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ASYMPTOTIC LOCAL MINIMAXITY IN SEQUENTIAL
POINT ESTIMATION

By MICHAEL WOODROOFE!
The University of Michigan

Let X;, Xz, - - - be i.i.d. random variables with mean 6 and finite, positive
variance o2, depending on unknown parameters w € Q. The problem addressed
is that of finding a stopping time t for which the risk R.(t, ) =
E. {Av3(w)(X. — 0) + t} is as small as possible (in a suitable sense), where A
> 0, 7o is a positive function on @, and X, = (X; + -+ + X.)/t. For fixed
(nonrandom) sample sizes, 2VA (v00) is a lower bound for Ra(n, w), n = 1;
and the regret of a stopping time ¢ is defined to be ra(t, @) = Ra(t, w) —
2vA (v00). The main results determine an asymptotic Jower bound, as A —
oo, for the minimax regret M4 (Q,) = inf; sup,eq,ra(t, w) for neighborhoods 2,
of arbitrary parameter points wo € Q. The bound is obtained for multipa-
rameter exponential families and the nonparametric case. The bound is
attained asymptotically by an intuitive procedure in several special cases.

1. Introduction. LetF,, w € Q, denote a family of probability distributions
in R = (—, ®), each of which has a finite mean and variance

0=f xdF,(x) and 02=f x2 dF, (x) — 6%

The dependence of § and ¢2 on w is suppressed in the notation. Next, let X;, Xo,
-++ be independent random variables with common distribution F, for some
unknown w € Q. Suppose that X;, X;, - -+ may be observed sequentially, that
one must cease to observe the process at some (possibly random) time n, and
that if observation is terminated at time n, then one incurs the loss

(1) La(n, ©) = Ay§(@)(X. — 0)* + n,

where A > 0, v, is a positive function on @, and X, = (X; + - -+ + X,)/n. Thus,
the formulation assumes that the population mean 8 is to be estimated by the
sample mean X, in which case the only remaining problem is to select an
appropriate sample size n. This might be appropriate if F,, v € Q, were the
family of all nondegenerate normal distributions, the family of all distributions
with a finite mean and variance, or a one-parameter exponential family with its
natural parameters, since X, is the maximum likelihood estimator of 6 in each
of these cases. The loss (1) has been so normalized that each observation costs
one unit. The factor Ay%(w) determines the importance of estimation error
relative to the cost of a single observation. The main results, Theorems 1 and 2,
require A — o,
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Recall that a stopping time ¢ is a positive integer or +o valued random variable
for which the event {t = n} is determined (measurably) by X, - - -, X, for each
n=1,2,....Iftis any stopping time, then the risk incurred by using ¢ is defined
to be -

(2) RA(t, w) = Ew{LA(t, w)}, w€E Qy A > 0,

where E, denotes the expectation when X;, X,, --- are ii.d. with common
distribution F,. If ¢ is a fixed (nonrandom) sample size, say t = n, then the risk
is

3) Ra(n, w) = (A/n)y3(w)e® + n = 2VAy(w)

where v(w) = vo(w)o. Moreover, there is equality in (3) iff n = JA v (w), which
is unknown in many examples. The regret of a stopping time ¢ is defined to be
the additional risk incurred by using ¢ instead of the best fixed sample size,
namely

(4) ra(t, @) = Ra(t, w) — 2VAy(w), wE€Q, A>0.

For the case of unknown v, Robbins (1959) suggested sequential procedures
of the form

(5) r=r1a=infln=zm:n> \/Z&,,}

where vy, = yn(Xy, + - -, X,), n = 1, is a consistent sequence of positive estimators
of ¥y = y(w) and m = 1 is an initial sample size. This suggestion has prompted
substantial interest in comparing the risk of 7 with 2vA+y(w), the risk of the
best fixed sample size procedure. For example, when F,, w € , is the family of
all nondegenerate normal distributions, v, = 1, and 62, n = 2, is the sequence of
maximum likelihood estimators, Starr (1966) shows that R,(r, w)/2VAc — 1 as
A — o for all w € Q iff m = 3, and Woodroofe (1977) shows that ra(r, w) — %
as A — o for all w € Q, if m = 6. Recently, Martinsek (1983a) shows that
ra(r, w) has a limit c¢(w) in the nonparametric case (under some additional,
technical conditions) and notes that c(w) may have arbitrarily large negative
values for some values of w. The latter two papers contain many additional
references.

While there is substantial research which compares 7 to the best fixed sample
size procedure, there is less which compares 7 to other sequential procedures;
and much of this work compares Bayesian analogues of 7 to optimal Bayesian
procedures. Woodroofe (1981) and Rehalia (1983) provide examples of such
comparisons and may be consulted for further references. Bickel and Yahav
(1968), Cabilio (1977), and Vardi (1979a) combine Bayesian and frequentist ideas
in their comparisons. Wald and Wolfowitz (1951) derive minimax procedures,
including 7, under strong regularity conditions.

Here an optimality property called asymptotic local minimax regret is inves-
tigated. Suppose that Q is a metric space and let

(6) M, (t, Q) = supueq,ra(t, w)
and

(7 M4(Q) = inf,M4 (¢, Qo)
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for stopping times t and subsets Qy C Q. Then a family ¢ = t4, A > 0, of stopping
times is said to have asymptotic local minimax regret iff

8 limgju,im supa_.o[Ma(t, Q) — Ma(Q0)] =0, Vo € Qo,

in which Qo denote neighborhoods of wy. This definition is similar in spirit to
that of Hajek (1972); but the implementation differs by focusing on regret instead
of risk. The two notions are contrasted below.

When v is continuous and M,4(Q,) is bounded below by o(vA) for all suffi-
ciently small spheres, as in Theorem 1 below, it is easily seen that a family
t = ta, A > 0, with asymptotic local minimax regret must also have asymptotic
local minimax risk; that is,

limg} 4 lim sups_.«Sup.ee,Ra(t, w)/infssupwégoRA (s, w) =1

for all wy € Q. The converse fails, however. So, the notion of asymptotic local
minimax regret provides a finer comparison of families ¢ = ¢4, A > 0, than does
asymptotic local minimax risk. Roughly, regret measures the second-order prop-
erties of stopping times, while risk measures their first-order properties. Here it
is relevant that units in (8) are the original ones, the cost of a single observation.

Using (a slightly different notion of) regret in conjunction with the minimax
principle in order to reduce the focus on worst cases has been advocated by
several authors. See, for example, Berger (1980, Section 5.4.5).

The main results of this paper determine an asymptotic lower bound for
M, (Q) for appropriate subsets Q, C Q. This bound is derived in Section 2 for
multiparameter exponential families and in Section 4 for the nonparametric case.
It is hoped that these results provide some insight into the phenomena of negative
regrets, discovered by Martinsek (1983a); in any case, they provide bounds on
the extent of the phenomena. The bounds are shown to be sharp and r is shown
to have asymptotic local minimax regret in some special cases in Section 3. No
general result on the asymptotic optimality of 7 or other procedures is included,
but Section 6 outlines some approaches.

2. The parametric case. To determine an asymptotic lower bound for
M,4(Q), it is convenient to consider some related Bayesian optimal stopping
problems. If « is a prior distribution for which [ yd7 < o, let

9) Fa(t, m) = J; ra(t, o) dw(w)

and
Fa(m) = infira(t, )

for stopping times ¢t and A > 0. Then a simple application of the Minimax
Theorem yields

M4 (Q) = sup{ia(n): w(Q) = 1}
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for all A > 0 and all compact Q, C Q. The program is to determine the limit of
Fa(w) as A — o for a large class of prior distributions =. Maximizing with respect
to 7 then provides an asymptotic lower bound for M, () for compact Q, C Q.

Computing 74 (w) for fixed A > 0 and = is an optimal stopping problem. In
fact,

Fat, ) = E"{Av3(@)(0 — X,)? + n — 2VAy(w)}

where E™ denotes expectation with respect to a probability measure P™ under
which w has distribution = and X;, Xs, -« - are conditionally i.i.d. with common
distribution F,, given w. The infimum in (9) is attained by Theorem 4.5’ of
Chow, Robbins, and Siegmund (1971, page 82).

The asymptotic lower bound is first derived when F,, w € Q, is a multipa-
rameter exponential family and v, is a smooth function. Specifically, the following
is assumed: for some k = 1 and some sigma-finite measure H in R,

dF,(x) = expjw: Y(x) — ¢y (w)} dH(x)

for —o < x <o and w = (wy, ***, w) € Q, where Y = (Y, ¢+, Y:) is a Borel
measurable transformation from (—, ®) into R*and w- Y =w; Y1 + =+ + @ Y3;
Q is the interior of the natural parameter space;

Yix) =x -—-o0o<x<o;
(10)
F(w) = [(0*°¢(w)/dwidw)): i, j =1, -+, K]

is nonsingular for all w € Q; and v, is a twice continuously differentiable, positive
function on Q. These assumptions are made for the remainder of this section and
are not repeated in the statements of the lemmas and theorem. By (10), the mean
and variance of X = Y; are

0 = (8/0w)¥(w) and o = (8%/dw* W (w), wE O

and X, is the maximum likelihood estimator of §, whenever one exists.
The following lemma is crucial to the analysis of 74 ().

LEMMA 1. If = has a twice continuously differentiable density &, with compact
support in , and if £} is defined by
(11) £4(w) = [1/£0(@)[92(¥3£0)/9wi]S {£o(w) > 0},
then
E (v (w)(0 — X,)?| Xy, -+, X}
(12) 2 #
= (1/n)E"{y*(w)| X1, ***, Xu} + (1/n)’E™{£5(0) | X1, - - -, Xa}

wp.l. (PT) foralln = 1.



680 M. WOODROOFE

PrROOF. Letting C, = C,(X;, -+, X,) denote a normalizing constant, one
has w.p.1.

LHS(12) = Ci f v§(0 — Xn)’exp[nw- Y, — ny(w)]éo(w) dw

(13) = n_Cl,, J; a%l exp[nw: ¥, — ny(w)][(0 — X.)v3%0] dw

- . exptrna- . - nww)]{a%[(e - X,.w%so]} do

by an integration by parts in which one integrates first with respect to w;. Then

RHS(13) = J; véoZexp[nw- Y, — n¥(w)]éo dw

nC,

1
nC,

+ f (0 — X,)explnw- Y, — mP(w)]ai(v%Eo) dw
Q w1

= RHS(12)

by a second integration by parts on the second integral.
With = as in Lemma 1, define martingales U,, n = 1, V,, n = 1, and M,,

n=1,by
U. = E"(v*(0)| X1, -+, Xn}

Vn = E‘{v(w)lxl’ 0% Xn}

and
M, = Er{gg(w)lxl’ Sty Xn}

for n = 1. Then, by conditioning on X, - - -, X;, the Bayes regret 74(t, v) of a
stopping time ¢ with respect to = may be written

Fa(t, #) = E*{(A/t)U, + (A/t*)M, + t — 2VAV,}

a4 = E*{(4/t)(U; = V) + (4/t)M, + (1/t)(JAV = b)),

Let II denote the class of prior distributions = for which = has a twice
continuously differentiable density £, with compact support in @ and inf, £§(w)
> —oo, Observe that II contains distributions which peak about any given w, €
Q. In fact, if Qo = [a1, b1] X -+ X [ax, be] is any nondegenerate rectangle in ©,
then II contains all distributions with densities

EO(w) = % H?=l m(H)/'yg(w)’ w€E Q’

(3
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where
hn(x) = x™(1 — x)"L1(x), —o <x < o,
C is a normalizing constant, and m > 2.
LEMMA 2. If = € 11, then there are stopping times s = s(A, ) which minimize
Fa(t, ©) with respect to t for A > 0 and satisfy the following: s/vA — v in

P~-probability as A — »; and there is a 6 = 5(x) > 0 for which s = 6vA wp.1
(P™) forall A > 0.

Lemma 2 is proved in Section 5. The convergence (which actually holds w.p.1)
is intuitive, in view of the behavior of the best fixed sample size.

THEOREM 1. If # €11, then

(15) lim infy_ofa(7) = J; I'w) dn(w),
where .
(16) I' = y2(Ay) 7 (Ay) + v3((8%/0w,®)y72)

and A denotes gradient.

PROOF. Let s = s(A, 7) be as in Lemma 2. Then there is a sequence A;, A,,

- along which A — o, the lim inf in (15), is attained, and s/ VA — v w.p.l
(P7™). Attention is restricted to such a sequence.

The three terms on the right side of (14) may be considered separately, with
t = s. The last is nonnegative. For the second, As"2M, — v ~2£4 by Lemma 2 and
the Martingale Convergence Theorem; and As~2M; is uniformly integrable, since
As™? is bounded and M,, n = 1, is a uniformly integrable martingale. For the
first term, observe that U, — V2 is the conditional variance of v (w) given Xj,
-+, X,. Let @, denote the maximum likelihood estimator of w (which exists for
all sufficiently large n w.p.1). Then the conditional distribution of vn(w — &,)
converges weakly to a normal distribution with mean vector 0 and covariance
matrix # " (wo) as n — o w.p.1 (P,,) for all wo € Q. See, for example, Bickel and
Yahav (1969). So, lim inf,_.n(U, — V%) = (Ay)F! - (Ay) w.p.l (P7) by
Fatou’s Lemma. Combining these observations with another application of
Fatou’s lemma yields

(17) lim ian_,ml_'A(ﬂ') = f [‘Y_ZA‘YJ_I . A'Y + 7_256“]50 dw
Q

and the right sides of (15) and (17) are equal by an integration by parts on the
second term in (17).

COROLLARY 1. If Q, is an open set with compact closure Q, C Q, then

(18) lim infs,oMa(Q) = sup.eq,I'(w).
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PROOF. The limit inferior of M, () is at least as big as the supremum of
the right side of (15) over « € II for which 7 (Q) = 1; and the latter is easily seen
to be the right side of (18).

When v, = 1/0, so that the best fixed sample size VA is known, there is
asymptotically no gain from sequential sampling.

COROLLARY 2. If vo = 1/0, then lim inf,_..M4(Q) = O for all open Q, with
compact closure in Q.

PrOOF. When v, = 1/0, v is constant and I'(w) = 0 for all w € Q.

3. Examples. In this section I' is computed and compared with the asymp-
totic regret of 7 for several special cases which have been considered in the
literature.

EXAMPLE 1. The Poisson case. If F, is the Poisson distribution with mean
6 = e* and if v, = 1/0°, where —0 < w < ® is unknown and —® < o < ®, then
Corollary 1 is applicable with

I'(w) = 5(a — %)%/0, —0 < w < o,

Thus, negative asymptotic local minimax regrets are not possible in this example,
and large regrets must occur when 6 is small and o # %. Vardi (1979b) shows
that r4(7, w) = O(1) and A — « uniformly in § = ¢ for any positive ¢ (for an
appropriate version of 7).

EXAMPLE 2. The exponential case. If F, is the exponential distribution with
mean 0 = 1/| w| and if v, = 1/6%, where —» < w < 0 is unknown and —o < a <
o, then Corollary 1 is applicable with v = §!™* and

T'w)=T,=010—-a)8 —5a), —0<w<O0.

Thus, T, is negative for % < a < 1.

If 4, = X1, n = 1, the regret of r depends on A and 6 only through \ =
A0% 2% say ra(r, w) = ry(r, 1). When a = 0 and m > 2, Theorem 3.2 of Woodroofe
(1977) asserts that ry(r, 1) = 3 = I'; as A — ; and a straightforward extension
of this result shows that r\(7, 1) - I, as A = o, if m > 2 — 2« for any a < 1. So,
in this example with o < 1; the bound of Corollary 1 is sharp; = has asymptotic
local minimax regret; and negative regrets are possible uniformly over 6 = ¢ for
any positive ¢, if 36 < a < 1.

EXAMPLE 3. The N(0, 1) case. If F, is the normal distribution with mean
6 = w and unit variance, and if y,(w) = 1/w for —0 < w < 0, then Corollary 1 is
not directly applicable, since v, is not continuous at 0. However, if Q, is a finite
interval for which 0 & Qo, then M4 (%) is unaffected by the behavior of vo(w) for
w near 0, and it is easily seen that Corollary 1 is valid in this case. In fact,
Corollary 1 is valid when 0 € Q, too. In this case I'(w) = 3/w?; and a result of
Martinsek (1983b) shows that rs(r, w) — I'(w) as A — o for each fixed w # 0.
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EXAMPLE 4. The N(, o2) case. If F, is the normal distribution with
unknown mean 6 and unknown variance o2, where —® < w; = 0/¢%> < © and
wg = —%g% < 0, and if yo(w) = 1/0°, where —o < a < «, then Corollary 1 is
applicable with I'(w) = T, = (1 — a)?/2 for all w € Q, after some algebra. As in
Example 2, if ¥, is the maximum likelihood estimator of v for all n = 2, then the
risk of 7 depends on A and w only through

A=Ac*? say ra(r,w)=n]r;(0,1)];
and an easy extension of Theorem 3.1 of Woodroofe (1977) shows that
limy_wri[7, (0,1)]=T,, if m>3—-2a and a<l1.
Thus, 7 is asymptotically minimax in this case.
4. The nonparametric case. In this section the common distribution
function of X;, X,, -+ - is assumed to belong to a class & which satisfies the
following conditions: every F € & has a finite positive variance and a finite

fourth moment; no F € & is supported by two or fewer points; if F, € ¥, then
there is an 6 = 6(F,) > 0 for which # contains the exponential family

(19) de(x) = exp{wlx + w2x2 - 1//(w1, w2)} dFo(x), —e < x < %,

where w = (w1, wg), |wi| < §, and —6 < wy, < 0. For example, the class of all
continuous distribution functions with a finite fourth moment satisfies these

conditions.
The information matrix of the family (19) is nonsingular, if F, is not supported
by one or two points.

THEOREM 2. Suppose that vo(F) = 1/¢% where ¢* = ¢*(F) denotes the
variance of F for F € & and —» < a < . Let Fy € %, C & and suppose that %
contains the exponential family (19) for sufficiently small 6 > 0. Then

lim infy .o Ms(FH) = (1 — a)[2 + (2 — a)pd — Y%(3 + a)ko],
where

po = ao° J:m (x — po)® dFy(x),
(20)
Ko = a5* J: (x = po)* dFo(x) — 1,

and uo and o} denote the mean and variance of Fy.

PrROOF. Define T by (16) for the exponential family (19) and yo(w) =
1/6%(w), where o%(w) denotes the variance of F,. Then
lim infs_,o Ms (%) = lim sup,_oI'(w) = T'*,

say, by Theorem 1 applied to the family (19) with the interior of its natural
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parameter space. In this case v = 6™ and
I'=%(1 — «)*(A log 62).77! . (A log 6%) + 072 (8%/0w?})a® 2,
where ¢ = ¢%(w) and .# denotes the Fisher information matrix. Let
Vi = Yij (w1, w2) = 3P (w1, w)/d'w1d wy

fori,j=0,1,2, -++ and wy < 0. Then ¢® = Yy and ¥ = [¢;;: i + j = 2], so that
I'(w) may be expressed in terms of ;; with i < 4 and j < 2. The expression for T
may be simplified by using the relations

Y1 = o3p + 2002, Vo2 = o'k + 405%p + 40262,
Vo1 = o'k + 200°p, Vs = a3p, and Y = otk — 2),

where 6 = 0(w) denotes the mean of F,, and p = p(w) and « = k(w) are defined by
(20) with F, in place of Fy; and one finds that

IF'w)=0—-a)[2+ (2 — a)p? — %@ + a)],

after some algebra. The theorem then follows by letting w — 0.
COROLLARY 3. If vo = 1, then lim infy_ M4 (F) = 2 + 2p3 — 3ko/4.

When v = 1, Theorem 1 of Martinsek (1983a) asserts that ra(r, Fo) - 2 +
2p% — 3ko/4 as A —  for all nonlattice F with more than eight moments, provided
that m = m4 — « at a suitable rate and ¢? is estimated appropriately.

5. Proof of Lemma 2. In this section F,, w € , is assumed to be an
exponential family which satisfies the conditions listed in Section 2.

Recall that Lemma 2 makes two assertions about stopping times s = s(A, =)
which minimize 74(¢, =) with respect to ¢, where A > 0 and [o v d7 < oo: if
7 € II, then s/vA — v (w) in P™-probability as A — o, and s/vA > & > 0 w.p.1
(P7) for all A = 1 for some 6 = 6(w) > 0.

To establish the convergence, one first notes that 74 (7) = 0(VA) as A — x, if
= has compact support. This follows from Theorem 4.1 of Bickel and Yahav
(1968). It may also be established directly by considering stopping times of the
form t = t, = max{m, [VAV,]}, where m ~ AY*, V,, = E"{y(w)| X1, -+, Xn},
and [-] denotes the greatest integer function; in fact, 74 (w) < Fa(t, ) = o(VA)
as A — o when = has compact support, since then vy + 4! is bounded on the
support of = and V,, — v w.p.1 (P") by the Martingale Convergence Theorem.
It then follows from (14) and the Martingale Convergence Theorem that
E7{s"Y(VAV, — 5)%} = o(VA) as A — ®, when = € II; and this requires s/vA —
v in P"-probability, when = € II.

The proof of the second assertion in Lemma 2 uses the following.

LEMMA 3. Suppose that & has a continuous density with compact support.
Then, for each n = 1, there is a 8, = §,(%) > 0 for which

(21) E™{y§(@)(0 — X2)? | X, -+, Xu} = 80, wpl.
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ProOOF. The proof of the lemma is given for the case & = 2. The case k =1
is similar, and simpler.

Let 2 denote the convex support of H; let Qy denote the support of &, the
density of =; and let Q; and Q, denote the projections of 2, onto the spaces of w,
and wy, *+*, wp. For fixedn =1, (x;, -+, x,) € 2" and (wg, ***, wp) € g, let

Eri (wl) = (l/Crlz)exp{nwlin - n‘p(wl’ w2, *°°, wk)}go(wl’ MY wk)

for w; € Q;, where C}, is a normalizing constant and X, = (x, + * - - + x,)/n. Then
£/ is a version of the conditional density of w;, given X; = x,, + -+, X, = x, and
wa, ***, wg; and & depends on x;, - -+, x, only through %,. Now, the left side of
(21) is the integral of

(22) Q(Xn; way *+ 5 W) = j; Y3 () (0 — %,)%&5 (w1) dan

with respect to the conditional distribution of wg, * * *, wg, given X; = x5, -+, X,
= x,. So, it suffices to show that the right side of (22) has a positive infimum
over %, € 2 and (wo, ***, wz) € Q.

Let © and 0, denote the images of Q and Q, under the mapping 6§ = 6(w) =
0y (w)/dw;. Then O is open, 6, is compact, and @, C ® C 2. So, there is a compact
0, C 0 for which 6, C int(0;) C 0, C 0. Now, the right side of (22) is positive for
each x, and ws, -+, wp and is jointly continuous in its arguments; so, it has a
positive infimum on the set where %, € 0, and (wz, ***, wz) € Q. Moreover,
|8 — x,| has a positive infimum on the set where x, & 0;; so, @ has a positive
infimum on the set, %, & 0, and (w,, * -+, wz) € Qs too. The lemma follows.

To complete the proof of Lemma 2, first observe that s = s(A, w) also minimizes
the Bayes risk Ra(t, 7) = E"{Av3(w)(0 — X,)? + t} with respect to ¢t for A > 0
and = for which [o ydw < o, since R, (t, w) and 74 (¢, =) differ by a term which
does not depend on ¢t; and let R(x) = inf,R4(t, =) denote the minimum Bayes
risk. Next, let W,(A, ) = E"{Av%(w)(0 — X,,)?} and let 7} denote the posterior
distribution of given X;, :-+, X, for prior distributions = and n = 1. If
E™{6%v%(w)} < o, then

(23) s = inf{n = 1: W,(A4, 7%) < Ra(n})}

minimizes R4 (¢, =) with respect to ¢ for all A > 0. See Theorems 4.2 and 5.2 of
Chow, Robbins, and Siegmund (1971).

Now suppose that = € II; let Q, denote the support of x; and let B denote an
upper bound for vy (w) for w € Q. Then, by considering fixed sample sizes, one
finds easily that R4 (p) < 2VAB + 1 for all prior distributions p with support .
In particular, R, (r}) < 2vVAB + 1 w.p.1 (P™) for all n = 1. Since W, (4, «¥) =
Aé, for some positive constants 8, = §,(w) for each n = 1, it follows that there
are (nonrandom) integers N, for which Ny — « and s = N, w.p.1 (P™) for all
A = 1. Next, from (23), one has s > n whenever

(24) E”{Wn+l(A’ W:+1)IX1’ Tt Xn} - Wn(A’ W:) < _1;
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and by Lemma 1 of Section 2, the inequality (24) may be rewritten
A 2n +1

nn+1)] " nn+1)

where U, and M,, are as in (14). Now, there are b > 0 and 0 < B < o« for which

U,=band M, = —B w.p.1 (P~) for all n = 1. So, the left side of (25) is at least
Ab/2n? for all sufficiently large n. Thus, s = v(Ab/2) for all sufficiently large A.

(25) M,,] >1

6. Concluding remarks. Examples 2, 3, and 4 and Corollary 3 suggest
that 7 may have asymptotic local minimax regret for a large class of models. Two
approaches to this conjecture are described below.

One approach is to use nonlinear renewal theory to compute r4 (7, w) for fixed
w and large A, as in Woodroofe (1977) and Martinsek (1983a). To yield asymptotic
local minimaxity, this approach would have to establish limits uniformly when-
ever w is near a given point wo; and this would require uniformity in the nonlinear
renewal theorems of Lai and Siegmund (1977, 1979) and Lalley (1983). Uniform
versions of the nonlinear renewal theorem have been obtained recently by Pollak
(1984) and Zhang (1984). These may be sufficient to show that 7 has asymptotic
local minimax regret in nonlattice cases. Lattice cases present two additional
difficulties, nonuniformity of convergence and possible asymptotic dependence
between the undershoot and 7, properly normalized. There is less reason to
believe that = has asymptotic local minimax regret in such cases.

Another approach is to attempt to modify the arguments of Woodroofe (1981)
and Rehalia (1983) to show that 74 (7, ) — Fa(7) — 0 as A — o, uniformly with
respect to 7 in an appropriate class. Even for fixed =, such an extension presents
technical difficulties, since the stopping times employed by the latter authors
make explicit use of the prior information. If true for a large enough class of T,
the result might be of interest, even without a statement of uniformity.

Still another approach to finding asymptotically optimal procedures is to
abandon 7 in favor of multistage procedures, following Hall’s (1981) treatment
of fixed width confidence intervals. For example, in the normal case with
unknown 6 and o2 and v, = 1, Hall’s (1981) techniques show that the following
procedure has the same asymptotic properties as 7 and, therefore, asymptotic
local minimax regret: let m = my — o and 6 = 64 — 0 as A — o in such a manner
that m ~ A2 and 6 ~ m™/4; let g7 denote the maximum likelihood estimator of
o? for n = 2; and let

s = max{m, [(1 — 6)&,,,\/3] + 1}

and
t = max{s, [5:;VA] + 1},

where [-] denotes the greatest integer function. Then r4(t, w) — % and A — o

for all w.
There are a variety of possible refinements and generalizations of Theorems

1 and 2. An interesting one is to consider estimators of the form 6, = X, —
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b.(@n)/n, n = 1, in the context of Theorem 1, where @, denotes the maximum
likelihood estimator of § and b, converge to a smooth limit b as n — . Such
estimators have attracted substantial recent attention in the nonsequential case.
See Ghosh, Sinha, and Wieand (1980) and the references cited there. In the
sequential case, where X, may be a biased estimator of w, inclusion of the term
b.(&,)/t may allow a reduction of the order of magnitude of the bias. So, reducing
the bias reduces the mean squared error in some cases, but may increase it in
others.

It seems likely that the approach developed here is extendable to parameters
other than the mean, with the maximum likelihood estimator replacing X,, to
smooth loss functions, and to more complicated data structures, such as regres-
sion models, models involving censored data, and models for which the densities
do not form exponential families.
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