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ESTIMATION OF A SYMMETRIC DISTRIBUTION!

By SHaw-Hwa Lo

Rutgers University

Suppose that F, is a population which is symmetric about zero, so that
F(.) = Fo(- — ) is symmetric about 6. We consider the problem of estimating
Fy (shape parameter), both ¢ and Fy, and F based on a random sample from
F. First, some asymptotically minimax bounds are obtained. Then, some
“estimates are constructed which are asymptotically minimax-efficient (the
risks of which achieve the minimax bounds uniformly). Furthermore, it is
pointed out that one can estimate F,, the shape of F, as well without knowing
the location parameter ¢ as with knowing it. After a slight modification,
Stone’s (1975) estimator is proved to be asymptotically minimax-efficient in
the Hellinger neighborhood.

1. Introduction and main results. In their fundamental work, Dvoretzky,
Kiefer and Wolfowitz (1956) proved that the empirical distribution function
(e.d.f.) is asymptotically minimax for estimating a distribution function (d.f.)
belonging to the collection of all continuous d.f.’s. Twenty years later, Kiefer and
Wolfowitz (1976) reopened this study and proved that the e.d.f. remains asymp-
totically minimax even if the collection of distributions is reduced to all concave
(or convex) d.f.’s. Recently, Millar (1979) suggested a general problem: Given a
collection C of distribution functions, when is the e.d.f. asymptotically minimax
for estimation in this class?

In this paper, Millar gave sufficient conditions and some necessary conditions
on the class C for making the e.d.f. asymptotically minimax. The collection of
distribution functions with increasing failure rate (IFR), and the collection of
distribution functions with decreasing failure rate (DFR) all satisfy the sufficient
conditions. In the same paper, Millar also considered the estimation of distribu-
tion functions among the collection of symmetric distribution functions with a
known center §. He showed that the e.d.f. fails to be asymptotic minimax in this
class; instead, the symmetrized e.d.f. around 6 serves as an asymptotic minimax
estimator.

Now some questions arise: (I) If we assume the symmetry around an unknown
center 0, is it still possible to find a minimax estimator for the d.f. and if so what
is it?

Suppose that F, is a distribution function which is symmetric about 0, so that
F(.) = Fy(- — 0) is symmetric about 6. Consider the problem of estimating 6, F,,
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both 6 and Fo, or F based on a random sample from F in each of the following
cases:

A. Fy known, 6§ unknown,

B. F, unknown, § known (= 0 without loss of generality),
C. Fy, unknown, 6 unknown,

D. F completely arbitrary.

Case A is the classical one in which the maximum likelihood estimator 6, is
asymptotically optimal (efﬁcnent) in many ways. To estimate F in this case, one
can simply replace 6 by 6, and this turns out to be an optimal (efficient) estimator
of F, with the limiting process Yf, where Y is a N (0, 1/I(F,)) random variable, f
is the density of F, and I(F,) is the usual Fisher information. In Case B, Millar
(1979) has shown that e.d.f. symmetrized about zero is an asymptotically minimax
estimator of Fo(=F) (with limit process W?(F,;) = %(W%F,) — W°(1 — F,)),
where W°(F,) is a Brownian bridge process composed with F,). For Case C,
C. Stein has a paper in the Proceedings of the Third Berkeley Symposium (1956).
In this famous paper, Stein asked the question, “When can one estimate 8 without
knowing the shape as well asymptotically as one does knowing the shape?” He
gave a simple necessary condition which indicated that it is possible to estimate
the location parameter 6 adaptively. Complete definitive results were later ob-
tained by Beran (1974, 1978), Sacks (1975), and Stone (1975). Bickel (1982)
considered more general conditions for adaptation. He came up with some
sufficient conditions of constructing estimators adaptively. A counterpart of the
question is the following: (II) “Can one estimate the shape without knowing the
center 6 as well asymptotically as one does knowing it?” Case D has no structure
(F is no longer assumed to be symmetric); in this case the e.d.f. is well known
(see Dvoretzky, Kiefer and Wolfowitz, 1956; or Millar, 1979) to be an asymptotic
minimax estimator of F. The basic aim in the article is to give complete answers
to questions (I) and (II).

To answer (I) and (II), we first find asymptotic minimax bounds for estimating
F (F, and 6 jointly) and F, in Hellinger shrinking nelghborhoods (Theorems 1
and 2). We then give the constructions of estimators F,, F,, of F and Fy,
respectively. We show that F,,, FOn achieve the asymptotic minimax bounds

“uniformly” in the neighborhoods (Theorem 4). This is a stronger optimality
property than asymptotic efficiency (note that an efficient estimator of F (or F,)
is not necessarily an asymptotically minimax-efficient estimator in this case).

The constructions of F, involve the estimation of unknown center §. We prove
that, after a slight modification, Stone’s estimator 6, (1975) will be asymptotically
minimax-efficient (part (ii) of Theorem 3) in the sense that the mean square
errors of 0, are always smaller or equal to 1/I(F) uniformly in the Hellinger
neighborhood of F as n tends to infinity. Before explaining the meaning and
implications of our findings with some details, we state the results as four
theorems.

We observe random variables X;, X;, - -, X, and assume that they are i.i.d.
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from a symmetric d.f. F(x) = Fo(x — 0) with density f(x) = fo(x — 0) on the real
line. Let I(F) = I(Fo) = [ (f$/fo)?*fo dx denote the usual Fisher information for
the location parameter. For any ¢ > 0, consider the following Hellinger ball:

B.(F;c) = {Fn(x): F,(x) is a d.f. symmetric about some 8,

) 1/2
and h(F,, F) = [I (VdF, — \/ﬁ)z} < c/Jﬁ}.

Let ¢(—o, ) denote the collection of all continuous functions on R. Consider
the loss function /: ¢(—o, ©) — R* which is subconvex (i.e., #7[0, «] is closed,
convex, and symmetric set in ¢(—o, ®) for every a = 0), such as Z(y) = | y ||l =
sup:|y(¢) | or #(y) = [ | y(t)|? dt. For discussions of these loss functions, the
readers are referred to Millar (1979).

The following theorem was first given by Lo (1981); one can derive similar
results from a recent paper by Begun et al. (1983, Theorem 4.2, and Remarks 4.4
and 4.5).

THEOREM 1. Let, F, B,(F; c) and 7 be as described above, and let I(F,) < oo.
Then one has the following inequality on the estimation of F:

lim,_olim,,_,infysupr ep (r.c) f f /[n"*(y — F,)]b(x, dy)F7(dx)
R" & ¢(—,00)
(1.1)
= E /[W2F) + Yf),

where F}, denote the product of n copies of F,,, the infimum is taken over the class
of all generalized procedures (see Millar, 1979, page 235), and W?(F), Yf are two
independent processes distributed as described in cases A and B, respectively.

It is easy to see that F, € B,(F; ¢) if and only if F,(x — 8) € B,(Fy; ¢). Let
Fn(Fo; c) denote the collection of all B,(F; ¢) such that F is a translation of F,
by some value. Let Fy, denote the shape of F,; i.e., Fy, is a d.f. symmetric about
zero and Fy,(x) = F,(x + 0,)), where 0, is the center of F,,.

THEOREM 2. Suppose the assumptions in Theorem 1 hold. Then we have

lim,_,..lim, e infy SUPF,e 5,70 f f © /[n*(y — Fon)lb(x, dy)Fr(dx)
R"™ &J¢(—00,00)
(1.2)
= lime— e lim,, inf, supg ep, r.c) f f Z[n"*(y — Fo,)]b(x, dy)F(dx)
R Je(—w0,0)
= E /[W?(F,)].

For estimating F, (or Fy,), we first estimate 6, (= center of F,,).
The following theorem tells us that one can estimate 6, uniformly well
(asymptotically minimax-efficient) in the Hellinger ball B, (F; c¢).
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THEOREM 3. (i) There exists a nonrandomized and location invariant esti-
mator 8, such that 0,(-X,, -+, =X,) = —=0,(Xy, ---, X,,), and n"%(8, — 6,) =
0,(1), uniformly in B,(F; c).

(ii) There exists a nonrandomized estimator 0, satisfying (i) above. Furthermore,
there exists a positive random sequence {62(0,” F,)} under {F,} such that for any
sequence {F,.} 71, F, from {B,(F; c)}, ZIn"*6, — 0,)/5(0,; F,) | F.] = N(0, 1) as
n — o, and lim,_.SUpg,ep, (r.0 (0n, F,) = 1/I(F,).

Let F,(x) denote the usual e.d.f. from a d.f. F,. Let F‘,,(x; 0) stand for the e.d.f.
symmetrized about 6; i.e.,
(1.3) Fo(x; 0) = W%{F,(x) + 1 — F,(20 — x)}.

It is clear that F,(x + 0; 0) is a symmetric d.f., symmetric about zero.
A loss function is of Kolmogorov type if Ax) = g(|| x || ), where || || denotes
the sup norm and g is a continuous nondecreasing function defined on [0, ).

THEOREM 4. (i) If 6, satisfies part (ii) of Theorem 3 and the loss function / is
bounded and of Kolmogorov type, then

lim, . limy, ... SUPF €5, (7ie) f £[nY*(Ey (-5 6,) — F)|Fr(dx) = E/[WO(F) + Yf),
Rﬂ
and hence F,(-; 0,) is a locally asymptotically minimax-efficient estimator.

(ii) If 0, satzsfzes part (i) of Theorem 3, then with any bounded continuous loss
function 4 F,(- + 8,; 8,,) achieves the lower bound in Theorem 2; i.e.,

limc_)oolim,,_mSuppney;(po;c) f /[n1/2 (Fn( -+ 0_"; 0_n) - FOn)]FZ (dx)
Rn

= limc—m:limn—moSupF"eBn(F;c) f /[nl/z(ﬁn( -+ 0_n, 0_,,) - FOn)]FZ (dx)
Rﬂ

=E/[W{(Fo)],
and hence F,(- + 8,; 8,) is an asymptotically minimax-efficient estimator.
Part (i) of Theorem 4 gives an affirmative answer to question (I). Part (ii) of

Theorem 4 not only answers question (II) affirmatively, it also shows that our
estimators behave uniformly well (minimax) on %, (Fy; c) for large n.

REMARK 1. To see how much we gain from the knowledge of symmetry, note
from Theorem 1 that

L 1
if F(x)s2

- F(x)[1—2F(x)] + f2(x)
2 I(Fo)

-F@®I2Fx) —1] f(x) . 1
9 +I(F0) if F(x)>§.

(1.4) Var[W2(F)(x) + Yf(x)]= l
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On the other hand,
(1.5) Var[ Wo(F)(x)] = F(x)(1 — F(x)).

(Note that W°(F) is the limiting process if we use the e.d.f. as our estimator.)
Comparing (1.4) and (1.5), we find that the gain is

Flx) fx) 1
(1.6) 2 1) if F(x)=< 7
and

1-Fx) &) . 1
(1.7 2 _I(Fo) if F(x) >2 .

We claim that both terms (1.6) and (1.7) are nonnegative. To see this, we may
assume without loss of generality that f is symmetric about zero.
For any x, define

pr(t) = (&) fA() /f (x),

where
-1 if t=—|x]|
Y(t)= 0 if —Jx|<t<|x]
1 1 if t=]x].
Let

B=(=f"/""*) = 2(p4/ Il pll®).
It is easy to check that 8 L py (that is, {8, pf) = 0). So
IF) =812+ 4/l pI®)
and therefore
I(Fo) = 4/l psll > = 2f*(x)/F ().

The first part (1.6) of the claim thus follows. With the same arguments one can
easily show that (1.7) is also nonnegative.

REMARK 2. Schuster (1975) considered the similar problem and proposed a
similar estimator. He showed that the proposed estimator is asymptotically better
than the e.d.f. for the cases of normal, double exponential and Cauchy. From
Remark 1, one always gains by using this symmetrized estimator as long as 6,
satisfies part (ii) of Theorem 3.

REMARK 3. Our estimators in Theorem 4 may be considered as a continuous
version (piecewise linear) of original estimators since our loss functions are
defined on c(—, ®). The difference between the continuous version and the
discrete version is vn negligible (=0(1/n)).
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REMARK 4. By replacing F by F, one can estimate the real functional T(F)
by T'(F) optimally in the sense of Theorem 1 and Theorem 2 if the functional is
sufficiently smooth (Hellinger differentiable). An example of such a functional
is a quantile of F.

2. Proofs of theorems. The proof of Theorem 1 was first given in Lo
(1981). One can also derive similar results by using Theorem 4.2 (and Remarks
4.4 and 4.5) in a recent paper by Begun, et al., (1983).

We will only provide a sketch of the proof here; for details, see Lo (1981).

PROOF OF THEOREM 1. Let

H(F) = {h(x); J: h*(x)F(dx) < oo, J: h(x)F(dx) = O},

H,(F) = th(x); h € H(F) and h(x) = h(20 — x)},
H,(F) = {h(x); h(x) = a(f’'(x)/f(x)) for some a € R}.

Clearly, H,(F) & H,(F) C H(F), where “®” denotes the direct sum of two
orthogonal spaces. We parameterize the distributions near F by the space H,(F)
@® H, (F). By expanding the log likelihood ratio around F in the ¢/ vn-Hellinger
neighborhood, it is found that the whole experiment under F" can be approxi-
mated by a Standard Gaussian experiment indexed by H,(F) © H,(F) as n tends
to infinity.

Define a map from H,(F) @ H,(F) to a Banach space (with sup norm) B(F)
as follows:

T(h)(t)=J: h(x)F(dx),

where B is the collection of all continuous real functions +(¢) defined on [0, 1]
satisfying v(0) = v(1) = 0, and B(F) = {y o F; ¥ € B}. It can be shown that
(v, Hy(F) ® H,(F), B(F)) forms an abstract Wiener space (see Kuo, 1975).

Let P¥ denote the Standard Gaussian cylinder measure defined on the Hilbert
space H,(F) ® H,(F). The probability measure derived on B(F) under the
mapping 7 is the same as the distribution of W2(F) + Yf, where W(F) and Y
are two independent processes defined in the Introduction.

Now, using some standard results in asymptotic minimaxity theory for Gaus-
sian experiments (see Propositions 2.1 and 3.1 in Millar, 1979; or Le Cam, 1982)
and following the proof of Millar’s Proposition 5.1, one establishes the desired
results. [0

PROOF OF THEOREM 2. The first inequality of (1.2) follows immediately due
to the fact that B,(F; ¢) C #,(Fo; c¢). The second inequality follows from
the same argument of Theorem 1, except here we replace H,(F) & H,(F)
by H,(F).0O
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We can write our estimator F,(-; é,) of F, as follows:
Ea(; 0) = (1/20)[ 301 Lo, 1(X0) + T Lgi,—o (X0)]
= 1/2[Fn(') +1- Fn(2én - )]’

where X;, Xs, -+, X, are i.i.d. from F, (with center 6,), and I, denotes the
indicator function of A.
We can write

Fn('; én) - F.(-)
(2.2) = [Fo(; 0,) = Fu(- = (B — 0.))] + [Fu(- — (0 — 0,)) = Fa(:)]
= To(+; 6,) + Sa(+; 6,) (say).

(2.1)

PROOF OF THEOREM 3. The constructions of these estimators are similar to
those of Huber’s M-estimators and Stone’s estimators (see Stone (1975)). The
details of the construction and the proof are deferred and given in the Appendix.

LEMMA 1. If 0, satisfies part (i) of Theorem 3, then
(2.3) n'?sup, | S, (x; 8,) — [F(x — (8, — 6,)) — F(x)]| =, 0,
uniformly in B,(F; c).

Note that 6,,, 0 are the centers of F,, and F, respectively.

PROOF. Since S, (x; 6,) can be written as [Z~@% dF,, (2.3) equals

%= (8,—6,,)
f (dF, — dF)

o 1/2
1] war - vaw}

n?sup,

< n'%sup,

0 1/2
. ‘{ J: Lixx-3,-0101x~ (8, -0, (- ) (VAF, + JdF )2}’

< ¢ sup;,

2+ 8,0, 1/2
{ [ s + m)z}

~ 18,651

The last expression above tends to zero in probability, uniformly in B,(F; c), in
view of the fact that 8, — 6, = O,(n~"/?) uniformly in B, (F; c),

x+| 0,—0,|
f dF =F(x+ |0, —0,]) — F(x — |8, — 6.]) > 0

—10,=0,1

uniformly in B, (F; c) and x € R, and

fx+|i,,—o,,| %
dF,—dF) | =—. O
] ( ) N

ll in_ﬁnl
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LEMMA 2. Let 6, be as described in part (ii) of Theorem 3. Then
(2.4) n'28,(x; 6,)/5(b,; Fn) - N(O, f2(x)), uniformly in B,.(F; ¢) and in «x.
PROOF. From Lemma 1, n'/2S,(-; 6,) = nY2[F(- = (0, — 6,)) — F(-)] + 0,(1)
uniformly in B, (F; ¢). The lemma follows from the fact that
n[F(x = (6 = 0,)) = F(x)] = n**(§, = 6,)f(x — A(d — 6,))

forsome 0=<=A<]1,

b

part (ii) of Theorem 3, and uniform continuity of f(x) (since I(F,) < o). 0

LEMMA 3. If 0, satisfies part (i) of Theorem 3, then

(2.5) sup, | n'2T,(x; 0,) — n'2[F(x; 6,) — Fa(x)]| —5 0
uniformly in B, (F; ¢) and therefore
(2.6) n'2T,(x; 0,) = WO(F)

uniformly in B, (F; c).

ProoF. Clearly,
nY2Tu(x; B,) — nY?[F,(x; 0,) — Fa(x)]
= =’ [Fo(x = (8, = 60)) — Fu(x)] — %en'*[F, (26, — x) — F,(20, — )],
By Lemma 1, up to o0,(1), the first term on the right-hand side of (2.7) equals
(2.8) —n?[F(x — (6, — 0,)) — F(x)] = n'*(8, — 0,)f(x) + 0,(1)

uniformly in F,, € B,(F; ¢) and x € R. This equality (2.8) follows from the same
arguments as in Lemma 2.
The second term on the right-hand side of (2.7) can be further decomposed as

—Y%nY[F, (20, — x) — F,(28, — x)]
(2.9) — %nY[F, (20, — x) — F,(20, — x)]
—%nY[F, (20, — x) — F.(20, — x)].

Since | 0, — 0,| = 0,(n""/?) uniformly in B, (F; c), the first term and the third
term of (2.9) cancel each other asymptotically (uniformly in x € R). (See Theorem
2.11 of Stute (1982) or Shorack and Wellner (1982).)

Thus (2.9) equals (up to 0,(1))

—%n'?[F, (20, — x) = Fo(20, — x)]
= —%n"?[1 — Fo(x — 2(8, = 6,)) — 1 + Fo(x)]
= Y%n'’[F,(x — 2(0, — 6,)) — Fa(x)]
= —n'2(8, — 0,)f(x) + 0,(1) (by Lemma 1).
The first part of Lemma 3 follows now from (2.8) and (2.10).

(2.7)

(2.10)



ESTIMATION OF A SYMMETRIC DISTRIBUTION 1105

The second part of Lemma 3 is a consequence of the first part of this lemma
and the fact that n'?[F, (x; 6,) — F,(x)] > W?(F) uniformly in B, (F; ¢).O

LEMMA 4. The weak limits N (0, f (x)) and W2(F) obtamed in Lemmas 2 and
3 are independent provided that 0 is location invariant and 6, n(—%1, —X2, +++, —Xp)
= —0, (21, Xz, Xp).

ProOF. In view of (2.3) and (2.5), we only have to check that the processes
nY*[F (x = (6 — 6,)) — F(x)13(6s; F)™* and n"?[F,(x; 0,) — F,(x)] are asymp-
totically uncorrelated (both processes are asymptotically Gaussian) for each x.

To see this, we look at

f f [0n (X1, %2, - - -, %) — 0,1F (x;0,) T] 2r dF (%)

=f "'f [én(zon_xly"'720n_xn)_0n][1_Fn(20n_x;0n)]

* H ;'1=1 an(zon _xi)

=f f [20n_én(xl"' xn) on]F (x 0 )H ld(_F (xl))__
and conclude that E = 0. The lemma thus follows. 0

LEMMA 5. Let W(t) be a mean-zero Gaussian process on (—®, ), and let X
be a mean-zero normal random variable independent of W(t). For any continuous
function f(t) such that f(t) = 0, we have

SUPo=a=1 EE{SUP_ccico | W(E) + of ()X |} = Eg{sup—ccice | W(2) + f(O)X ]},

where g is a positive nondecreasing function defined on [0, «).

PROOF. Since g is a positive monotonic function, we only have to show that
for every « € [0, 1], and ¢ > 0,
P{sup-cw<i<o | W(t) + af (#) X | = ¢} > P{sup-w<i<w| W(t) + f(£)X]| =< c}.
Consider a finite set {—0 < t; <, < --- < «}. By Anderson’s lemma (1954),
Pisup,| W(&) + af (t)X| =< c} = Pisup,| W(t:) + f(t)X]| = c}.

The above inequality is true for all finite sets {t;}%,. Let {t;}i=; be a dense
subset of R’. By taking the limit, the above inequality still holds if we take sup
over all {¢;}%,.

The lemma follows from the fact that W(t) is continuous with proba-
bility 1.0 ’

PROOF OF THEOREM 4, PART (i). Let 6, be the estimator described in part
(ii) of Theorem 3. From (2.2), we can write

n2[F,(-; 6,) — Fo(-)] = n2T,(-; 6,) + n'/2S,(-; 6,).
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By assumption, # is of Kolmogorov type. There exists a bounded continuous
nondecreasing function g such that

EZ[n2To(-5 6,) + n'/28,(:; 6,)]
(2.11) = Eg{|| n2T0(+; 6) + n"28,(:; 0,) ||}
= Eg{I n"’To(:; 02) + 8(0a; Fn) - (n28,(:5 6,)/8(8,; Fo)) llw}.
It follows from Theorem 3 that, for any ¢ > 0,
| lim . SUPF, 8,750 (B3 Fr) < 1/1(Fo) ™2,
Therefore, for any {F,} from {B,(F; c)},
limp o Eg{ | N2 T (-5 02) + n280(+; 0,) I}
212 = limywSUPozas1/trg 2 EG L n2 T (-5 0,) + o - (nV28,(+5 6,)/6 (6 F) |1}
We claim that the right-hand side of (2.12) cannot exceed
(2.13) SUPo<as1/(ry 2 EgL | WI(F)(-) + of (1)Z || =},

where Z is a standard normal random variable.
If the claim is false, then there must exist an ¢ > 0, a subsequence {n;} and a
sequence {an,}, 0 < an, < 1/I(F,)"?, such that

214 lim,—wEg{ | n}2To,(-; 0n,) + an, - (n¥2S5,(+; 0,,)/8 (00,5 Fo)) |}
' > SUPozazi/iry s Eg{| WOF)(-) + af ()Z ||} + .

Let ay be the cluster point of {ay,}. Clearly, 0 < oy < 1/I(F,;)"/2 From (2.14), we
have

limnk—hmEg{ " n}!ﬂ Tn,,( *3 én,,) + (1] (nlle/2Sn;,( 5 én,,)/a (onk; Fn;,)) “ °°}
= SUPosas1/1rg 2 EEL Il W2 (F)(-) + of ()Z o} + e.
The left-hand side of (2.15) converges to
Eg{ll W2(F)(-) + aof (+)Z ||}

by Lemmas 2, 3, and the fact that loss function is bounded and continuous.
Comparing with the right-hand side of (2.15), we obtain a contradiction. The
claim thus follows.

By Lemma 5, the value of (2.13) equals

(2.16) Eg{| Wo(F)(-) + Yfll}, where Y ~N(0, 1/I(F,)).

Part (i) of the theorem follows easily from (2.12), (2.13), (2.16) and
Theorem 1.

(2.15)

PROOF OF PART (ii). Recall that, for F, € B,(F; ¢),
n2T, (-5 8,) = n2[F,(; 8,) — Fu(- = (8, — 6,))]
and
n'2T,(- + 8,; 0,) = n2[Fu(- + 8, 8,) — Fu(- + 6,)],
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where F,(- + 6,) (the shape of F},,) is symmetric about 0. By arguments similar
to those in Lemma 3, we obtain

|nl/2T,.(x + gn; 5") - nl/Z[Fn(x + 0n, on) - Fn(x + 07!)]' -0

in probability, uniformly in F, € B, (F; ¢) and x € R. Combining these with the
fact that

nl/z[Fn(x + on; 0n) - Fn(x + 0n)] —> Wg(FO)’
we have
nl/zTn(x + 0_n; B—n) —> Wg(FO)

uniformly in B, (F; ¢).

The second equality of part (ii) follows easily by going through a subsequence
{ny} argument. The first equality of part (ii) holds because 8, is location invariant
(see Appendix) and

limn—vwsupFnEBn(F;c) J;n /[nl/Z(F!n(' + yn; En) - FOn('))]FZ(dx)

= lim,_,«SUPFseB,(F0) J; s [NYA(Eu(- +8,; 82) — Fo.(-)IF2"(dx)
for all y € R such that F*(.) = F(- —y).0

APPENDIX

PROOF OF THEOREM 3. (i) Constructions of §,. We use the construction in
Huber (1964). Let ¢ (¢) be a bounded function. Assume y is antisymmetric about
zero. We further assume that '’ exists and is positive on the whole real line (an
example is ¥ (x) = tan"(x)). Let 6, be the solution of

(A1) T yl(x —t) =0.
It is easy to see that 0,(—x1, -+, —=%,) = —0,(x1, -+, x,) and 0, (x; + &, X2 + o,
e, Xp + a) = 0,(x1, Xo, - -+, x,) + « for any real a. Since ¢ is continuous and

antisymmetric about 0, one can define a continuous functional

(A2) AE Fn) = .[«, Y(¢ — £) dF,(2).

It is clear that 6, is the only root of A(&; F,,) = 0 if F,, is symmetric about 0,.

We claim that if 0,(x,, ---, X,) is defined as above, and x1, X2, -+, X, are
simple random samples from a certain symmetric d.f. F,, then 8, — 6, — 0 in
F,-probability uniformly in B, (F; c).

To prove this, consider n™* ¥ %, ¥/(x; — 8, — ¢), for some ¢ > 0, where x; ~ F,,(x)
foralli=1,2, ..., n, and F, is symmetric about 6,,.

If ¢ is bounded and continuous, and if F is symmetric about 8, then by the law
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of large numbers
(A3) n1¥%, ¢(x,—0—¢)— f Y(t—0—¢)F,(dt) >0 in F,-probability

for any sequence {F,} from B, (F; c¢). Since

J: Y(t— 0 — e)F,(dt) — J: Y(t — 0 — e)F(dt),

we have

(A4) nt Yk Y(x —0 —¢) > A0 + ¢ F) <0 in F,-probability.

Similarly, we have

(A5) nTIYE Y —0+¢e) > A0 —¢ F)>0 in F,-probability.

From (A3), (A4), (A5) and the monotonicity A\, we conclude that
Pllnel0 —e 0+ ¢]|F.} > 1

for any sequence {F,} in B,(F; c). Furthermore, it is easy to see 6, — § — 0
as n — o, this implies 8, — 6, = Or, (1) uniformly in B, (F; ¢). The claim thus
follows.

By the mean value theorem, there exist A;, 0 < A;<1,1<i< n, such that
0=73k ¢(x: — 8,)
=Xk W = 0.) — (6, — 0.0 (x; — 0, + Ai(8, — 6,))).
Therefore, under F,,
(A7) nY*(8, = 60,) = n? %, Y(x — 6,)/n" Dhy Y (i — 6; + A8, — 6,)).

The numerator of the right-hand side in (A7) tends to N 0, [Z% ¢*(x — 0)F(dx))
(since 6, — 6) uniformly in B, (F; ¢) and the denominator of the right-hand side
in (A7) tends to a positive value, [*. ¢’ (x — 0)F(dx) (¢’ is positive by assumption)
uniformly in B,(F; c) by the above claim. Therefore, n'/%(8, — 0,) = 0,(1)
uniformly in B,(F; c¢); thus part (i) of Theorem 3 follows. O

(A6)

(ii) Construction of §,. We use 8, as our preliminary estimator, the construc-
tion of 6, is the same as that given by Stone (1975). Roughly speaking, 6, is the
one-step maximum likelihood estimator, using a Newton-Raphson approach. For
details of the construction, readers are referred to Stone (1975). We will show
that this modified Stone’s estimator 6, satisfies part (ii) of Theorem 3. (Note
that the preliminary estimator 8, given here is different from that given by Stone
(1975). The main reason is that we need a preliminary estimator 8, which behaves
uniformly well in the neighborhood of F,.) )

For any a > 0, let {F,} be an arbitrary sequence of symmetric d.f.’s F, from
{B.(F; a)}. Where F is a symmetric d.f., let 6, be the center of F,, and let 6 be
the center of F with finite Fisher Information. To establish the propositions and
lemmas below, we only have to show that they are true under an arbitrary
sequence {F,} from {B,(F; a)}.
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To avoid confusion, we will use similar notation to that of Stone (1975). We
observe x; + 6,, xo + 0,, - - -, x, + 0, of size n from F, and wish to estimate the
unknown center 6, from this sample. We will use “F*” to denote the d.f. which
is symmetric about origin (i.e., we shift F, by 6,). Therefore, at the nth stage, x;,
Xz, * -+, X, are i.i.d. from F} (even we observe {x; + 0,}%,;). To avoid ambiguity,
we specify underlying d.f. everywhere. For example,

flx;r F}) =f¢(x—y)Fi(dy),
f' (51 F%) = (3/0x)f (x;r; F%), L(x; 13 F,)

=f"(x;r; F3)/f(x; 1, F3), A(r; c; F7)
= f L2(x;r; F)g (x/c)f (x; r; F%) dx, fo (x; 13 F%)
= % Sha ¢ (x —x;r; F¥)(where x; ~ F¥), f.(x; r; F%)

= 2 fulat T 03 F) + folx + T = 0,3 F),

falx; r; F%) = (8/8x) fo(x; 7 F¥), Lo(x; 13 F)
=fr(x; 1 F2)/fu(x; 1, F¥), and  A,(r;c; F¥)

=f13?.(x; r; F¥)g(x/c) fulx; r; F¥) dx,

where ¢ (x) is standard normal density, ¢(x; r) = r™'¢(x/r), and g is defined in
Stone (1975).

It is straightforward to check that all the propositions in Sections 2 and 3 of
Stone (1975) hold uniformly in {F,} belonging to the Hellinger ball.

LEMMA Al. For any bounded real value function g(x) with finite support, and
for rit = 0(n''?), we have

-0

fg(x)f(x; rn; Fp) dx—fg(x)f(x; rn; F) dx

as n-—ow,

SUDF, eB,(F;a)

Proor. For any fixed x,

I'n

1 —_
[f(x; rn; Fr) — f(x; s F) | = ‘ f .y ¢<x y)[Fn(dy) — F(dy)] l
1 x — 12 o
= ‘{f = ¢2(—1)(x/c7ﬁn + \/cﬁ)z} =
—o I'p rn ‘/;l—
< constant - a/r,vn — 0, independent of x and F, € B,(F; a)

- (since r;! = o(n'?).
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Therefore,

fg(x)[f(x; Tn; Fn) — f(x; ra; F)] dx | < 2MA(a/r.Vn) — 0,

where || g(x) ||« = M and the support of g C [-A, A].O

The proof of the following lemma is similar to that of Theorem 4.1 in Stone
(1975).

LEMMA A2. Assume that r;* = 0(n'?). Then

limc—bm;n—bmianneB,,(F;a)A (rn; C, Fn) = I(F)~

PROOF. According to Huber (1964),

I(Fo) = sup,Er(y’ (x))*/Ery*(x),

where the sup extends over all ¢ € C} such that Epy2%(x) > 0. Choose ¢ > 0. We
can find a ¢ € C; such that [ ¢?F(dx) > 0 and

2
(A8) (f y[x’(x)F(dx)) = (1 — e)I(F) f Y*(x)F (dx).

Thus for r, sufficiently small

(A9) (f ¥ (x)f(x; ra; F) dx) = (1 — 2)I(F) f Y2(x)f(x; ra; F) dx.
Choose ¢ > 0 such that Y(x) = 0 for | x| = c. Then

<f VY (x)f(x; rn; F) dx)
= (f Y(x)f'(x; rn; F) dx)

S( f VA(x)f(x; ra; F) dx) f_ L2(x; rn; F)f(x; 1y F) dx.

Therefore, [, L*(x; rn; F)f(x; rp; F) dx = (1 — 2¢)I(F). On the other hand, with
r, and ¢ given above, one also has

(f ¥/ (x)f(x; ra; F) dx) = <f V2(x)f (x; rn; F) dx)

. ( I L2(x; rn; Fo)f(x; 13 Fy) dx)-

Therefore,

(A10) f_ Lz(x;rn;Fn)2< f sl/’(x)f(x;rn;Fn)dx) / f Y2 (x)f(x; rn; Fy) dix.
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By Lemma Al,

(A11) f\b'(x)f(x; rn; Fr) dx—>fsl/'(x)f(x; rn; F) dx
and

(A12) f Y2x)f (x; rn; Fr) dx — f V2(x)f(x; ra; F) dx

uniformly in B, (F; a).
Thus the result follows from (A9)-(A12).0

In his Section 4, Stone (_1975) constructed a nonadaptive estimator. Based on
our preliminary estimator 6, we also consider the similar estimator.

o _ 1
O = O = A o FD)
. f L(x; ra; F2)g(x/c)(falx + 8 = On; 1o FX) — f(x; rn; F7)) dx.

One can mimic the proof of Theorem 4.2 in Stone (1975) to obtain the following
proposition.

PROPOSITION Al. Suppose that c,/n*~ré = 0,(1) for some ¢ > 0, and {F,} is
an arbitrary sequence from {B,(F; a)}. Then
(A13) Z(n'*(B, — 0,)/(6(rn, €n)/A(rs; s F3)) | Fu) > N(0,1) as n— o,

where o*(r,, c,) is the variance (up to o,(n~/?)) of the random variable

f L(x; ra; F3)g(x/cn)d(x — Xi; rn; F) dx.
Furthermore,

(A14) lim SUPp—wo?(rn, Cn)/A%(rs; Cn; F¥) < lim, ,1/A(ry; cn; F) < 1/I(F).

PrOOF. The first part of the proposition follows from the same arguments
as given in Stone (1975, pages 278-279). The second part follows from Lemma
A2 and the fact that o2(r,; cn; F*) < A(ry; ca; F¥) + 0(n™Y2) (see Stone, 1975,
page 279, from (4.7) to (4.11)). 0 ‘

The next proposition is similar to Theorem 5.1 in Stone (1975).

_ PROPOSITION A2. Suppose that co/n'ry = 0,(1) for some ¢ > 0. Then
A, (rn; cn; FE)/A(rn; cn; F¥) — 1 in {F,} probability as n — .

ProOOF. The proof of this proposition is exactly the same as that of Theorem
5.1 in Stone (1975), so we omit it. (Note that Proposition 5.1 in Stone, 1975,
holds in our case, too.) O
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Define
N _ 1
0,=190

" An(re; oy FY)

. f Lo (x5 13 FA) (/) (fulx + Oy — Op; 1y FE) — f(x; 1y F%)) da.

PROPOSITION A3. Suppose that c,/n'~ri = O,(1) for some ¢ > 0. Then
Z[n"*@, — 6,) | F,] — 0 in {F,} probability. Furthermore,

lim,, 8UPF,eB,(F) 0> (Fn, €n)/A® (rn; cn; Ff < 1/I(F) for any a > 0.

PrOOF. The first part of the theorem follows from the same arguments as
given for Theorem 5.2 in Stone (1975). The second part of the theorem follows
from the first part of this theorem and Proposition Al, and the fact that {F,} is
an arbitrary sequence from {B,(F; «)}. 0

PROOF OF THEOREM 3, PART (ii). It is easy to see that 0, satisfies part (i)
of the theorem. Choose c¢,/n'~*ré = 0,(1) for some ¢ > 0, and §(4,; F,) =
0(rn, ¢n)/A(rn; ca; F}). Then the theorem follows from Propositions Al, A2
and A3.0
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