The Annals of Statistics
1985, Vol. 13, No. 2, 727-742

EFFICIENCIES OF CHI-SQUARE AND LIKELIHOOD RATIO
GOODNESS-OF-FIT TESTS

By M. P. QUINE AND J. ROBINSON
University of Sydney

The classical problem of choice of number of classes in testing goodness
of fit is considered for a class of alternatives, for the chi-square and likelihood
ratio statistics. Pitman and Bahadur efficiencies are used to compare the two
statistics and also to analyse the effect for each statistic of changing the
number of classes for the case where the number of classes increases asymp-
totically with the number of observations. Overall, the results suggest that if
the class of alternatives is suitably restricted the number of classes should
not be very large. .

1. Introduction. Although goodness-of-fit tests from grouped data consti-
tute a classical problem in inference, the problem of choice of number of classes
is still unresolved. For instance, the recommendations of Mann and Wald (1942),
Kempthorne (1967) and Hamdan (1963) are radically different. In recent years
there have been some attempts to illuminate the problem by focusing attention
on a particular class of alternatives; see for example Holst (1972), Gvanceladze
and Chibisov (1979).

Specifically, we consider the problem of testing the goodness of fit of a
continuous distribution F, to a set of N observations grouped into n equal
probability intervals. Our methods could also be used in a more general context
so long as the n probabilities were of the same order, but the practical implications
would be the same. Without loss of generality we suppose that Fj(x) = 1,
0 < x < 1. Since we are concerned with limit results, we take n = n(N). We
assume that n(+), taken as a function of the continuous variable x, is regularly
varying, that is for some g, n(ax)/n(x) — a? as x — o, for all a > 0. We assume
further that n(N) < CN for some positive constant C, so that 0 < g < 1. These
assumptions include all cases of practical interest in which the number of classes
increase (asymptotically) with N. In the case of Bahadur efficiency, we consider
the null hypothesis

HO: f(x) =1
versus the fixed alternative
Hy: f(x) =1+ g(x),

where [§ g(x) dx =0and 0 < | glls = (J§ |g(x)|° dx)"/* < . In the case of
Pitman efficiency, we consider the same null versus a sequence of alternatives.
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728 QUINE AND ROBINSON

That is, we suppose that for each integer N = 1, the alternative is
Hin: f(x) = 1 + »(N)hn(x),

where [§ hy(x) dx = 0, |hy — glls — O for some g with | gl < ® and
f5 &(x) dx = 0, and »(N) is chosen so that the power for a test of size « has a
limit in (e, 1).

Suppose X;, - -+, X, are the numbers of observations in the intervals. We
deal with the two test statistics

Sy=Y X2 and Ty = Y% X.log X,

(taking 0 log 0 = 0). We compare both Pitman and Bahadur efficiencies for the
following pairs, where n’ = n’ (IN), another choice of number of intervals, is also
assumed to be regularly varying with index of regular variation ¢’ € [0, 1]:

(i) Syand S§ = Y X3
(ii) Twvand T4 = 22 Xilog X;
(lll) SN and TN.
In the case of Pitman efficiency, we show in the next section that in cases (i)
and (ii), for n(N) — oo, N/n(N), N/n'"(N)=¢>0,

(1.1) PE(Sn, S¥) = PE(Tn, Tk) = c/*™@
if n’ (N)/n(N) — ¢ € (0, »), and
(1.2) PE(Sn, S) = PE(Tn, Ty) =

if n’ (N)/n(N) — . This complements the results of Gvanceladze and Chibisov
(1979) and provides a further contrast to the results of Mann and Wald (1942).
We also show that in (iii), if n(N) and N/n(N) — o,

(1.3) PE(SN, Tn) = 1.

This extends the well-known result that (1.3) holds when n(NN) is constant
and N — o, and shows that the result PE(Sy, Tv) > 1 when N/n(N) — X\,
0 < Ao < o (Holst, 1972) is an extreme case, although even here computations
suggest that the maximum efficiency is very close to 1 (see Table 1).

Rather different results are given in Section 3 in the case of Bahadur efficiency.

TABLE 1
PE(S, T) for N/n — A
A 0.01 0.05 0.1 0.6 1.0
PE(S, T) 1.001 1.006 1.013 1.058 1.102
A 1.6 2.0 2.37 2.5 3
PE(S, T) 1.131 1.145 1.148 1.147 1.142
A 5 10 50 100 500

PE(S, T) 1.095 1.038 1.007 1.003 1.001
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We show that for n(IN) — o, N/n(N), N/n’(N) = ¢> 0,

(1.4) BE(Sy, S§) = c¥/@ @
if n”(N)/n(N) — ¢ € (0, ©), and
(1.5) BE(Sy, Si) =

if n'(N)/n(N) — «. We further show that if n(N), n’(N), N/n(N), N/n’(N)

_)m,

(1.6) BE(TN, T#) = 1.

For case (iii), we show that

(1.7) BE(Sn, Tn) =0

if N/n(N) = ¢ > 0 and n(N) — o, which extends the result that for fixed n,
(1.8) BE(Sy, Tn) <1

with inequality “nearly everywhere” (see Hoeffding, 1965; Bahadur, 1971, pages
31-32). Results (1.6)-(1.7) do not require that n(N) and n’(N) be regularly
varying.

It should be noted that the Pitman and Bahadur criteria yield a similar verdict
on x? tests based on different numbers of classes. However, in the case of the
likelihood ratio test, our results demonstrate a reverse of the more commonly
encountered situation in that the tests are equivalent in the sense of Bahadur,
but not in the sense of Pitman. In the comparison of x% and likelihood ratio
tests, conflicting results are achieved by the two criteria in the case N/n(N) —
Xo € (0, ®): x2 is superior in the Pitman sense but infinitely inferior in the
Bahadur sense. In the case n(N), N/n(N) — «, (1.3) and (1.7) simply extend the
known results for finite n, that is (1.3) and (1.8).

As well as details of (1.1)-(1.8), Sections 2 and 3 contain definitions of Pitman
and Bahadur efficiencies. Proofs are given in Sections 4 and 5.

2. Pitman efficiency. Consider a test of the hypothesis H,, using a test
statistic Uy based on a sample of N, against the alternative hypothesis H;y so
chosen that the power of the size o test based on Uy under Hyy tends to 8,
a < <1, as N tends to infinity. Let Uk be another test statistic and let N’ be
a sequence such that the power of the size o test based on Uy  under H,y also
tends to 8 as N’ — . Then if the limit of N’/N exists and is the same for all
such sequences N’, we call it the Pitman efficiency of {Ux} with respect to {U4}
and write

PE(Uy, Ug) = lim N’/N.
Specifically, we consider the alternatives given in Section 1 and show that

under H, and H,y, if Uy is one of Sy, Tn there are values (defined in Section 4)
ESNUn, V‘&NUN, E‘lzNUN, V‘fNUN such that when n(N) — o and N/n(N) =e>
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0 for Sy or N/n(N) — o for T,

(2.1) (Unx — EfnUn)/(VinUn)2 =4 N(0, 1)

for j = 0, 1 and under H, and H,y, respectively. We choose »(/N) so that
(2.2) (E$nUn — ESnUy)/(VEnUn)2 — b

for some constant b € (0, ») and show that for this {»(N)}

(2.3) VinUn/VinUy — 1,

so that the power depends only on (2.2). Then for another statistic Uy (S4, for
example) we choose {N’} so that (2.2) holds for the same constant b when Uy is
replaced by Uy and n(N) is changed to n(N’) or n’ (N'’) as appropriate. We
then look at the ratio N’/N.

Consider first Sy and SA. In Section 4 we use the results of Morris (1975) to
show that if n — o, N/n = ¢ > 0, then (2.1) holds for Uy = Sy with

(2.4) E3Sy = N + N?/n,

(2.5) E$Sy = N + N%/n + n7'N%?%| g 13(1 + o(1))
and, taking

(2.6) v? = dn'/%/N,

(2.7) V2Sny = 2N?/n(1 + 0o(1)), j=0,1,

where here and in the sequel we omit the index N from n, », h, E{ and V{ when
no confusion might arise. This ensures that (2.3) holds and that

(E$Sn — E3Sn)/(V§Sn)'2
= 27 V2p-12 N2 g3 + o(1)) » 2-1/2g l gll3 € (0, ).

Since (2.4), (2.5) and (2.7) still hold when n, N and Sy are replaced by n’, N’
and S%, v? remaining unchanged as in (2.6), it can be seen from (2.8) that in
order for the test based on S4- to have the same asymptotic power under H,y we
must choose N’ so that

(2.9 n(N)/N* ~n’(N’)/N'%

To obtain (1.1) for x2, note that since n’(N’)/n(N’) also tends to ¢, (2.9)
gives

(2.8)

n(N)/N* ~ ¢n(N’)/N’? ~ n(aN')/(aN’)*

where a = ¢™/?~9, Noting that R(x) = n(x)/x? is regularly varying with index of
regular variation ¢ — 2 < 0, the representation theorem (Seneta, 1976, page 2)
implies

R(r:x)/R(x) > ri™2 as x — oo,

ifr, >re€l0, ©, 0 <r, <o Let a subsequence of N’/N have a further
subsequence for which N’/N — t € [0, «]. Then for the latter subsequence
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R(aN’)/R(N) — (at)??%, and since from above this limit is 1, we have ¢t = 1/a.

Thus for the whole sequence N’/N — 1/a = ¢/?~9, establishing (1.1). This"
argument can also be used to establish (1.2) for x2. Suppose that n’ (N)/n(N) —

oo; then from (2.9) for arbitrarily large C there exists N¢ such that for N’ > N¢

n(N)/N*> Cn(N’)/N’?* ~ n(AN")/(AN")?,

where A = C™Y/?-9, So asymptotically, N < AN’, giving (1.2).

Gvanceladze and Chibisov (1979) have shown for a similar scheme to ours
that the power of the x2? test (and the likelihood ratio test) tends to the
significance level as N — o whenever n — « for » = N~"2 Thus in a sense (1.1)
(and (1.2)) provide refinements of their results and lend further weight to the
practical implication that the number of classes chosen should not be too great.
As Gvanceladze and Chibisov (1979) mention, this recommendation runs counter
to that of Mann and Wald (1942), who use a minimax argument to obtain the
relation n ~ ¢cN?° (see also Kendall and Stuart, 1973). To illustrate the inevita-
bility of such a conclusion when a sufficiently wide class of alternatives is used,
consider alternatives

. 1
Fn(x) = x + v(N)Hn(x), ‘[) dHn(x) = 0.

In order to obtain substantial power with all alternatives satisfying sup, | Hy(x) |
= ¢> 0, we need to take n > Cv! (these alternatives include the discrete uniform
distribution with jumps of size cv at intervals of length cv). By the kind of
argument centering on (2.7), to maximise power, 3, against alternatives subject
to this constraint, we need to take n as small as possible, and to get 8 € (a, 1)
we need n~Y2Ny? ~ C, so that N ~ Cn®2.

We may cite the case study of a normal shift alternative by Hamdan (1963)
(see also Dahiya and Gurland, 1973) who concluded on numerical grounds that
small n gives higher power. More generally, consider

H,: F(x) = Fo(x),
H,n: F(x) = Fo(x — 6n) = Fo(x) — dnfo(x)(1 + o(1)).
When standardized to a uniform null, the density under H;y becomes
1 — onfd (F5' (x))/fo(F5" ())(1 + o(1))

which is asymptotically of the same form as our scheme.

We now consider cases (ii) and (iii). In Section 4, we show that for n and
N/n — o, (2.1) holds with Uy = T under H, and H,x, respectively, that (2.3)
holds and that

(210)  (E§Tn — E3Tn)/(VETN)? = 27207 2No? || g 3(1 + 0(1));

so again we take v as at (2.6). Thus (1.3) is proved. The proofs of (1.1) and (1.2)
for likelihood ratio follow those for x>
The case (iii) when ) is finite has been considered by Holst (1972) who showed
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that the efficiency was
[cort{(Y — \) — Y, Y log Y})?

where Y is Poisson with parameter A\. We tabulate this in Table I for some values
of \ to show that it is never far from the value 1, which is the limit as A\ — .
The moments in the correlation were obtained using the Poisson probabilities
up to the 1000th term.

3. Bahadur efficiency. A rather different measure of efficiency has been
described by Bahadur (1971). We need a slightly more general definition than
his. Let Py, Eo, Vo, P1, E,, V; denote probability, expectation and variance under
H, and H, (as given in Section 1), respectively. Let U, N and U} be two statistics
based on N observations as in Section 2, and

1—Fy(u) =Py (Uv=u), 1—Fyu)=P(Uy=u)
and define the random variables (levels)
Ly=1-Fn(Un), Li=1-Fx(Ui).
Suppose that there are sequences ¢y and ¢ ~ such that
(Un — EoUn)/¢n —p, b, (Ux — EcUR)/o5 —p, b,
and that there are sequences ¥y, ¥ & such that for N — o,
—(Nyn)'log Po(Uy > EoUn + ént) — c(t),
—(Ny&)'log Po(Uk > EqUl + ¢it) — ¢’ (t)

for each t € I, an open set containing b and b’, and ¢, ¢’ are continuous functions
on I. Arguing as in Bahadur (1971, Theorem 7.2)

—(Nyn)7'log Ly —p, c(b), —(Ny#)7'log Ly —p, ¢’ (b").

Let N’ be a sequence such that the levels based on Uy and U} are asymptot-
ically equivalent. Then, if 0 < ¢(b), ¢’ (b’) < oo,

N’/N ~ ync(d)/Y1-c’ (b").
Thus we define the Bahadur efficiency of Uy with respect to U} as
- BE(Un, Uy) = re(b)/c’(b")

if yn/Yn — r €0, ).
Using the notation A = N/n,

(3.1) EISN - EoSN = n)\zé(l + 0(1))
and
3.2) ViSy = (2nA2(1 + &) + 4nN\3E)(1 + o(1)),
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1
5=f g%(x) dx,

0

1 1 2
$=j; (1 +g(x))[g(x)—J; g%(x) dx] dx.

So we can see that

where

(Sy — EoSn)/(n\?) —p, &
since under H, the left-hand side has expectation which tends to é and variance
which tends to 0, as N — . In Section 5, we prove the following result.
THEOREM 1. For A =¢> 0 and n — o,
limy_—{log Po(Sny > n\ + nA2(1 + 8))}/(An*?log n) = %62

Thus in the definition of Bahadur efficiency we can take
¢n = N*/n(N), o5 =N*/n’'(N), ¥n = n(N)"log n(N),
vk =n'(N)Y2log n’(N), c(t) =c’(t) = Yat'?
so that
N'/N ~ yn/Yi ~ (n’(N’)/n(N))"*log n(N)/log n'(N")

(1.4) and (1.5) follow from this in the same way that (1.1) and (1.2) for x 2 follow
from (2.9), since n(x)/log n(x) is regularly varying with the same index as n(x).

REMARK. This theorem extends a result of Hoeffding (1965) who shows that
for n finite,

limpy_.—[log Po(Sy > nX + nA\%(1 + 8))]/(n)\)

=n7 (1 + (3(n — 1))*)log(1 + (8(n — 1))*?)
+ (1= n)(1 = (8/(n = 1))*)log(1 — (8/(n — 1))*?).

As n — o, the right-hand side is %(/n)"?log n(1 + 0(1)).
Again using the notation of the introduction, for A\ — o, n — o

(3.3) E\Ty — E;cTn = nXé’ (1 + 0(1))
and

(3.4) ViTn = nA¢’ (1 + 0(1)),
where

1
6 = J; (1 + g(x))log(1 + g(x)) dx
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and

1 1 ?
£ = J; 1+ g(x))[log(l +g(x)) - fo (1 + g(y)log(1 + g()) dy] dx.

Thus
(Tn — EoTn)/N —p, 6'.

since under H; the left-hand side has expectation which tends to 6’ and variance
which tends to 0 as N — . Now we need the following result.

THEOREM 2. For n,\ — o,
limy_.w[—N""log Po(Tn > n(Alog X + N\6’))] = 6".

This theorem extends the result that for n finite
limy_o{—N"tlog Po(Tn > E\TxN)} = 6,

where §, = n”! 34 (1 + Z)log(l + Z) and g, = n [¥",,, g(x) dx (Bahadur, 1971,
page 32), in the sense that 6, — 6’ as n — oo.

For A — o, Theorem 2 implies (1.6) and Theorems 1 and 2 imply (1.7). If
A= X € (0, ),

(8.5) limy_o{—N7'log Po(Tx > E,Ty)} = —log E{exp(t(Y log Y — A))},

where A = limy_,.n'E; T and Y is Poisson (o), for any t € (0, 1/Xo); so (1.7)
holds in this case also.

4. Proof of results of Section 2. The statistics under consideration are
special cases of Uy = Y ¢(X, k), where X;, ---, X, are defined in the
introduction. Proofs of limit results are based on the fact that Uy has the
conditional distribution of Vy = Y, ¢(Y%, k), where Y, - -+, Y, are independent
Poisson variates with parameters Ay, - -, A, given that Y, Y, = N, where

k/n
AM=N . (1 + vhn(x)) dx = N1 + VENk),
(k-1)/n
k=1, -+, n. Under Hy, \p = \, k =1, - -+, n. Such central limit results are
obtained in Morris (1975) and, together with rates of convergence, in Quine and
Robinson (1984). If

u=E 3 c(Y, k),

v = N7 3 cov(c(Yy, k), Yi)
and

o =n"" T var(c(Yi, k) — vYa),

then, in the two cases considered here, it is shown in Theorems 5.1 and 5.2 of
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Morris (1975) that
n~Y2(Uy — u)/o —4 N(0, 1)

if

(4.1) mingA\; = ¢ >0 and N"maxk)\k = 0(1)
and

(4.2) max,var(c(Ys, k) — vYr)/no? = o(1).

These follow trivially under Hy since A = ¢ > 0 and n — ®. Under H;x from
the Holder inequality,

v| hye| < wn'® | hylls = o(ATY?)

when n — o, since |hy — glls = 0 and || g]ls < », and from (2.5) v =
O(n~Y4\~%), Thus (4.1) holds since A = ¢ > 0. To complete the proof of
asymptotic normality it remains to verify (4.2) for Sy and Ty under H,y, to
which end we need the first two moments for these statistics. This will enable us
at the same time to show that (2.3) holds for Sy and Ty and to obtain (2.8) and
(2.10). '

For Sn, ¢(Yx, k) = Y2, so

w=r (A + )\%) = n\ + n\Z + \%? Sk Elzwp

If we use the notation f™ for the projection of f in L, onto the step functions
on the intervals ((k — 1)/n, k/n), k =1, -++, n, then n™' ¥, hix = | AP [13.
Further

1A —glle<IhY — g™+ 18" —gllo<lIhv—gla+ 18" — gl

Now |hAxn —g |z < || hxn — & || 5 = 0. Also since the continuous functions are dense
in L, given ¢ > 0, there is a continuous function f such that || f — g |2 <e. So

16® —glz= g™~ fPls+ 1f® = fla+ 17— gl =3

for large enough n, because f, l!aing continuous, is Riemann integrable. Thus
IRy —gllz—0andson™ X, hke— g 13. Soif 0< | g3,

| pw=nk+n\+ n\%?%| g 1201 + 0(1)).
In the safﬁe way we obtain
Yy=14+2A+2Yx (M= NZYN=1+2\+ 0(n"?)
and so
var(Y: — vYi) = 202 + \e(1 + 2\ — v)%2 = 27%(1 + 0(1)),
and \
. a2 =2nA%(1 +'0(1)).
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Thus (4.2) holds under H,y. Further if we use the notation E§Sy, V§Sy and
E$Sy, ViSy for u and ¢% under Hy, and Hyy, then (2.1) and (2.3) hold with
asymptotic moments given in (2.4), (2.5) and (2.7). Also (2.8) follows immediately.

For Ty we will restrict attention to the case A — o; the case A — A\ € (0, ®)
was given by Holst (1972). Here we use the inequality

0=<(1+x)log(l+x)

4.3
(43) —(x+Yex?—Vex®+ - - = [22(27 + D] ¥ ) = 22722/ + 1),

x> 1, to write
Yi.log Y. = Nelog Ap + (Y — Ap)(log A\ + 1)

(Y= M)? (Y= M)® - (Y — )
+ -_—
W e T aa

where 6 = 0(Y, — \) € [0, 1]. Then since E(Y, — i) is a polynomial of degree
[j/2] in A,

EY.log Yi= Mlog \e + %2+ O(A7Y), y=1+1log A + O\7)
and so
Y.log Y, — EY,log Y, — v(Yr — A)
= (Yx — M)[log(M/A) + O(A7H)]

. [(Yk - M2 1/2] WP (= Wt
2\

62 323
Thus
var(Yilog Y. — vYi) = % + Ae[log(Ax/A)])* + O(log(Ax/A)) + O(X7Y)
=¥ + o(1),

using (4.3) and the fact that » | Axx| = o(A~"/2). Thus (4.2) holds under H,y in
this case. If we again use the notation E§Tw, V§Tn and E{Tx, ViTn for u and
o2 under H, and Hyn, then (2.1) and (2.3) hold with these asymptotic moments,
and to obtain (2.10) we need to consider the difference

ESTy — E§Tn = X1 [E1Yilog Y. — EoYilog Y]
(4.4 = Sk 2 jz1 [J log(j/A)e™ N — j log(j/N)e™N]/j!
+ Y r Aelog(Ae/N).
Using a two-term Taylor expansion for the first term, A say, gives

A =%Yk (A — N2[(@YdA2) T i1 j log(j/N)e™N/j hans
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where A} € [min(), A\z), max(), Az)]. So
[A] = %3k (M — N)2NE?
- |EYE[2(YE — M) — 1 — (YE — ME)log(YE/NE) + Yilog(YE/D)]I
where Y# is Poisson with parameter A{. This gives
A=0(ZTk (A = NPAET?) = O(n'2A7Y),
using (4.3) and the same arguments as above. Also the second term of (4.4) is
Tk Melog(Ae/A) = Yenho® || g 13(1 + o(1))
from (4.3) again. So (2.10) follows.
5. Proofs of results of Section 3. First we need to obtain the expectations
and variances of the statistics under Hy, and H,. Formulae for moments of

multinomials can be obtained from Kendall and Stuart (1969, pages 84 and 141).
These can be used to show by direct calculation that

EYrXi=N+(1-N71) X \;
VI Xi=[23x M+ 4 Tk Me(he = N7 32 20211 + 0(1))

and so to obtain (3.1) and (3.2). Also using these moments and the inequality
(4.3), we can obtain

E Zk Xklog Xk = Zk )\thg >\k + O(n)
V 3k Xelog X, = [¥an + Tx Me(log Ay — N7' 3 Aelog A)?1(1 + 0(1)),

from which (3.3) and (3.4) follow.

To derive lower bounds on large deviation probabilities in both x% and LR
cases, we use a lemma which is related to results of Brockwell (1964) (see also
Hald, 1981). For0<x<1,0<p<1,let

g(x, p) = x log(x/p) + (1 — x)log((1 — x)/(1 — p)).
LEMMA 1. If Z is Binomial (N, p),q =1 —p, 0 <p, u <1, then for Nu
integral,
P(Z = Nu) = P(Z = Nu) = 0-8(2xrNu(1 — u)) %exp{—Ng (u, p)}.

ProOF. The Lemma follows from three applications of Stirling’s formula in
the form

1 < n!(2x)"Y2n""12e" < 1.087.

Chi-square. In the sequel C is a generic constant. We have

P (Xx — N\)?2 = n\ + nA23)
= P(T3 ((Xe — N2 = 2) =0, (X; — N\)? — A = nh%)
ZP(23 (X = A= N) 20| X, = 2)P(X, =7),
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where m? = nA2(é + 1/N) and /7 = [\ + m] + 1, [x] denoting the integer part of
x. From Lemma 1, for n — o

P(X; = /) = C# V2exp(—Ng(//N, n™')) = exp{—¥an’?\6'%log n(1 + o(1))},
andif X3, -+, X, aremult(N’, (n — 1), -+, (n— 1)), N’ =N -z,
P2 (X =N =N =0|X,=7)
=P(X% (Xi = N)?=(n— 1))
= P2 (Xi—(N'/(n—=1)))>= (n — 1)
(23 (Xi— N'/(n=1D)*-N'_ /=) )
@N"*/(n—-1)"*  ~ ~ (@2N’*(n - 1))
Now N’2/(n — 1) = nA%(1 + o(1)), so
P(Z2 (X =N =N 20|X,=7)

¥ (Xi— (N'/(n=1)* =N _ (s 1/2 )
= P( (2N"%/(n — 1))2 = (2) + 0(1)

=e>0
from (2.1) with Uy = Sy and j = 0. Thus
(6.1) P(Tr (Xp — N\)% = n\ + nA23) = exp{—¥n'2\5"2log n(1 + o(1))}

for n — .

Likelihood ratio. We have
P(Yr Xilog X, = nXlog A + nAd’)
= P(3r XpdMog(XxAt) = nd’)
= P(XiA og(XiA ™) + (N = X)X og((N — X,)/(N — X)) = nd’),
since by Jensen’s inequality
(n = 1)7" Thas (Xi/N)log(Xa/N)
= (N - X)A ' n — 1) Mog((N — X)X Hn — 1)),
Thus
P(Yr Xilog X, = nAlog A\ + nA\é’) = P(g(Xy/N, 1/n) = 6').
Now g(x, p) is increasing for p < x < 1, so choosing x, > 1/n such that
&(xn, 1/n) =o', ‘
P(Yr Xilog X, =nAlog\+nXé’) = P(X,/N = x,)
(52) = C(([Nx]+ 1)1 — ([Nx,] + 1)/N))"?exp(—Ng(([Nx,] + 1)/N, 1/n))

=exp(—Né’ (1 +0(1))).
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Upper bound for x2. Let m% = n\23 + X\ as before. Then using a truncation
argument of the sort introduced by Nagaev (1969)

P{Y. X2 =n(A+ (1 + 0)A2)}
(5.3) = P{Zk ((Xx — A)? — X\) = n)A?s}
=nPXi,—A=m) + P(Cr (XE—N)?=n)+ nA2)

where X} — A = (X, — MI(X, — A < m). If Z is Binomial (N, p) then (Feller,
1968, page 151) for k > Np,
P(Z=k) = k(1 —p)(k— Np)'P(Z = k)
< k(1 — p)(k — Np)™(27k(1 — k/N))"*exp{—Ng(k/N, p)}
as in Lemma 1, so with k=[m + \],p=n"},
P(X;—A=m) < C(m+ N)m™((m + \)(1 — (m + \)/N))™/2
(5.4) - exp{—Ng([m + A]/N, 1/n)}
= exp{—l/zvm log n(1 + o(1))}

asn—>o, A=¢>0.
Now Z(Xy, *++, X,) = Z(Yy, *++, Y| Xr Yr = n)), where {Y,} are as in
Section 4, so setting Z, — A = (Y, — N)I(Y, — A < m),

P(Xr (X¥ — N2 = n\ + nA\%)
(55) = P(Ek (Zk - >\)2 =n\+ n>\26; Zk Y. = n)\)/P(Zh Yh = n)\)
=< P(Zk Z, — )\)2 = n\ + nX"cS)/P(Zk Y. = n)).

Fort>0,
(5:6) P(Zk (Z, — N2 = n\ + n\%)
< (E exp(t(Z, — N)?))*/exp(t(n\ + nA%5))
and
&7 E exp{t(Z, — N} = Josj<m+r €xp(t(j — N)?)pj + T jzm+r Dj

=SSO, m+ )N +R

say, where p; = Me™/j Lj=0,1, .. It is easy to show (see the proof of Lemma
2 below) that
R =< exp(—%n2\6"2(1 + o(1))).
Next consider
(5.5) SN = (/)2 A+ (/t)2) <=1+ (1 + 0) 3 j- =@ t(J — N)?p;
=1+ (1+0)At

since e* <1+ (1 + 0)x for 0 < x < § < 1.5. We will show below that the remainder
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of the sum in (5.7) is o(A%t) for a value of ¢ chosen later. So
P(Xk (Z, — \)? = n) + nA?%d)
(5.9) < {1+ (1 + 0)At(1 + o(N))}"exp(—t(n\ + nA?3))
< exp{—nAt(\d — 6 + o(N))}.

Choosing § < min(n\é, 1.5) for n > 0, it follows that this is less than exp{—n\®
<6(1 — 9)t(1 + o(1))}. Taking t = em™log n for 0 < ¢ < Y%, it follows that the
left-hand side of (5.9) is less than exp{—(1 — 5)en Y2\6'2log n(1 + o(1))}. This
together with (5.3) and (5.4) yields

P31, (X — A\)? = n\ + nA25) < exp{—(1 — n)en'*X6"%log n (1 + o(1))},

which taken in conjunction with (5.1) establishes Theorem 1, since > 0 and
0 < ¢ < Y are arbitrary.
It remains only to show that the terms of the sum in (5.7) not included in
(5.8) are o(n"Y2\ log n) = o(A%). The following lemma will be used in the sequel.
LEMMA 2. If \e2/j; < %,

S(j1, A + j2) < C exp{(j1 — M) (1 + tj2) — jilog(ji/M)}.

PrROOF. The sum is dominated by
Mexpf{—\ — Mtjz + 1o} (J1) ™" Timo (Ae%/j1)’

and the result follows by Stirling’s formula.
Taking j, = %am/log n and j. = m in Lemma 2, we obtain

S(¥am/log n, m + \) < C exp{¥am(1 + ¢ log n)/log n — ¥am(1 + o(1))}
(5.10) = C exp{¥(e — Y2)m(1 + o(1))}
=o(n"Y%2\log n)

since ¢ < Y%. Now we need to consider two cases. First suppose A < log n, so that
(8/t)~2 > X for large n, and

S(\ + (8/t)Y2, Yam/log n)
(5.11) < C exp{(6/t)2(1 + Ye) — (8/t)"2log(t™ A1) (1 + o(1))}
= o(n"2\ log n)

on putting j. = ¥em/log n — X and j; = X + (6/t)”* in Lemma 2. For A <log n,
(5.9) follows from (5.8), (5.10) and (5.11). Now suppose A = log n. For A
large enough, we need to consider S(0, X — (8/t)%), S(\ + (6/t)"%, 3\) and
S(3), ¥am/log n). From Lemma 2 with j, = %am/log n — X and j; = 3\,

S(3\, Yem/log n) < C exp{3A(Yze + 1 — log 3) — A(1 + Y%e)}
(5.12) - < C exp{—3M/4}
= o(n"¥2\ log n).
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Further if 1 < j < 3\, from the left-hand inequality of (4.3),
exp{t(j — A\)*}p; < C exp{At(j — N)?)/A — (j — M)*/(6))}
= C exp{—((j — N)?/(6)))(1 + o(1))}
S0

S0, N — (8/t)"?) < e + C T1<jar—wo2 expf—(j — N)?/(T\)}

A—(6/6)1/2
<C J: exp{—(x — \)%/(7\)} dx

(5.13)
= O(Xl/zexpf—(0/7)(>\t)jll)
= o(n"Y2\ log n).
Similarly,
(5.14) S(\ + (6/t)*2, 3\) = o(n~Y2\ log n).

For A\ = log n, (5.9) follows from (5.8), (5.10), (5.12), (5.13) and (5.14).

Upper bound for likelihood ratio. Let {Y,} be as above. Then
P(3: Xelog X, = n(Alog X + A6'))
= P(Xr (Xklog(Xu/N) — (X — M) = nié’)

- P(Yr (Yilog(Yi/A) — (Y, — X)) = nAd’)
- P(Xr Ye=n))

(5.15)
< C(nN\)2P(Zk (Yilog(Ye/A) — (Yi — A)) = nAd’)
- C(n\)Y2 [] iy E exp{t(Yilog(Ye/A) — (Yr — )}
- expf{tnié’} ’
Now

E exp{t(Yrlog(Y:/\) — (Yr — M)} = X 5o piexpltj log(j/N) — t(j — M)}

with p; as-above. Using Stirling’s formula and the inequality (4.3), we have for
jz1,

exp{tj log(j/A) — t(j — M)}p;
= Cexp{—¥(1 — £)(j — N)*(1 — %(j — N)/N)/\ — % log j }.

So
Yosj<ar exp(t(j log(j/N) — (j — M) p;

<C f_ exp(—¥%(1 — t)(x — A)?/A) dx = CAY2/(1 — )2 = C\
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for t =1 — A7% Also in this case
Y= exp(t(j log(j/A\) — (j — M) p;
< C Y j=ar exp((t — 1)(j log(j/A) — (j — 7))
< C T ;=3\ exp(—\7Y (log 3 — 1)) < CA
and so from (5.15)
PYr Xilog X =n(Alog A+ Né'))
< C expi{n(log A + C =N\’ )(1 + 0o(1))}
= exp{—N3'(1 + o(1))}.

This and (5.2) imply Theorem 2.
Finally, (3.9) is proved using the argument at (5.15) with n(\ log A + A§’)
replaced by E$T.
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