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STRONG CONSISTENCY OF APPROXIMATE MAXIMUM
LIKELIHOOD ESTIMATORS WITH APPLICATIONS IN
NONPARAMETRICS!

By JANE-LING WANG
University of California, Davis and The University of Iowa

Wald’s general analytic conditions that imply strong consistency of the
approximate maximum likelihood estimators (AMLEs) have been extended
by Le Cam, Kiefer and Wolfowitz, Huber, Bahadur, and Perlman. All these
conditions use the log likelihood ratio of the type log|f(x, 8)/f (x, 6o)], where
0o is the true value of the parameter. However these methods usually fail in
the nonparametric case. Thus, in this paper, for each 8 # 6,, we look at the
log likelihood ratio of the type log[f(x, 6)/f(x, 6,(0))], where 6,(0) is a certain
parameter selected in a neighborhood V., of 6,. Some general analytic condi-
tions that imply strong consistency of the AMLE are given. The results are
shown to be applicable to several nonparametric families having densities,
e.g., concave distributions functions, and increasing failure rate distributions.
In particular, they can be applied to several censored data cases.

1. Introduction. The strong consistency of approximate maximum like-
lihood estimators (AMLESs), under some regularity conditions, has been investi-
gated by many statisticians, notably Wald (1949), Le Cam (1953), Kiefer and
Wolfowitz (1956), Bahadur (1967), Huber (1967), and Perlman (1972). Each of
the other papers (except for Le Cam, 1953) uses conditions which are stronger
than Perlman’s (1972) sufficient conditions based on dominance or semidomi-
nance by zero of the log likelihood ratio (LLR) of a distribution to the true one,
while Le Cam’s conditions are equivalent to those based on dominance. They
share the common assumption that this LLR is locally dominated (see Perlman,
1972, for definitions).

More specifically, let f(x, 6y) be the true density function and let 8* be any
point in the parameter space. Local dominance requires the existence of a
neighborhood V of 6* such that log[f(x, 8)/f(x, 6,)] is dominated for 8 in V.
However, it is easy to give examples (cf. next paragraph) where the AMLE is
consistent even though this local dominance assumption is violated. This is
especially true in certain nonparametric families where the density functions
exist. While local dominance usually fails for such families, in many instances
the consistency of AMLE:s still can be proved.

One such example is provided by the class . of all distributions F with
decreasing density function f on [0, ). Using f itself as the parameter, we can
still define the maximum likelihood estimator (MLE) 6 to be that decreasing
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density which maximizes the likelihood function. The corresponding F was found
by Grenander (1956) to be the least concave majorant to the empirical distribution
function. The strong consistency of this MLE easily follows from the continuity
of the concave majorant functional or from Marshall’s lemma (1970). However,
2 is not locally dominated; hence all the previous methods fail to apply. It is
natural to consider a more general analytic sufficient condition for the strong
consistency of AMLEs. Examining Perlman’s paper (1972), we notice that his
condition (1.7) is stronger than is needed. The family of all concave distribution
functions on [0, «) is a convex set. Thus, if we consider a log likelihood ratio of
the type log{ f/[(1 — ¢) fo + ¢f]}, we easily obtain an upper bound on this ratio. It
only remains to check some of the regularity conditions and an information
inequality, and these do still hold on % implying the strong consistency of the
AMLEs in # These considerations motivate the basic idea of this paper.

We provide some new general techniques, like those in Wald (1949) and
Perlman (1972), which prove the strong consistency of AMLE (defined in
Section 2). We let © be the parameter space (possibly infinite dimensional) and
let 6, denote the true parameter. For any 6 in © and any neighborhood V,(,) of
6o, we work with LLRs of the type log[f(x, 8)/f (x, 6,(6))], where 6,(0) is selected
in V,(6,) so that for any 6* not in V,.(6,) there exists a neighborhood V of §* on
which log[f(x, 0)/f(x, 6,(0))] is dominated. In the previous example, we take
0.(f) = (1 — &) fo + ¢f for the family %2 Notice that all the previous authors used
0,(0) identically equal to 6, and this restricts the applicability of their techniques.
A sufficient condition (Lemma 2.1) for the strong consistency of AMLE is based
on this new technique. Theorem 2.1 shows that these sufficient conditions are
very close to being necessary as well. Several other sufficient conditions are given
in Theorem 2.2 and Theorem 3.1. In Sections 4 and 5 the sufficient conditions
in Theorem 3.1 are applied to several nonparametric families to show the strong
consistency of AMLEs. While the technique of this paper is applicable to
parametric families, it seems necessary only for nonparametric problems.

2. Sufficient conditions based on dominance and semidominance. To
conserve space, we adopt the notation and some of the definitions in Perlman
(1972), hereafter abbreviated as [P](1972). Let % O, 6, 6, Po,,Po, {V,(6,)},
r =1 and Q,(6) be defined as in [P](1972), pages 264-265; % is a set of
distinct probability measures with parameter space O (possibly infinite dimen-
sional), 6, and P, denote the true paramerer and probability measure, , P, de-
notes the inner measure induced by P, on the product spaces of all sequences

(X1, Xs, --+), {V.(0o)}, r = 1 is a decreasing sequence of basic neighborhoods of
o, and Q,.(6,) = © — V,(6,). For a sequence {X;, X, - - -} of i.i.d. random variables
with probability measure Py, let {T,} = {Tn(x1, ---, x,)} be any estimating

sequence such that T, is ©-valued and is not necessarily measurable. Refer to
page 265 of [P](1972) for the definition of a strongly consistent estimating
sequence.

Suppose & is dominated by some o-finite measure pu, that is, P << u for each
Pin & Let f(x; ) = (dP/du)(x) be a version of the Radon-Nykodym density
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function of P with respect to u, where § = §(P). Then the likelihood function is
L(xy, -+ -, x5 0) = 11T f (x;; 0).
We shall define MLE and AMLE slightly different than [P](1972).

DEFINITION 2.1. An estimating sequence {T',} is called an MLE of 4 if for all
P() in %,
«Po{supelog(L(x1, -+, %n; 0)/L(x1, - -+, xn; Tn)) = 0 a.e.n} = 1,
where if {A,} is any sequence of sets, {A, a.e.n.} is the set lim,inf A, =
UR=1 Ni=n Ax. (All suprema in this paper are taken with respect to 8 over the

indicated set.)
{T,} is called an AMLE of ¢ if

*PO{SUPGIOg(L(xly sy Xns 0)/L(x17 sty Xn; Tn)) i 0} = 1.

Using the above definition, a sufficient condition for the AMLE to be strongly
consistent follows immediately in the following lemma. (Compare to Lemma 1.1
in [P](1972) and note that the present sufficient condition is more general.)

LEMMA 2.1. Let {T,} by any AMLE of 0. If for each P, € &% r = 1 and each 6
in Q.(0y) there exists 6,(0) in V,(8y) such that

(2.1) ,Po{lim sup, supg,,log(L(x1, - -, 25 6)/L(x1, - - -, x,; 6,(0))) <0} = 1,
then {T,} is strongly consistent.

PROOF. For w = (x1, X2, - - -) in the , Py = 1 set of (2.1) there exists an ¢ > 0
sufficiently small such that for n sufficiently large,

supg, o) l0g(L(x1, - -+, Xn; 0)/L(x1, - - -, %n; 6,(0))) < —e.
This implies, for n sufficiently large, T, must be in V,(6,). 0

From the following theorem, we see that the conditions in Lemma 2.1 are very
close to being necessary.

THEOREM 2.1. If the parameter space © is locally compact and f(x; 0) is an
upper semicontinuous function at 6 for almost all x (the exceptional set may possibly
depend on 0) and all 0, then (2.1) is also necessary for any AMLE to be strongly
consistent. '

ProOOF. The proof follows from the facts that we can choose V,(6,) to be
compact neighborhoods and, of course, that an upper semicontinuous function
attains its supremum on a compact subset. 0

Let dominance and dominance by zero be defined as in [P](1972), page 266,
Definition 1.

We are now ready to present a sufficient condition for the strong consistency
of all AMLEs.
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THEOREM 2.2. If for each Py in & r =1, and 0 in Q,(8,) there exists 0,(0) in
V.(60) such that g,(x, ) = log[f(x, 0)/f (x, 6,(0))] is dominated by zero on Q,(6,)
with respect to Py, then any AMLE is consistent.

ProoOF. The proof follows from our Lemma 2.1 and Theorem 2.1 of
[P](1972).0

One way to verify the dominance by zero condition (for the special case of
k =1 as defined in Definition 1 of [P](1972)) in Theorem 2.2 will be given in the
next section. Notice that Theorem 2.2 can easily be generalized to the semidom-
inance case as Theorem 2.1 in [P](1972). Since our examples in Sections 4 and
5 use only dominance by zero, we shall restrict Theorem 2.2 only to the case of
dominance by zero and refer the reader to [P](1972) or Wang (1983) for the more
general treatment.

Since Perlman’s conditions imply our sufficient conditions in Theorem 2.2
where 6,(0) is taken to be 6, for all  in Q,(6,) and r = 1, all the previous results
by the authors mentioned in Section 1 also do.

3. Some regularity conditions. We shall present a series of assumptions
that will imply the dominance by zero condition in Theorem 2.2.

DEFINITION 3.1. A first countable Hausdorff space 0 is a compactification of
0 if O is compact and 0 is a topological subspace of 0.

In many nonparametric cases (cf. Sections 4 and 5), for 8 in 0, the definition
of Py can be extended naturally. Note that Definition 3.1 is weaker than the
compactification defined by Kiefer and Wolfowitz (1956) or Bahadur (1967).
However, in many cases (e.g., in all the examples of Sections 4 and 5), if there
exists a compactification as in Definition 3.1, there also exist compactifications
of the type defined by the above authors.

We shall impose the following assumptions on #:

ASSUMPTION 1. There exists a compactification of ©, say ©, which is sepa-
rable.

Under Assumption 1, for any 6 in ® and r = 1, let V,(9) be a sequence of
decreasing open neighborhoods of 6 in ©, and let Q,(f) be its complement in @
(that is, 2,(8) = ® — V,(0)). Therefore Q.(8) is a compact subset of ©.

For definition of local dominance, refer to [P](1972) page 271.

ASSUMPTION 2. For any 6, in ® and r = 1, there exists a function
0,: ® — V,(6o) such that (a) log[fs(x)/fss(x)] is locally dominated on ® with
respect to Py, and (b) 6,(f) is in © if § is in O.

Note that it follows from Theorem 2.3(ii) of [P]_(1972) that Assumptions 1
and 2 imply that log[fs(x)/fs,)(x)] is dominated on © with respect to Pj,.
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ASSUMPTION 3. For any 6, in 0, if 6 in © is different from 6, and r = 1, then
the functions 6, obtained in Assumption 2 satisfy Eq log[ fy(x)/fs,e)(x)] <O.

ASSUMPTION 4. For any 6,in @, §in ©, and r = 1, log[fy(x)/fs,w)(x)] is lower
semicontinuous at # except for x in a y-null set which is indepenent of 4.

ASSUMPTION 5. For any 6,in ®, #in ©, and r = 1, log[ fo(x)/fo,6)(x)] is upper
semicontinuous at 6 except for x in a u-null set possibly depending on 4.

THEOREM 3.1. Under Assumptions 1 through 5, any AMLE in © is strongly
consistent.

E’ROOF. Let 6, be any point in © and r =1 Assumption 4 and the separability
of © imply that, for any open subset U of 0,

supge vlogl fo(x)/fo,e) (x)]

is a measurable function. Assumption 5 now implies that for any * in 9,

SUPV,.(e*)IOg[fe(x)/fe,(e)(x)] l log[fo*(x)/fe,(e*)(x)] as h— oo,

where | means “decreasingly converges to.” It then follows from Assumptions 2
and 3, that for any 8* in Q,(6,), there exists N = 1 such that

Ey,supvy e log[ fo(x)/fo,e (x)] <.

Therefore log[fy(x)/fs,s)(x)] is dominated by zero on Vy(6*). Theorem 2.3 of
[P](1972) and the fact that Q,(6) is compact imply that log[f(x)/fs.@ (x)] is
dominated by zero on ,(6,) and hence dominated by zero on ©,(6,) N ©. Note
that Assumption 2 implies that 6,() is in V,(6,) N O for § in ©. Theorem 2.2 now
implies any AMLE in O is strongly consistent. O

4. Applications to some nonparametric families.

4.1 Strong consistency of AMLEs for concave distributions. For any distri-
bution function F on the real line, let ay(F), a;(F) denote the left- and right-
hand endpoint of its interval of support. That is, a(F) = inf{x: F(x) > 0},
a;(F) = supfx: F(x) < 1}.

A distribution function F is said to be concave (convex) if it is concave
(convex) on its interval of support [ao(F), a;(F)]. Let % be the family of all
concave continuous distributions on [0, ©). The MLE of this family exists and
was first found by Grenander (1956) to be the least concave majorant C, of the
empirical distribution function F, of n independent observations according to
some F in 4. As mentioned in Section 1, while the consistency of the MLE in
2, has been proved by Robertson (1967), Prakasa Rao (1969) and Marshall
(1970), it cannot be deduced from any of the general analytic approaches
mentioned in Section 1 because log| fs(x)/fs,(x)] is not locally dominated. Here
we show the strong consistency of the MLE by the method of Sections 2 and 3.
The new proof does not require the knowledge of either the existence or the
shape of the MLE.
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Let 2 = {F: ao(F) = 0, F is continuous and concave on [0, «)}. Any F in &,
is absolutely continuous; denote its density function by f. We can choose f to be
right continuous and nonincreasing on [0, «); let ©; be the set of all such f, so
that §: 2 — 0O, defined by 6(F) = f is a parameterization of &,. On 0, define the
metric d(f, g) = inflh: f(x + h) —h<g(x) forallx =0, and g(x) <f(x — h) +
h for all x = h}; d is a metric similar to the Levy distance for distribution
functions (see Gnedenko and Kolmogorov, 1954, pages 33-37).

We shall now enlarge the parameter space to ©;, where 0, is the set of all
nonincreasing, right continuous subdensity functions on [0, ). Note that fis a
subdensity function on [0, «), if and only if f(x) = 0 for all x in [0, ») and
Jo f(x) dx = 1. Then F(x) = [§ f(y) dy is the corresponding subdistribution
function. For any f in ©,, the support of f is the set on which f is nonzero. Let
ap(f) and a1 (f) be the left- and right-hand endpoint of its interval of support. If
f is identically zero, take ao(f) = a1 (f) = 0. Note that ao(f) = 0 for all f in 0,
and ao(f) = ao(F) for all f in ©,. It is obvious that both ©, and ©, are convex
sets; that is, \f + (1 — \)gis in ©, (0,) for any f, gin ©, (0;) and 0 < A < 1. The
definition of d can be extended to ©, and convergence on this metric space
(04, d) is similar to weak convergence of distribution functions. More specifically,
we have

LEMMA 4.1. (0, d) is a metric space. For any f and sequence {f,} in 0,
d(f.,f) =0, if and only if f,(x) — f(x) at all nonzero continuity points x of f.

PROOF. Similar to the proof in Gnedenko and Kolmogorov (1954, pages
33-37).0

Notice the difference at zero. Convergence of {f,} in (0y, d) to f does not imply
convergence of f,(0) to f(0) even though 0 may be a continuity point of f. For
example, f,(x) = nlj 1/,(x) — 0 but f,(0) — .

LEMMA 4.2. (0., d) is a separable compact metric space.

PROOF. Since (0,, d) is a metric space, compactness is equivalent to sequen-
tial compactness. Using the fact that f(x) < x™! for any f in ©,, the proof of
sequential compactness is similar to that of Helly’s extraction principle. For
example, Chung (1974, page 83) provides such a proof. Therefore, (0., d) is
compact. Since a compact metric space is separable, the lemma is proved. O

Lemma 4.2 shows that ©; is a compactification of ;. For any f in O,
and r = 1, let V.(f) denote the open ball with center f and radius r~*, and

Q.(f) = 8, — V,(f).

LEMMA 4.3. For any fo in ©, and r = 1, there exists 0 < ¢ < 1 such that
(1 —e)fo+efisin V.(fo) forallfin ©,.

PROOF. Choose 0 < ¢ < min{r~% 1}. By convexity of 0, (1 — ¢)fo + ¢f is in



938 J.-L. WANG

0,.Forx=rt,
1 —e)folx) +ef(x) = (A —e)folx) + e/x < folx) + er < folx — ') + r L.
For x = 0,
(I —e)folx) +ef(x) =2 A —e)folx + 1) = folx + 1Y) — efo(r™)
=folx +r ) —er>folx +r ) —r .
Hence (1 —¢)fo + efisin V,.(f). O

The following lemma is an extension of the information inequality.

LEMMA 4.4. Let f, be any density function. For any subdensity function f
different from f,, we have

Eplog{f/[(1 —e)fo+ef]} <O forall 0=e<]1.
PrOOF. E;|f/fol = [Zof(x)dx=<1.

Casel. P;(f=0)>0. Then

Elog(f/[(1 — &) fo + ef])= —c.
Hence the assertion follows.

Case 2. P;(f=0)=0. By Jensen’sinequality,

E;log(f/fo) < log E;(f/fo) =0,

and the first equality sign holds only if f/f, is equal to a constant ¢ with (f,)
probability one. Since f, f, are subdensity and density functions, respectively and,
f # fo, ¢ must be less than 1, hence E; log(f/fo) < 0. Because

Eplog{[(1 —¢) fo + ef1/f} = Ef[(1 — e)log(fo/f) + ¢ log(f/f)]
= (1 —&)Eplog(fo/f) >0
for 0 = ¢ < 1, the lemma follows. 0

THEOREM 4.1. Any AMLE with values in 0, is strongly consistent.

PrOOF. We shall show that % satisfies Assumptions 1 through 5 in Section
3 and hence the result follows from Theorem 3.1. It may be seen that Assumption
1 results from Lemma 4.2, Lemma 4.3 and the convexity of 0, gives Assumption
2 by taking 0,(f) = (1 — &) fo + ¢f, while Assumption 3 follows from Lemma 4.4.

To show that Assumption 4 holds, let {f,} be any sequence in (8,, d) that
converges to f. Using the right continuity property of f and Lemma 4.1, we have

(4.1) liminf, f,(x) = f(x) for all x> 0.
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This implies
liminf, f,(x)/[(1 — ¢) fo(x) + efn(x)] = f(x)/[(1 — &) fo(x) + &f (x)],

for all x > 0. Assumption 4 must hold since log{f(x)/[(1 — &) fo(x) + ef(x)]} is a
lower semicontinuous function of f for all x > 0. Finally, Assumption 5 follows
from Lemma 4.1. 0

Note that the consistency of an AMLE of f, in 0, is uniform on any compact
interval on which f, is continuous. If f, is an AMLE of f, in 6, its corresponding
distribution function F, is an AMLE of F, in %, where F, is the distribution
function with density fo. We have the following corollary.

COROLLARY 4.1. (i) SUP-w<x<tx| Fn(x) — Fo(x)| — O with probability one.

(i) If fo is continuous on [a, b], then Sup.eissl Fax) = folx)| = 0 with
probability one.

ProOOF. (i) follows from Scheffé’s Theorem; see Billingsley (1968, page 224).
(i1) follows immediately. O

REMARK. If the left endpoint of support of functions in ©, is not 0 but any
fixed known «, i.e., ap(F') = « for all F in %, Theorem 4.1 is still true. Now
consider « fixed and known, and let %, , denote the set of all continuous
distribution functions F with «; (F) = «, such that F is convex on (—o, «]. Using
a reflection argument, we have the following:

COROLLARY 4.2. For a fixed and known, any AMLE in %, is strongly
consistent.

Another direct consequence of Theorem 4.1 is the consistency of AMLE in
the family of distributions with decreasing failure rate, as is now shown.

DEFINITION 4.1. For any distribution function F, Hp(x) = —log(1 — F(x)) is
called the hazard function of F. If F has density f with respect to some o-finite
measure u, the failure rate v of F is defined to be y(x) = f(x)/[1 — F(x)]
for F(x) < 1.

DEFINITION 4.2. A distribution function F is said to have decreasing failure
rate (DFR) if the support of F is of the form [a, ), @« < —oo, and if Hp(x) is
concave on [a, ©).

From Definition 4.1 the failure rate is the derivative of the hazard function.
Marshall and Proschan (1965) showed that a distribution function F with DFR
on [a, ©) is absolutely continuous except for the possibility of a discontinuity at
the left end «. We shall only consider the case where F is continuous at «, hence
absolutely continuous on its support.
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Let % be the set of all continuous distribution functions F with DFR on
[0, ). It is obvious that % is a subset of &, so we can use the same parameter-
ization of 2. Let O3 be the set of all densities in ©, with DFR. Barlow, Marshall
and Proschan (1963) showed that 0s is a convex set.

THEOREM 4.2. Any AMLE of 05 is strongly consistent.

PROOF. 0sis a convex subset of ©;. Theorem 3.1 and the proof of Theorem
4.1 together imply the result. 0

REMARKS. (1) The MLE for & was found by Grenander (1956) to be the
distribution corresponding to the least concave majorant of the empirical hazard
function and proved to be consistent by Marshall and Proschan (1965). Theorem
4.2 provides another way of proving the consistency of MLE without knowing its
explicit form.

(2) If /. is an AMLE of fo in ©s, let ¥, be the corresponding failure rate
function for f,; then 7, is an AMLE of v,, the true failure rate. Since Corollary
4.1 is still true, ¥, is also a strongly consistent estimator of v, for the topology
induced by the Lévy distance on the space of decreasing functions on [0, ).

The method used in this section to prove consistency of AMLEs can also be
applied to any convex parameter space which satisfies the regularity assumptions
in Section 3.

4.2 Strong consistency of AMLE for IFR distributions. In this section, we
shall prove the strong consistency of AMLE for the family 2}/ which consists of
all IFR continuous distributions F with failure rate uniformly bounded by M on
[0, ©) and F(0—) = 0. The MLE in %} exists and was proved by Marshall and
Proschan (1965) to be consistent. We shall give another proof of its consistency
without knowing either its form or existence. Let us first define IFR distributions.

DEFINITION 4.3. A distribution function F is said to have increasing failure
rate (IFR), if the support of F'is an interval [« (F'), a1 (F)] and its hazard function
(cf. Definition 4.1) is convex on this interval.

REMARK. Contrary to the DFR distributions, an IFR distribution is abso-
lutely continuous except possibly for a discontinuity at the right endpoint «; (F).

Let F be a continuous distribution function with IFR on [0, «). The above
remark implies that F is absolutely continuous. Let f be its density function, and
let v be its failure rate as given in Definition 4.2. Then v is nondecreasing and
can be taken to be left continuous. We shall also assume that f is left continuous.
Hence #M = {F: F has IFR on [ao(F), ©) ao(F) = 0 and v < M}. Let ©¥ be the
set of all nondecreasing left continuous functions vy on [0, ©) such that y = M
and v is not identically zero. There is a one-to-one correspondence between %
and 0. For any F in &}, we parameterize it by its failure rate v, and the
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corresponding density function will be denoted by f,. That is,

fr(x) = ~v(x) - exp{—J; v(t) dt}.

Let ©) = 0 U {0} where 0 is the zero function. For convenience of exposition,
from now on we shall use 0,, 0, and %, to denote 0, @M and #¥, respectively.
It is obvious that both ©, and O, are convex sets. For any v;, 7. in 04, we define
d(v1, v2) = inf{h: y2(x — h) — h < v,(x) for all x = h, and v;(x) < ya2(x + h) +
h for all x = 0}. Just as in Section 4.1, d is similar to the Lévy distance and the
weak convergence property also carries over to ©, due to the fact that 0 < v < M
for any v in @,. Therefore Lemmas 4.1 and 4.2 also apply to (0,,d) and we have

LEMMA 4.5. (_64, d) is a separable compact metric space. For any v and
sequence {y,} in Oy, d(v., v) — 0 if and only if v.(x) — v(x) at all nonzero
continuity points x of v.

For any v in ©4 and h = 1, let V,,(v) denote the open ball with center v and
radius b7, and Q,(y) = 8, — V,(v) be its complement in 0. For fixed v, in 04,
for any v in ©4 and any 0 < ¢ < 1, we shall denote f, . (x) and Fj, ,(x) to
be the density and distribution functions corresponding to the failure rate

(1 = &)yolx) + ey (x).

LEMMA 4.6. For any v, in O, and h = 1, there exists 0 < ¢ < 1 such that

(@) (1 —¢)yo+ ey isin Vil(yo) N O forally in 0., and
(b) fy(x)/fir,e)(x) is dominated on ©, with respect to P.,.

PRrOOF. Choose 0 < ¢ < min{(hM)™?, 1}. Mimicking the proof of Lemma 4.3,
it can be shown that (1 — ¢)yo + ey(x) is in Vi, (o). Also (1 — ¢)vyo + &y is not
identically zero since v, is not. This proves (a). Next,

foo(x) = [(1 — &)yolx) + ev(x)]exp{—fo [(1 = &)yol(t) + ey (t) dt}

= cv(x)eprl—J; [vo(t) + v (t)] dt}

= efy(x)exr){—J; Yo(t)] dt}~

Hence

log[ £, (x)/fey.e (x)] = fo Yo(t) dt — log e.
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Notice that

J; vo(t) dt = —log[1 — F,,(x)]

is the hazard function corresponding to the failure rate v,, and
E,{~log[l — F,,(x)]}

= J:: —log[1l — F, (x)] dF,,(x) = J;l ~log(l —u) du =1,
which proves (b). [
LEMMA 4.7. For any two distinct yo and v in 04, and any 0 < ¢ < 1,
E, Jog[f,(x)/fr.o(x)] < 0.
PrOOF. From the definition of Fi, ,(x), we have
(4.2)  [1 = Fuo@))/1 - F,x)] = eXpJ[—J;x (I =¢e)yo— 7)) dt}’,

and

(4.3) (1 = Foo@)]/[1 = Fy(x)] = eXp{J; e(yo = v)(t) dt}-

If P, (f, = 0) > 0,-E, log[f,(x)/f,c(x)] = —, hence the assertion follows. In
the case P, (f, = 0) = 0, we have

E, [loglfe.0/f,]]1= Ey log{l(1 = e)vo + ev][1 = Fo.0 /[ (1 = F)) ]}
= (1 —¢)E,loglvo[l = Fiy,0l/[y(1 = F,) ]}
+eE, log{[1 = F,,»]/(1 - F, )}
= (1—¢)E, loglyo(1 = F,))/[y(1 - F,)]}
+ (1 =e)E, log{[1 - F,,»)/(1 - F,,)}

+¢E, Jog{[1 — F,»)]/(1 - F,)}
=(1 _C)Evol(’g(fvo/fv) +(1 _C)Evo[J; e(yo—v)(¢t) dt}

—eE,O[J; (l—e)(yo—'y)(t)dt] (from (4.2) and (4.3))

=(1- C)E'yolOg(f'yo/f‘y) >0,
by the proof of Lemma 4.4. O



CONSISTENCY OF AMLE 943

LEMMA 4.8. For any fixed yoin ®,and 0 = e < 1, log{ £, (x)/f(y, o (%)} ts lower
semicontinuous at vy for all x > 0 and v in 0.

PROOF. Let v, — v in 0,. The left continuity of v, the fact that 0, consists
of nondecreasing functions, and Lemma 4.5 together imply that
(4.4) lim,inf v,(x) = y(x) forall x> 0.
On the other hand,

(4.5) J; (Yo — vn)(¢) dt — J; (vo — v)(t) dt for all x.

If lim,inf f, (x) # 0,

v )/, (x) = [(1 = €)vo/vn + e]exp[—J; (1 = &)(vo = va)(?) dt]-

By (4.4) and (4.5),
lim supy| fiy,.e) () /£y, (£)] = fy,00 (%) /£, (x)
for all x. Therefore
(4.6) liminf, log{f,,(x)/fu,. (x)] = logl £, (x)/fiy. (x)]
for all x. If lim,inf £, (x) = 0, (4.4) and (4.5) imply that f, (x) = 0 and hence (4.6)
follows. O
THEOREM 4.3. Any AMLE in O, is strongly consistent.

PrROOF. We shall show that %, satisfies Assumptions 1 through 5 in Section
3 and the assertion then follows from Theorem 3.1. Assumption 1 results from
Lemma 4.5. Lemma 4.6 implies Assumption 2 by letting 6,(v) = (1 — ¢)yo + €Y.
Assumptions 3 and 4 follow from Lemmas 4.7 and 4.8, respectively. Lemma 4.5
and the Lebesgue Dominated Convergence Theorem imply Assumption 5.0

Let 4, be an AMLE of v, in 04, and let f,,, F', be the corresponding density
and distribution functions. Then f, and F, are AMLEs of the density and
distribution functions, respectively. We have a result similar to Corollary 4.1.

COROLLARY 4.3. (i) SUP-—co<x<too | F.(x) — Fo(x)| — 0 with probability one,

(i1) If vo in Oy is continuous on [a, b], then

lim, sup,eps| ¥.(x) — vo(x)| — 0 with probability one, and
lim,, Sup.e(q,5 | f,,(x) — fo(x)| — O with probability one.
REMARKS. Note that we have assumed oo (F) = 0 for any F in %,. Such a

restriction is unnecessary. However, we do need a lower bound for a(F). For «
= —oo, let &, , be the set of all continuous distribution functions F with IFR on
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[ao(F), a1 (F)] where ao(F) = o and the failure rate v of F is bounded above by
M. Note that for F in &, , with a > —», a; (F) must be +o and #,, is equal to
%,. Using the same argument for &, any AMLE in %, , is consistent for
a > —ow, If @ = —oo, we can no longer use the Lebesgue Dominated Convergence
Theorem, and Assumptions 4 and 5 may not be true.

5. Applications to estimators based on censored data. In the previous
section, we showed the applicability of Theorem 3.1 to several nonparametric
families for which the consistency of MLEs was already established. In this
section, we shall show the applicability of Theorem 3.1 to some other nonpara-
metric families for which, to our knowledge, the consistency of AMLESs has never
been investigated.

5.1 Concave lifetime distributions with censored data. Suppose one has prior
information that the lifetime distribution function F of certain items is concave,
continuous and has zero as its left endpoint. That is, F is in 4, the family of
concave distributions defined in Section 4. Let X9, - .-, X% be the true survival
times of n such items which are censored from the right by a sequence of i.i.d.
random variables U, - .-, U,. It is assumed that the censoring time of an item
is independent of its survival time and the distribution function U(x) of the
censoring time is known. If we can only observe X; = min(X?, U;),i=1, ---, n,
without knowing whether it is a censored observation or real death, then the
distribution G of the observation X; is given by 1 — G(x) = [1 — F(x)][1 — U(x)].

Our goal is to estimate the lifetime distribution F based on the observations
Xi, -+-, X,. Since we are investigating AMLEs, let us also assume that the
censoring distribution U(x) is absolutely continuous with density u(x). Hence
G(x) also has a density function, say g (x), and the likelihood function is

L(xy, -+, xn) = [ 8(X0).

Let #={G: (1 - G)=(1—-F)(1 - U), Fin % }. We can parameterize & by the
density of the lifetime distribution F. Let 0; be defined as in Section 4. For any
f in ©,;, we shall define F, to be its distribution function and G, to be the
distribution function such that 1 — Gy = (1 — F;)(1 — U). Then Gy is in & and
there is a one-to-one correspondence between & and 0, . Let g, denote the density
of G,. We can use the same topology and compactification 8, for ©, as in Section
4. For fixed 6, and any 0 < ¢ < 1, let Gp.) = G-+, Which has density
86, = (1 — ¢) 8, + ¢8. Using this fact and Theorem 4.1, it is not hard to see that
P satisfies all the assumptions in Section 3. We thus have

THEOREM 5.1. Any AMLE of 0 in 0, is strongly consistent, and hence any
AMLE of the lifetime distribution of F is also strongly consistent.

5.2 IFR lifetime distributions with censored data. Let %M and O} be de-
fined as in Section 4. Then any F in &M has an increasing failure rate denoted
by vr. Following the description in Section 5.1, we let #’ = {G: (1 — G) =
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(1 — F)(1 — U), for F in &M}, where U represents the known censoring
distribution. We shall assume that U is absolutely continuous with failure rate
~vu such that yy(x) < ¢ for all x. We can then parameterize &’ by the failure
rate of the lifetime distribution F, and for convenience of exposition, we denote
the parameter space © by 0,. For any 0 in 04, let F, be the lifetime distribution
function with failure rate 8, and G, be the distribution function in %’ such that
1—Gy=(1—Fs)(1 — U). Any G, in &’ is absolutely continuous; let g, denote
its density. Note that G, has failure rate § + v,. For fixed 6, and any 0 = ¢ < 1,
let Fio,) = F1—c)0y+20 G, = G(l—c)00+z0 =(1=Fe,)1-U) and g,.) be the density
of G,.). Then the failure rate of G,.) is

(5.1) (1 —¢)bp + e + vy =(1—¢e)(l+vuv) + e+ vu),
which is the convex combination of the failure rate of Gy, and Gj.

THEOREM 5.2. Any AMLE of 0 in O, is strongly consistent, and any AMLE of
the lifetime distribution F is also strongly consistent.

PROOF. Assumptions 1, 2, 4, and 5 can be checked using arguments similar
to those in the proof of Theorem 4.3. Assumption 3 can be proved as follows. By
(5.1), we have

[(1—€)(Bo+vv) +e(@ +v)]( = Ge.)
0+v0)(1—Gy)

log[ g,.)/8]=log

= (1 ellog (0(0017;3)( (1 1_—%‘:;)) e 1°g1T_—ggf)

= (1—e¢)log (?giz:];g:g‘%)+(l —e)logll—__%;oﬁ
+clog11__ig":)

=(1- 8)108'% + (1 —¢)log 11__FF(2:) +¢log 11_—FI(?':)

=(1 —e)log%+ (1 +e)elog11:£;+e(1 —e)log—ll:—I;f:

=Q1 —e)log%.

Hence,

Eqlogl gs/86.0] = (1 — e)Eq,log[ gs/8s,] < 0.

The theorem now follows from Theorem 3.1. [0
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6. Conclusion. As mentioned in Section 4, the techniques we use in this
paper may be applied to any convex parameter space with appropriate regularity
assumptions. The main difficulty in applying those techniques to the nonpara-
metric problems lies in the construction of a suitable topology on a parameter
space having certain regularity properties. Once determined, however, conver-
gence on this topological space is the same as (or implies) convergence of
estimating sequences in the usual statistical sense.

While the techniques and theorems in this paper are only applied to approxi-
mate maximum likelihood estimates, they can be applied in general to approxi-
mate maximum w estimators defined in [P](1972). Such a generalization is not
repeated here.
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