984) treats the robustness of an LBI test.

In this paper, the nonnull robustness of invariant tests for testing certain
covariance structures and the optimality robustness of some LBI and UMPI tests
are considered in a class of left orthogonally invariant distributions. More
specifically, in Section 2, when a problem is left invariant under a group, we
characterize the structure of a model which allows the nonnull distribution of a
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maximal invariant to remain the same in a class of left orthogonally invariant
distributions, where the null robustness is presupposed. Applying this result to
the problem of testing a certain covariance structure in regression and the
problem of testing sphericity, the robustness of the nonnull distributions of
maximal invariants for these problems is established, through which the nonnull
robustness of some tests and the optimality robustness of the LBI test for
sphericity derived under normality by Sugiura (1972) are obtained. The null
robustness of these tests follows from Kariya (1981). In Section 3, after a general
discussion on the robustness of an LBI test, we treat the GMANOVA problem.
There it is first shown that the essentially complete class theorem for invariant
tests obtained under normality via sufficiency-invariance-sufficiency reduction
(Kariya, 1978) holds for the class of all the left orthogonally invariant distribu-
tions. Second, the LBI test derived under normality by Kariya (1978) is shown
to be optimality-robust for a class of left orthogonally invariant distributions
under regularity conditions. As a special case, the LBI test in the MANOVA
problem derived by Schwartz (1967) is shown to be optimality robust. Also in the
problem of testing independence, the optimality robustness of the LBI test is
obtained. The null robustness of these tests is shown in Dawid (1977), Kariya
(1981) or Jensen and Good (1981).

As a technical tool, the representation theorem on the probability ratio of the
distributions of a maximal invariant due to Wijsman (1967) is exploited.

Finally, throughout the paper, we denote by @ (n) the group of n X n orthogonal
matrices, by G#(p) the group of p X p nonsingular matrices, and by R the group
of positive reals.

2. Nonnull robustness. In this section, when a problem is left invariant
under a group, we characterize the structure of a model in which nonnull
robustness holds, and show the nonnull robustness of tests for certain covariance
structures. Let 2” be a nonempty open subset of R™ with the Borel o-field % and
let & be a closed subgroup of G/ (n) acting on the left of 27 Let #(0) be a class
of pdf’s on 2 with respect to a relatively left invariant Borel measure  with
left multiplier 6 (i.e., 7(gE) = 6(g)7(E) for g € £ and E € &) such that each
pdf f(-]0) in # () is of the form

(2.1) f(x]0) = B(0)g(¥(x:0)), 6 €6

where y/(-: 0) is a known measurable function from 2 onto %, % is a nonempty
open subset of R™ and independent of 6, q is a fixed integrable function from %
into [0, ») and independent of 6, and O is a nonempty open subset of R?. Suppose
the group £ leaves invariant the problem

(2.2) H. 6 €0,vs K: 0 €0,

where &, N ©; = ¢ and ©; C O (i = 0, 1). Here we assume that 2 is a Cartan
Z-space (see Wijsman, 1967, page 392). Then as is well known (e.g., Wijsman,
1967; or Bondar, 1976), the ratio of the densities of a maximal invariant T' = t(x)
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under 6, € 0, and 6, € 0, is given by

(2.3) R = R(t(x)) = (dP7/dPf)(t(x)) = H(x|6:)/H (x|6o)
with
(2.4) H(x|0) = Lf(gxlff)ﬁ(g)u(dg),

where f(x|0) is given by (2.1) and u(dg) is a left invariant measure on £ It is
noted that 6(g) is the inverse of the Jacobian of transformation x — gx, i.e.,
6(g) = |det(g)| for g € G/(n), and that H(x|6;) < o and H(x|6) # 0 a.e.
(P,{,). Further, it is remarked that some alternative conditions for which (2.3)
holds are found in Bondar (1976) and Andersson (1982). Now to obtain a
condition for (2.3) to be independent of g for all 8, € 0, and 8, € 0,, we assume
Z is a product group, i.e., ¥ = & X % with product invariant measure g = y; X
s and left multiplier 6 (g) = 6:(g1)02(g2) for g = (g1, g&2) € & Further we need

ASSUMPTION 2.1. The function ¢ in (2.1) satisfies

(2.5) V((&1, 82)x: 0) = G1¥((er, g2)x: 0)
for all x € Z (g1, &) € &, X % and 0 € 0, and &, acts transitively on the range
space % of ¥, where Z, is an induced group of & as a continuous homomorphic
image, g, € & and ¢; is the unit element of &,

THEOREM 2.1. Under Assumption 2.1, the probability ratio R in (2.3) is
independent of q for all 6; € ©; (i = 0, 1). In fact, it is given by R(t(x)) =
K(x]6,)/K(x|0o) with

(2.6) K(x|8) = B(9) L d1(h(x, g2, 0: ¥0)) A1 (h(x, g2, 0: ¥0))d2(82)ua2(dge),

where y, is a fixed element of % h(x, g2, 0: ¥o) is an element of & such that

(2-7) h(x7 82, 0: yO)'p((eI’ g2)x) = Yo,

and A, (-) is a right modular function of w,. Here the measurability of h with
respect to g, is assumed.

PrROOF. From (2.1) and (2.4), the numerator of R is given by
(2.8a) H(x|6,) = L H,(x, 82101)02(82)pa(dg2)
2
with

(2.8b) Hy(x, g216,) = ﬁ(ol)L ql &y ((e1, 82)x: 01)161(&1)pmi(dgr).
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Since & acts transitively on the range space % of ¥ (x: 6,), for any y, € %, there
exists h(x, g, 0:: yo) € & such that (2.7) with § = 6, is satisfied. Hence using the
invariance of u, and replacing g, by g,h(x, g2, 6;: yo) in (2.8b) yields

H(x, g;|6,)

(2.9)
= (016, (h(x, g2, 0:1: ¥0)) A1, (h(x, g2, 0;: Yo)) L q(£150)01(&1)p1(dg1).

Hence evaluating H(x|6,) in the same way and taking the ratio yields R =
K(x|6,)/K(x]|6y), completing the proof.

In Theorem 2.1, no assumption is made on the form of q.

Now when Assumption 2.1 holds and when the null distribution Pj, of T does
not depend on g, the nonnull distribution P7 does not depend on q either, thereby
establishing nonnull robustness. In such a situation, the distribution of the
maximal invariant statistic is completely independent of the underlying distri-
bution for each parameter value, and hence the whole (invariance-reduced)
decision problem is also independent of the distribution. This implies that all
decision theoretic properties via invariance are robust: unbiasedness, Bayes,
admissibility, minimaxity, etc. We are grateful to a referee for pointing out this
fact.

2.1 Tests for covariance structure in regression. Let us consider a regression
model

(2.10) y=XB+u

where X is an n X k fixed matrix of rank k and the error term u has a pdf of the
form

(2.11) fule?®Z) =622 | Y2qu’' = 'u/a?).

Here q is a function from [0, ) into [0, ®) such that [z q(u’u) du=1and T is
the scale matrix. Under this setup, we consider the testing problem

(212) H()? 2 E Ao Vs Hli 2 E A],

where Ao N A; = ¢, A; C A(i =0, 1), and A is the set of p X p positive definite
matrices. In certain applications, £ may be a function of an r-dimensional
parameter A (Z = 2Z(\)) and the null and alternative hypotheses may be described
in terms of .

This problem is left invariant under the group £ = R, X R*, where £ acts on
ybyy—cy+ Xb for g = (c, b) € Z. As in Kariya (1980), choose a matrix Z: n X
(n — k) such that Z'Z = I,_, and ZZ’ = I — X(X’X)™'X’, and define
v = (X'X)"?X'y, n = (X'X)V?8, w = Z'y and Q' = (X(X’'X)™V2, Z).
Then w/|| w|| is clearly a maximal invariant under £, @ € #(n) and

(y — XB)'Z7(y — XB) = (Qy — QXB)'[QZQ’'1(Qy — QXB),
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where ||w | = (w’w)Y2 From Kelker (1970), the marginal pdf of w is of the form
(2.13) f(w|0) =|Z'6Z | 2G(Y(w: 0)) with y(w:0) =w’'[Z'0Z] w,
where § = 023, since the pdf of ¥ = Qy is from (2.11)

1Q0Q" 172q((5 — )’ [Q0Q"17(5 — 7)) with 7 = (3)

Here ¢ depends on ¢ and (n, k) but not on (8, §). In terms of w, w/|w| is a
maximal invariant under group R, with the action: w — cw.

Now we evaluate (2.6) for the marginal pdf (2.13) of w. Take & = & = R, and
% = {e,}. Then £ acts transitively on the range of ¥, and since the left invariant
measure u,(dc) = dc/c on R, is also right invariant, A;,(c) = 1. Further, the
inverse of the Jacobian of w — cw is 8;(c) = ¢" %, while h(w, 0: 1) = Y (w: §)~/2
from Y(cw: 8) = c®Y(w: ) and from (2.7). Therefore, from (2.6), K(w|0) =
| Z70Z | 7%y (w: 0)~"®/2 with Y (w: 0) in (2.13). This implies that for Z; € A;
(=0, 1), the ratio R is evaluated as

R — <| Z’EIZ |>_1/2 <w1(ZIEIZ)—1w>—(n—k)/2

(2.14) | Z’Z0Z | w'(Z'2eZ) w

which is completely independent of § or q. Consequently, for testing Ao = {Zo}
vs A; = {Z,} in (2.12), the nonnull robustness of the test based on S =
w'[Z'21Z]'w/w’[Z’ Z0Z]'w < ¢ holds. On the other hand, Kariya (1981) has
shown that the null distribution of the maximal invariant T = w/|w| is
independent of q. Hence the null robustness of S also holds. In Kariya (1980),
for testing p = 0 vs p > 0 in serially correlated errors u; = pu;—; + &, in which
Z(p) is approximated by (I + pA)~?, the optimality robustness of the LBI test
derived under normality is shown by using (2.14). On the other hand, for testing
X =0 vs A > 0 in the model of intra-class covariance structure Z(\) = (1 — \)J
+ Nee’ with X =ewheree=(1, - -+, 1)’ € R", Kariya and Eaton (1977) observed
the nonnull robustness of the UMPI test derived under normality. Of course, the
expression R in (2.14) is effective for such models as a heteroscedastic model, a
seemingly unrelated regression model, etc.

2.2. Testing sphericity. Let Z be an n X p random matrix with pdf
(2.15)  f(Z|a, 6%2) = | 622 |™2q(tr(Z — ea’)' (Z — ea’)(c2Z)7Y),
wheree = (1, -+, 1)’ € R” and « € R?, and consider testing T =1 vs Z # I. We
may assume o = 0 without essential loss of generality (one degree of freedom is
lost). This problem is left invariant under the group & = & X % = R, X @(p)
acting on the left of Z by Z — cZQ’ for g = (¢, Q) € Z. Here, letting Y (Z: ) = tr
Z'Z07! with § = ¢22, the subgroup R, acts transitively on the range of ¥, the
left invariant measure dc/c is right invariant so that A;, = 1, and the inverse of
the Jacobian of Z — c¢Z is 6;(c) = c¢™. Therefore, from c2¢(ZQ’: §) = 1, the
function K corresponding to (2.6) is evaluated as

(2.16) K(Z|0) = 0|™" L [tr @SQ’ 671" py(dQ),

(p)
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where S = Z’Z and u,(dQ) is the invariant probability measure on & (p) with
82(Q) = 1. Hence for testing § = o1 vs § = 622, the probability ratio R in (2.3)
is K(Z|6®Z)/K(Z | a2I). It follows that

— —n/2 —np/2
(2.17) R=12| Lm (1 + F1™™" pus(dQ)

with F=tr(Z7' — 1)QSQ’/tr S,

which is independent of g. Since this expression is the same as the one under
normality, the next theorem follows from Sugiura (1972) and the fact that the
null distribution of a maximal invariant does not depend on g (Kariya, 1981).

THEOREM 2.2. The test based on tr S?/(tr S)? > c is LBI for testing o> =
o?I vs ¢%Z # oI under any pdf of the form (2.15).

In Sugiura (1972), an exact evaluation of R in (2.17) is obtained by using zonal
polynomials and then it is expanded. But expanding the inside of the integrand
in (2.17) up to the third order, using the boundedness of F for Z;| A\; — 1| small
where \;’s are the roots of =, and arguing as in the next section, Theorem 2.2 is
also proved.

As has been remarked, in these examples not only the LBI properties but all
other decision-theoretic properties of the tests are robust.

3. Optimality robustness of the LBI tests in GMANOVA and testing
independence. Except in the situation described in Section 2, nonnull robust-
ness seldom holds in general. This is true especially when a hypothesis on a
location parameter is tested. In this section, we consider the optimality robustness
of the LBI tests in the GMANOVA(MANOVA) problem and the problem of
testing independence. Adopting the framework given in Section 2, a basic pro-
cedure in showing the robustness of a LBI property is as follows. Assume that
is scalar-valued in (2.1), ¢ and 8 are continuously twice differentiable, and 0, =
{6o}. Expand the integrand in the numerator of the ratio in (2.3) as

f(x]6:) = B(01){q(¥(x: 60)) + q" (Y(x: 60))[¥(x: 6,) — ¢ (x: 8o)]
+ q" (Y*(x: 0o, 61))[W(x: 61) — Y(x: 60)17),

where 0, € 0,, and Y*(x: 0,, o) = e (x: 0,) + (1 — c)y¥(x: 6,) for some 0 <c < 1.
Then with D = [« f(gx]60)6(g)v(dg), the ratio (2.3) is expressed as

(3.1)

(3.2) R=1+ ﬁ(ﬂl)L q’ (Y(gx: 60))[W(gx: 6,) — Y(gx: 6,)16(g)v(dg)/D
+ «(01, 60) + M,
where M = M (x: 6,, 0,) is a remainder term and «(6,, 6,) = [8(6:)/8(6) — 1].

Here if we can show (1) that the second term is expressed as v (6;, 6o)t(x)
with (0, 6,) = O(]6, — 6y|) and t(x) independent of g, (2) that
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k(01, 6o) = O(]6, — 6o|) and (3) that for any invariant test function ¢(x)
and for eachq € @

(3.3) f ¢ (x)M(x: 6y, 80) dP§, = o(] 6, — 8o |)

where ¢ is a certain class of g, then from (3.2) the power function of an invariant
test ¢ is given by

(3.4) (¢, 01) = a + Eg[ep(x)y(0:1, 00)t(x)] + ak(br, 62) + o(| 6, — bo]).

Hence, by the Generalized Neyman-Pearson Lemma, the test based on ¢(x) is
LBI for all g € @ provided Pj, remains the same for all ¢ € @.

Sometimes the second term in (3.2) vanishes, in which case higher order
derivatives of ¢ need to be considered. In this manner, most LBI tests derived
under normality are shown to be LBI in a broader class of pdf’s. But some LBI
tests under normality are not robust in this sense, because ¢(x) does depend on
g, or because Pj does depend on q. The readers may be referred to Giri (1968),
John (1971) or Sugiura (1972) for some LBI tests.

3.1 GMANOVA problem and MANOVA problem. A canonical form of the
GMANOVA problem is stated as follows (see Gleser and Olkin, 1970; and Kariya,
1978). Let Z be an n X p random matrix with pdf

(3.5) f(Z16,2) = |Z|*q(tx(Z — ©)Z7(Z - 0)’),
where O is of the structure

b1 P2 DPs
05 6 O n,
=] O 0ypn 0 ny
0 0 O ns

p1+ p2+ps=p,

(3.6)

n, + no + ng = n;

and g belongs to a certain class &, which is specified later. The problem is to test
H:0,,=0vs K: 0,5, # 0. Of course, when p, = p; = 0, the problem is reduced to
the MANOVA problem. Let Z = (Z,;) be the decomposition of Z corresponding
to the decomposition of © in (3.6). Then the problem is left invariant under group
& =0 X % X acting on the left of Z by gZ = PZA’ + Fforg= (P,A,F)E &,
where @ is the group of n X n block didgonal matrices {P} with diagonal blocks
P,ee(n) (i=1,2,3), & is the group of p X p nonsingular matrices of the form
A= (A;)with A;;:p; X pjand A;; =0fori>j(i,j= 1,2, 3) and F is the group
of all n X p matrices of the form F = (F};) with F;;: n; X p;, F;; = 0 for i < j and
F3.,=0(,j=1,2, 3: k=1, 2, 3). Further, let V= (V;;) = (Z3Z;;): p X p with
Viiipi X pj, £ = (Z;) with Z;;: p; X pj, Vaoz = Voo — Vo3 V33 Vag and Zop3 = Zoe
— 22323 Zae.

We shall show the LBI test derived under normality is LBI under the pdf (3.5)
where ¢ belongs to a class € given in Assumption 3.1 below.
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First note that the distribution of a maximal invariant under the null hypoth-
esis remains the same for any pdf of the form (3.5) (see Kariya, 1981). Second,
note that a maximal invariant under ¥ is a function of s(Z, V) = (s,(Z, V),
s2(Z, V)), which is a maximal invariant under the subgroup % = &/ X % of &,
where

-1
Voo V. ,
s1(Z, V) = (Za, Z13)<V§z Vii) (Z12, Z13)’,

(2, V) = <§3> v;;(zz) :

hence the maximal invariant under & depends on Z only through
(3.8) Z= (Uh, Us, Us) = ((Zva, Z13), Zos, (Zs2, Zs33)).

Third, a maximal invariant parameter depends on (0, X) only through
0122523012 = &£’ with £ = 0,,223% (see Gleser and Olkin, 1970; or Kariya, 1978).
Hence, without loss of generality, set ©;; = 0, @y; = 0, @2, = 0 and = = I, replace
0, by £, and consider the marginal pdf of Z:

(3.9) F(Z|E) =qr(Uy — £*)(Uy — £%) + tr Us Uz + trU4 Us)

(3.7

where £* = (£, 0): n; X (p2 + p3). The group £ acting on the left of Z is also
reduced to the subgroup £ = @ (n;) X .« acting on the left of Z as

(8.10) ZZ=3(Uy, Uy, Us) = (PyUA", Zo3A3s, UsA’) for g=(P,,A)EE,

where ./ is the group of (p; + ps) X (p. + ps) nonsingular matrices of the form
A = (A;) (i, j = 2, 3) with Ag; = 0. Here the subgroup @(n.) X @(n;) of & is
ignored since it does not affect U, and Us in (3.9).

Now to derive an LBI test under f in (3.5) or f in (3.9), we evaluate the
probability ratio R in (2.3) for the marginal pdf f. The numerator of R is given
by

L g@tr(PLU A" — £*) (P U A’ — £%)
(3.11) . + tr Ag3Z33Z93A % + tr AU UsA’ )u(dA)v(dP,)
where '
p(dA) = (| ApeAZ | MP2dAs,) (| AssAds| " P2dAss)dAss

with M = n, + n; — ps and » is the inva_riant probability measure on @ (n,). It is
noted that a left invariant measure on 4 is

(| AzeA gy | ~P2*PO2d A0y ) (| AssAds| P?dAss)dAss

and that the inverse of the Jacobian o_f tran_sformation (3.10) is
| AgzAgs | ™*"8)/2| Ag3Ads|™2. Here, transforming A into AC in (3.11) where C =
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(C;) EAand C(ULU, + U U,)C’ = I, +p,, the inside of ¢ in (3.11) becomes
(3.12) tr AA’ — 2 tr £’ Py(WoA g + W3AJs) + tr AssCa3Z33Z03CisAds + 6,
where § = tr (£ = tr 0., 52301, and

(3.13) (Wa, W3) = U C’ = (Z12Cs2 + Z13C33, Z13C43).

(We always ignore multiplicative constants coming out by transformations when
they are cancelled out with those of the denominator.) Further, transforming As;
into Ass(I + Cs3Z33Z43C43)""/2, the inside of g or (3.12) becomes

(3.14) tr AA’ — 2tr £’ Py(WoAs + W3A4) + 6 =tr AA' — 20+ 5, say.
Under these transformations, the ratio becomes

R = dP!/dP¥
(3.15)
= L Gtr A’ — 20 + §)v(dP1)u(dA) / L g(tr AA" )w(dP,)u(dA),

where P[ denotes the distribution of a maximal invariant 7 under f with ¢ =
0,,2534%. Since R is a pdf of T with respect to P, and since C in (3.13) does not
depend on Z,; so that R does not depend on Zs;, it follows that the density of T
evaluated at T'(U,, Us, Us) does not involve Us,. This implies that the density is
a function of T\, where T\ is a maximal invariant function of (U;, Us) under the
action (3.10) with the U, part ignored. Therefore, since P{ is independent of &,
Ty is sufficient for T' by Neyman’s Factorization Theorem (symbolically dPT =
R.(Ty)dPY). (This result also follows from.the Stein Theorem (Hall, Wijsman
and Ghosh, 1965) as in the normal case (see Kariya, 1978, Theorem 3.1).) Thus
we obtain

THEOREM 3.1. The class of invariant tests based on s,(Z, V) in (4.2) and T,
= Z13V33Z {3 only forms an essentially complete class.

Note that in this theorem no assumption is made on ¢ in (3.5). Second, this
theorem implies that the statistics T5 = Z,3V34Z4; and Ty = Z,3 V34 Z 35 in the
maximal invariant (3.7) under # = &/ X ¥ can be discarded when an invariant
test under ¢ is considered. Third, the above argument gives a simpler proof even
for the normal case. In fact, Kariya (1978) derived the result via the distributional
properties of s,(Z, V) and s,(Z, V) under normality. But the above proof makes
it clear that this result is more related to the invariant structure of the problem
than the distributional structure. This point of interest has been emphasized by
a referee. Of course, when p; = 0, or especially in the MANOVA problem, the
result in Theorem 3.1 becomes trivial.

Next, to establish a robustness property of the LBI test derived under nor-
mality we assume
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AssSUMPTION 3.1. The function g in the pdf (3.5) belongs to &, where @ is
the class of continuously three times differentiable functions from [0, ) into
[0, ) such that

(3.16) [rw qltr 2'Z) dZ =1,

(3.17) (tr AA' )| gOtr AA')| w(dA) <@ (i=1,23),
&

(3.18) G®(x) =0, and §® is nondecreasing,

where ¢ (x) = d'g(x)/dx".
Under this assumption, we prove the following result:

THEOREM 3.2. (GMANOVA). Under Assumption 3.1, the test based on the
critical region

(3.19) aptr X(XlX + V22_3)_1X,(I + Tg)_l - tl‘(I + Tg)_l >c with
a = (m + ng — p3)/2,
X=+Te)V(Z12 — Z13V3i Vag) and T, = Z13V53Z{s

(3.20)

is LBI for testing H: ;2 = 0 vs K: 0,5 # 0 under the pdf (3.5).

COROLLARY 3.1. (MANOVA). Under Assumption 3.1 and when p, = p; =
0, the test based on

(3.21) tr Z12(Z 12219 + Vo) 'Z1{p > ¢
is LBI for testing H: ©,3 = 0 vs K: 0,5, # 0 under the pdf (3.5).

Corollary 3.1 follows directly from Theorem 3.2 by setting p; = ps = 0.

Two remarks follow. First, the LBI test in (3.19) under the pdf (3.5) is the
same as the LBI test derived under normality. This implies that the LBI property
is robust at least within the class of pdf’s specified by Assumption 3.1. Similarly
the LBI test in (3.21) coincides with the Pillai test in the MANOVA, the LBI
property of which is shown under normality by Schwartz (1967). Hence Corollary
3.1 also shows the robustness of the LBI property of the test up to the class .
Second, the conditions in Assumption 3.1 are satisfied for a large class of pdf’s,
especially in the case of normal mixture: g(x) = [§ e™* dF(a) provided the
conditions on the moments hold. On the other hand, in the MANOVA problem,
it is shown in Kariya (1981) that when min(n,, p,) = 1, without any condition
on g except the convexity of g, the UMPI (uniformly most powerful invariant)
property of the test (3.21) is guaranteed.
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PrROOF OF THEOREM 3.2. Expand the integrand of ¢ in the numerator of
(3.15) as

Gitr AA’) + q®(tr AA")(—29 + §)

+ %q@?@(tr AA’)(=2n + 6)® + Y%6q® (2)(—2n + §)?,
where z = tr AA’ + (1 — a)(—2n + 8) with 0 < o < 1. We evaluate the integrals
of each term in (3.22). First, since the integral of (tr P,Q)* over #(n,) with
respect to v(dP,) is zero for k odd, from (3.14) and (3.16) the integration of the

second term of (3.22) over & is simply 6 [7 G (tr AA’)u(dA). Second, the
integration of the third term of (3.22) becomes

(3.22)

2 — _
; L [tr(WgAg'g + W3A2,3)£/E(W2A2'2 + W3A2,3)/]q(2)(tr AA ')ﬂ(dA)
1

(3.23) )
+& f ¢ (tr AA" )u(dA),
2 Jz

since [sm,) (tr P1Q)? v(dP;) = tr @’ Q/n,. In the first term of (3.23), the meas-
ure §?(tr AA’)u(dA) is invariant under the sign change A, — —A, and
so the integration of tr WyAj.¢ (A3 W3 is zero. To evaluate the integral of
tr WoAsef’ EAss Wy in (8.23), let §@ (tr AgpA Jo) s (dA,) be the marginal measure
of Agy, Where s (dAg) = | AgAds | MPP2dAz,, and decompose G/ (p;) = Gr(p:)
X @(p2) and u(dAse) = A2 (dB2)712(dQ:). Here Gr(p.) is the group of p, X p, lower
triangular matrices with positive diagonal elements, 7,(d@.) is the invariant
probability measure on @ (p,), and \,(dB;) = | B,BJ | ™/*(I1b;’) dB, with B, =
(bj) (see, e.g., Wijsman, 1967, page 398; or Eaton, 1983, page 213). Note that
(I1b3') dB, is a left invariant measure on G7(p.). Under this decomposition, with
Az = B,Q,, the integration of tr WA 5.£’ £As, W3, after integration over @(ps),
is

1
(3.24) —(tr W3Wy) f (tr BoB3¢'£)q® (tr BoB3)A2(dBs) = %, tr W W,
D2 Gr(pg) P2
with
(3.25) B2pe = f (tr B:B3)q® (tr BB3)\z(dB2),
GT(Pz)

where we used the facts that [,(,,) tr AQ.BQ;7:(d@:) = tr AB/p, and
[ Gr(py B2Bs@®(tr ByBs)\o(dB;) = B,I. Further to evaluate the integral of
tr W3A st ' EAss W3 in (3.23), let §® (tr AysA43)dAss be the marginal measure of
Ags. Then a direct evaluation of the integration of tr WsA 3£’ £A,s WS with
respect to this measure yields 68str W4 W3, with

(3.26) Bsp2ps = J;pm (tr AgsA33) §@ (tr AgsAss) dAgs.

Therefore (3.23) is finally evaluated as
(3.27) (2/n1)0[(B2/p2)tr W3 Wo + Bstr W3 Ws] + 0(3).
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Third, we show that the integral of the fourth term in (3.22) is 0(6). Since
|n| < (tr AA")YV2(tr £’ HH' £)Y? < (tr AA")Y251/2
from WoW, + WsW{$ < I where H = (P, W,, P, W;), we have z = tr AA’ —
2(tr AA’)2612 + 5. Hence from (3.18),

‘L G®(2)(—2n + 8)*v(dP;)u(dA)
(3.28) =< L - @®(2)|—2n + 8 |*»(dP1)u(dA)

< L — g®(tr AA’ — 2(tr AA’)V25'2 + 5)|—2n + 6 |*v(dPy)u(dA).

Since
|—2n + 6% < 8(tr AA")%?6%2 + 12(tr AA’)8% + 6(tr AA")Y/2652 + &3,

and since 6 = 0, the right side of (3.28) is further bounded above by
329 YiLic L —q@®(tr AA’ — 2(tr AA")Y2512) (tr AA " )W-D/250+0/2), (dA),

where c¢; = 8, c; = 12, ¢cs = 6 and ¢4, = 1. We split the domain of this integral into
Ey= {tr AA’ < 1} and E, = {tr AA’ > 1}. On E,, by (3.18) replacing (tr AA")'?
in the inside of ¢® by tr AA’, and changing A into (1 — 26'/2)/24 for § < %,
(3.29) is shown to be 0(8), while on E,, it is 0(§) from the boundedness of ¢®.

Consequently, noticing that the denominator of the ratio R is simply D =
[ 7 Q(tr AA")u(dA), we obtain

LEMMA 3.1. The ratio R in (3.15) is evaluated as

D n 2
where B = [ 7§V (tr AA’")u(dA), W;’s are defined in (3.13), B, and f3; are given
by (3.25) and (3.26), respectively, and 0(8) is uniform in Z.
LEMMA 3.2.
(1) tr WiW,o =tr X(X'X + Vas3) ' X' (I + Ty)!
(2) tr Wé W3 = —tr(I + Tz)_l + ny
3) B2/Bs = M = n; + ns — ps

PROOF. The proofs of (1) and (2) are straightforward but tedious (see the
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Appendix). To prove (3), consider the marginal density of A,; and A3 with respect
to l A22A 212 | (M_pz)/szggdAzai

h(tr A22A2,2 + tr A23A 2’3)
= f GP(tr ApAds + tr AgsAds + tr AssAds) X | AssAds| ™ P92 dAg,.
G/(Pa)

As before, decompose As2 as Az, = BQ;, with @, € &(p2) and B, € Gr(p-). Then
the marginal measure of B, and A,; is given by

(3.30) ¥(dBs, dAss) = h(tr BoBs + tr AsAgs)| BoB4 | M2(11(b%)™/2)dBadAss.
Note that

Bape = f tr BoBsy(dB;, dAz;3) and Bep.ps = f tr AssAgy(dB;, dAgs).

Define 32 = (bij), A23 = (a,‘j), L =tr B2B2’ + tr A23A2/3, €y = tr A23A213/L =
2 a?j/Ly e = b?t/L (I, = 1’ ) p2)’ €ivp, = bnz+1,i/L (L = 2’ 0y p2"'1)’
Citpyt(pp—1) — b,z.'.g,,‘/L (l = 3, vy, P2 — 2), sy, and €py(pg+1)/2 = bf,z,l/L Further
extend the domain [0, ®) of b; into (—%, ®), which simply gives a multiplicative
constant, say ¢y, to the right side of (3.30), and let

K= f Coh(tl' Bngl + tr A23A2,3) d32 dA23.

Then since coh(tr B;B; + tr A23A33)/K is a spherical density of bii’s and q;;’s, L
and e = (e, €1, * * *, €p,(p,+1)/2) are independent and e obeys a Dirichlet distribution
D(pip:2 /2, %, -+, '%) (see, e.g., Kariya and Eaton, 1977). Hence, letting N =
J LE™2¢,h(tr ByBj + tr AssAds) dB,dAss, which is finite since 8, <  and
B3 < o, we obtain

Bspzps/KN = E(eo []72, e™M7?).

This is directly evaluated from the formula (77.9) of Wilks (1962, page 179).
Similarly, evaluating

B2p2/KN = B[S0 ¢; [12, €]

- M-i/2 (Pa+1)/2 (M-i)/2
= X2 E(IIEZ &™) + 22077 Ele TI72, 7)

and computing the ratio 8.p./Bsp.p; yields
X2 (M =i+ 1)/peps + Y 1/peps = M/ps.
Hence 3./8; = M, completing the proof.

Now from these lemmas and the general argument given in the first part of
this section, Theorem 3.2 is obtained.

Testing independence. Again let Z be an n X p random matrix with pdf (3.5).
In the present problem, let Z = (Z,, Z,) with Z;: n X p; i =1, 2), ® = (0,, 0,)
with®;: n X p; (i=1,2) and 2 = (Z), Zi;: p: X p; (i,j =1, 2) and p; + p» = p.
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We consider the problem of testing Z,, = 0 where n = p. For simplicity, we
assume © = 0. Write Z’Z = S = (S,;) with S;; = Z!Z;. Under the pdf (3.5), the
problem remains invariant under the group & = G/(p:) X G/(p;) acting on the
left of Z by Z — (Z,A{, Z,A}). With © assumed to be zero, S is sufficient and a
maximal invariant statistic and a maximal invariant parameter are, respectively,

the latent roots {d; = *** = dmin(p,pp} Of S128% 82181 and the latent roots
{p1 = -+ = Pminpypy} Of 21222 2 21i'. Hence without loss of generality, let
p1 < p; and

V I, T\ . _
(3.31) = (F’, I) with T = (4, 0)

where A = diag{p:, - - -, pp,}- With this 77, the ratio R in (2.3) is R = N/D where
(3.32) N=N(a) = f | =712 (tr Z'ASA’)u(dA),
g4

where D = N(0), A = (& %,) and u(dA) = %, | AiA! | ") dA; (see Schwartz,
1967, for the normal case).

THEOREM 3.3. Under Assumption 3.1 with § = q and A = A, the test based
on the critical region

(3.33) tr 81282482, 871 > ¢
is LBI for testing Z12 = 0 vs Z12 # 0 under the pdf (3.5).

The proof is similar to the GMANOVA case and omitted. The constant ¢ in
(3.38) does not depend on g because the null robustness of the test in (3.33) holds
(see Kariya, 1981).
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APPENDIX

Proof of (1) and (2) in Lemma 3.2. (1) Note that U, = (Z12, Z13), Us
= (Zsg, Zs3), (Wa, W3) = U,C’" = (Z1,C3 + Z13C3, Z13C33) and C(U1U; +
U4U,)C’ = I, where C = (C;;) € &. Write Ui U, + UsU; = C7'C’! = (H;j)
@,Jj=2,3).

Then
Coo = (Hypy — HaysHzd Hap)™? = Hz% and Cj = —Hz3 H3Cho,
while

Hyy = Z{3Z15 + Vi, Hp = H3p = Z13Z15 + Vs and Hy; = Z{3Z,3 + Vss.
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Hence
W, = Z1,C3 + Z13C33 = (Zy; — Z13H31 Hyy ) Hz 42
= [Z12 = Z13(Z{3Z13 + V33) N(Z 13212 + Vaz)]ngl.éz
= [Z1e — 213(Z13205 + )N 21324y + Va2 Vi) |H3%
where Z~1~3 = Z13 V332, Here using (Z:{3Z:13 + )7 =1-Z{3I+ Z13Z}3)"*Z,5 and
U+ 213233) =1— I+ Z13Z213) 21w 21,
Wo = [Z1o — (I + Z1s213) ™ (213213210 + 213 V3d? Vip) |HZH
=[(I + T2) ™ (Z12 — Z13 V33 Vi) JHR Y,
where Ty = Z13 V33 Z{5. On the other hand, using the same relations
Hys=271712+ Voo — (Z12Z15 + Va3)(Z13Z13 + Vs3) N Z {3215 + Vi)
=Z{Zn+ Voo — (ZisZos + Vas Vi'®) (ZisZ1s + )N (Z 15 Zan + V32 Viy)
= Vas+ X'X,
with X = (I + T2)™V*(Z12 — Z13 V33 Vs3). Therefore,
tr WiW, = tr( + To)'X(X’' X + Var3) ' X/,
as is to be proved.
2) tr WiWs = tr Z15(Z13Z13 + Va3) ' Z{3
=tr Z15(Z {32 + D724,
=tr ZuZis — tr 22U + Z1sZ15) " 213215
=tr To(I + To) ' =n, — tr(l + T,)™ L.
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