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ESTIMATION IN THE GENERAL LINEAR MODEL WHEN THE
ACCURACY IS SPECIFIED BEFORE DATA COLLECTION

By MARK FINSTER

University of Wisconsin

An estimator 8 of 8 is accurate with accuracy A and confidence 7,
0<y<l,if P(B-B€ A= v for all 8. Given a sequence Y;, Y, .- of
independent vector-valued homoscedastic normally-distributed random vari-
ables generated via the general linear model Y; = X3 + ¢, the k-dimensional
parameter § is accurately estimated using a sequential version of the maximum
probability estimator developed by L. Weiss and J. Wolfowitz. The procedure
given also generalizes C. Stein’s fixed-width confidence sets to several dimen-

sions. .

1. Introduction and summary. While observing a sequence Y;, Y, .-
of independent vector-valued homoscedastic normally-distributed random vari-
ables generated via the general linear model

(1.1) Yi = Xzﬁ + ¢

we want to accurately estimate the unknown parameter 8 € R*. An estimator 3
of f is accurate with accuracy A C R* and confidence v, 0 < y < 1, if P( =
A) = v for all 8. The accuracy set A need only be a Borel measurable set having
an interior point at zero. The set 3 — A is a 100y % fixed-accuracy confidence set
for 3. For such estimation procedures the accuracy of the estimator is specified
prior to data collection and, hence, accuracy or error specification is a design
feature. Unlike the usual theory of confidence sets, a fixed-accuracy confidence
set is determined, with stated confidence, by subtracting the nonrandom preas-
signed accuracy or error set A from the estimator.

In (1.1) the m-variate real valued vectors &;, e, - are independent and
normally distributed with mean zero and covariance matrix o* ¥; where ¥; > 0
is known but ¢ > 0 is unknown. To simplify analysis, and without loss of
generality, assume each ¥; is the identity. For the sake of simplicity, assume also
that X;, X,, - - - are known m X k matrices of minimum rank r > 0 and having
design measure converging to that of some optimal design. For example, see
Karlin and Studden (1966), Kiefer and Studden (1976), Federov (1972), Silvey
(1980), and Section 4 of this article. In some special situations (see Example 4 of
Section 4) the X; may be i.i.d. random matrices having a joint distribution
independent of the ¢’s. In such cases assume that r = min{n: P(rank(X;) = n)
> 0} > 0 and that 8 is identifiable with probability one (i.e., w € R*, w # 0

Received February 1984; revised June 1984.

AMS 1980 subject classifications. Primary 62L12, 62E20; secondary 60G40.

Key words and phrases. Fixed-accuracy confidence set, sequential methods, nonlinear renewal
theory, general linear model, maximum probability estimator.

663

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

WWw.jstor.org



664 MARK FINSTER

implies P(X;w = 0) = 0), then the distribution of X; is continuous on {rank(X;)
< k} and for n = p = [k/r], the matrix

(1.2) M, = ¥ XIX;

is invertible with probability one. Here [x] is the smallest integer containing x.

Accurate estimators were probably first developed for i.i.d. observations from
the Bernoulli distribution, for which the sample mean accurately estimates the
expectation with stated confidence and accuracy, provided the sample . size is
sufficiently large. Stein (1945, 1949) suggested accurate estimation procedures
for estimating the mean, say 3, of a one-dimensional normal distribution having
unknown variance o2 Recognizing that no fixed-sample-size procedure can be
accurate, Stein suggested estimating 8 by the sample mean to accuracy [—d, d],
for given d > 0, via a two-stage procedure in which the sample size depends on
the variance estimate of a pilot sample. However, his “fixed-width” procedures
are inefficient when the pilot sample is small relative to N, the minimal sample
size required for accurate estimation when the nuisance parameter ¢% is known,
because they don’t use the second stage to estimate o2. Specifically, for the two-
stage procedure the regret in not knowing o2, which is the difference between N
and the expected sample size (ASN), tends to infinity as N — . See Cox (1952)
and Ghosh and Mukhopadhyay (1979). To alleviate this inefficiency Stein (1949)
suggested updating the sample size estimate after each observation. See also
Anscombe (1952, 1953). Although the bounded regret of this continually updating
procedure has been evaluated up to o(1) terms as N — oo, the procedure is
consistent (i.e. the confidence is at least v) only up to o(N ') terms. Woodroofe
(1977, 1982) has given a nonlinear-renewal theoretic development of these
second-order asymptotic results. By sampling a predetermined number of obser-
vations beyond this stopping rule, Simons (1968) obtained truly consistent fixed-
accuracy procedures, that is, procedures having confidence at least +.

Starr (1966) examined the small and moderate sample size performance of
Stein’s sequential rule. Chow and Robbins (1965) have showed that this procedure
is also asymptotically consistent and asymptotically efficient (i.e. ASN ~ N)
even when the underlying distribution is unknown. Related ideas are found in
Starr and Woodroofe (1968, 1969, 1972), Vardi (1979), and Martinsek (1983).

Hall (1981) initiated the quite interesting and more practical triple-sampling
approach to “fixed-width” accuracy, in which a pilot sample is used to obtain an
initial projection of the sample size needed. After collecting only a fraction of
this projected sample size, the estimated sample size is updated and sampling is
then completed after this one update. Hall presents second-order asymptotic and
Monte Carlo results for triple sampling from the normal distribution, results that
compare favorably with the continually updating procedure.

In all these accurate procedures the one-dimensional parameter is esyimated
to accuracy [—d, d], leading to the “fixed-width” confidence set {3: |3 — 8] <d}.
Gleser (1965) extended the asymptotic consistency and asymptotic efficiency
results to several-dimensional linear regression where the fixed-accuracy confi-
dence set again is {8: | 8 — 8| < d}, corresponding to the spherical accuracy set
A ={B:|8] <d}. Here | - | is Euclidean distance.

However, in both one- and several-dimensional problems, the appropriate
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accuracy need not be given by a sphere centered at zero. In practice § might be
a quantity used in place of the actual value of 8. Overestimating a coordinate of
8 by a fixed amount might be more serious than underestimating the coordinate
by that same fixed amount, as in dosage determination of a drug toxic at high
levels, or as in estimation of the intensity of a radioactive substance. See
Lehmann (1959, page 78). In other words, spherical or even ellipsoidal accuracy
and confidence sets might not be appropriate. For example, if each coordinate of
8 is to be simultaneously estimated, the ith coordinate to accuracy A; (e.g. A; =
[—d;, d;] for some d; > 0), then 8 should be estimated to accuracy I1A;. In practice,
the accuracy desired for a parameter depends on the given problem and on the
particular use of the estimator. The one constraint placed on the accuracy is that
it be star shaped with respect to zero. That is, if 3 is an accurate estimate of §,
then any estimate closer to 8 must also be accurate.

Without placing traditional constraints on the type of accuracy, accurate
procedures are derived, in Section 2, for estimators of 8 in model (1.1). The
associated fixed-accuracy confidence sets generalize Stein’s (1945, 1949) fixed-
width confidence sets to several dimensions. Relevant properties of the required
sample size are also presented. For example, nonlinear renewal theory is used to
derive the second-order asymptotic properties of the ASN (such as its regret) as
in Woodroofe (1982). Siegmund (1978, 1980) has also used nonlinear renewal
theory in a very eloquent way to estimate and to obtain confidence sets after
sequential hypothesis testing, but his estimators are not accurate in our sense.

In Section 3, a general theorem is given which can be used to determine the
second-order confidence of this procedure under various design strategies. A
simple algorithm for computing the relevant parameters is also presented.

In Section 4, several examples of accurate estimation procedures are presented
for specific design optimality criteria (e.g., D-optimality and grid search designs)
and for specific accuracy sets (e.g., spherical, rectangular, and ellipsoidal accu-
racy).

It should be noted here that our notion of accurate estimators and their related
fixed-accuracy confidence sets are quite different from Lehmann’s (1959) uni-
formly most accurate (perhaps invariant or unbiased) confidence sets. Although
motivated by similar statistical needs, our methods yield fixed-accuracy confi-
dence sets for a broader range of problems, and our estimators are conceptually
more similar to Weiss and Wolfowitz’s (1969, 1970, 1974) and Wolfowitz’s (1975)
maximum probability estimators. Uniformly most accurate confidence sets are
not, in general, fixed-accuracy confidence sets.

Many of the techniques and methods used in this paper depend on nonlinear
renewal theory as developed by Woodroofe (1976, 1977, 1978, 1979), Lai and
Siegmund (1977, 1979), and Siegmund (1977, 1978, 1980). Woodroofe (1982) is
an excellent survey.

2. Accurate estimation and the sampling procedure. After sampling
(X;,, Y)fori=1,2, .., n, the estimator 3, = (8,, where 3, is the usual least
squares and maximum likelihood estimator

(2.1 Bn = M7 31 XY,
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is an accurate estimator of 8, having accuracy A and confidence +, provided

(2.2) P(Bo—BEA) = .
However, shifting 8, by a vector v = v(a?) to
(2.3) Bn=B,+v

may increase the probability of accuracy, as is suggested by the work of Weiss
and Wolfowitz (1969, 1970, 1974) and Wolfowitz (1975). Their maximum prob-
ability estimator is the d that maximizes the integral, with respect to Lebesgue
measure, of the likelihood function over the set d — A. For the general linear
model with ¢® known, the maximum probability estimator is precisely the
estimator (2.3) where v is the vector that maximizes the left-hand side of (2.2).

For the sake of simplicity, suppose v is independent of ¢% and n. For example,
if A is bounded, symmetric, and star-shaped with respect to a vector v, then v
maximizes (2.2) independently of ¢ and n. If the v maximizing (2.2) is not
unique, choose a maximizing v closest to zero. For example, if ¢’8 (c € R¥) is to
be estimated to accuracy (5, ¢), for 6§ < 0 < ¢, or, equivalently, if 8 is to be
estimated to accuracy {83: § < ¢’8 < ¢}, the maximum probability estimator is
¢’B, + (¢ + 6)/2. The existence of such a v is a standing assumption.

Then the maximum probability estimator (2.3) is an accurate estimate of 8
provided the standardized error of the least squares estimator

(2.4) en = VYno'(B, — B)

satisfies

(2.5) v < P(B. — B E A) = P(on""%, € A — v) = F,(n/o?).
Here

(2.6) F,(w)=Pw e, €A—-v), w>0

is an increasing function and does not depend on B or ¢% since B, ~

N(B, ¢®M;Y). Thus B3, has accuracy A and confidence v provided no~2 = a, where
(2.7) a, = F7'(v)

or, equivalently, provided n = o2a,. Although o2 is unknown, it can be estimated
by its usual (MVUE) estimator

(2.8) gn=(nm — k)7 37 | Y; — XiB, |,

suggesting termination of sampling when n = 62a,. However, due to the random-
ness of 62 (62 acts roughly as the average of a random walk, cf. Finster, 1983),
this rule tends to stop sampling early. To protect against early termination, the
variance estimate is inflated by the factor

R.=1+r,/n+o0(n™

for design-dependent parameters r, = 0 belonging to a compact set. Often r, =
r = 0. R, will be discussed further in Section 3 and Section 4. Thus, after taking



ACCURATE ESTIMATION FOR REGRESSION 667

a pilot sample of size n = p, our procedure uses a sample of total size
(2.9) t =inf{n = n: n = R,62a,)

to obtain the accurate estimator ﬁt.
Later we will show that, in most practical design strategies,

(2.10) a,=a(l + a,/n) +o(n™?)

where the «, are design-dependent parameters belonging to a compact set. See
(3.20) for a determination of «, using a linear function. The parameter a is a
measure of the precision desired. This precision parameter measures the “size”
of and the “confidence” in the accuracy set according to (2.6), increasing to
infinity as either the confidence v increases to one, or as the accuracy set A
decreases to the empty set (decrease here being defined with respect to the partial
order of set inclusion). Setting N = ac? and letting

(2.11) 4y = Rpa,Ja=1+ A,/n + o(n™?)
where A, = r, + «a, is constrained to be positive, (2.9) can be written
(2.12) t = inf{n = 9: n(o?/6%)/4, = N}.

Here N is approximately the integer representing the minimal sample size
necessary for accurate estimation of 8 with confidence vy. Note that N — o as
the precision a — « or as ¢ — .

The sampling procedure ¢ terminates with probability one and has a distribu-
tion that is independent of 8 and that depends on the unknown parameter o*
only through N. Given X, X;, .-+, X;, B ~ N(8 + v, ¢ M;?). Furthermore, ¢ is
both pointwise and momentwise asymptotically efficient in that ¢/N — 1 with
probability one, and, for all ¢ > 0, N"9E(t?) — 1 as N — «. These and the second-
order results stated in Theorem 1 below can be derived from (2.12) as in Section
3 of Finster (1983). The derivation will not be repeated here.

THEOREM 1. As N —» »

(i) (¢t — N)/¥N > N(0, 2/m), and
(ii) the probability of early termination is

P(t<N/2)~P(t=9)~C,N7®
where b= (nm — k)/2 and C, = b®(n/4,)°T'(b + 1).
If n > max[p, (2 + k)/m] then
(iii) E¢)=N+Y%—(v+1)/m + A + o(1), where A = E(A,), an.’
(iv) N'E(t— N)? - 2/m.

Here v = v(m) = ¥n., n7'E{[x%. — 2mn]*} where x2, represents a variable
having that distr'bution. See Table 1 (« = 10,000) of Finster (1983) for specific
values of ». The function »(m) is decreasing and is always less than .7. In many
practical situations (see Section 4) a,, = 0, r, = r, and E(A,) = r so that the regret
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in not knowing ¢%is r + % — (v + 1)/m + o(1). In Section 3 a constraint on r, is
determined to ensure second-order confidence of at least ~.

When using sampling procedure (2.12) it is necessary to update and hence
compute M}, 8., and 62 for each n = 5. If m = 1 a three-step algorithm that
avoids inverting M, follows.

1) M;*=M;} - C,C)/t, where C, = M;}, X, and &, = 1 + X,,C,,. Here
prime denotes transpose.

(2) Bn = Pn-1 + enM;* X! where ¢, = Y,, — X, 8.1 is the prediction error in
predicting Y, from Y, Y, - -+, Y1

() (n—k)or=(n—k—1)ca_; + ei/En.
If m > 1 the above algorithm can be used to update M;* one row at a time. See
Finster (1983) and Brown, Durbin, and Evans (1975).

3. Confidence in the sampling procedure. To calculatfz the confidence
note that (2.5), (2.12), and the independence of {67, i < n} and 3, imply

P(Bi—BEA) =30, P —BEA, t=n)=3r, Fun/c®)P(t = n)

(3.1)
= E[F.(t/o”)] = E[F(at/N)].

Since e,, given in (2.4), has distribution N(0, nM},'), one might hope to
calculate asymptotics for the coverage probability provided M,/n converges
elementwise to some matrix _# where 7’ = _# > (, so that, for all w, F,(w)
converges to

(3.2) Fw) = Pw™X€A—-v), X~NO 7).

In fact, the asymptotic consistency (i.e., convergence of the coverage proba-
bility to v as N — ) follows easily from (3.1), (3.2), and the asymptotic properties
of the sample size. However, to derive the second-order asymptotics, additional
regularity conditions are needed.

Let C2(0, ) symbolize all nonnegative twice continuously differentiable func-
tions defined on (0, ®) with range in (0, 1]. If F € C%(0, ») let F and F denote
first and second derivatives respectively.

THEOREM 2. Let 0 < v < 1, let {a,} be a sequence of constants converging to
a, and suppose F,, € C%(0, ®), n = 1, satisfy the following assumptions.

(i) There exists a function F € C?(0, ) such that F,(w) — F(w) uniformly on a
neighborhood about a.
(ii) F(a) # 0 and | F.(a) — F(a) | = o(n™?).
(iii) F.(a,) = v for all n and F,(a) — F(a) = O(1/n).
(iv) There exists L > 0, e > 0, and o = 0 such that, for all n, | Fo(w) | < Lw™ if
I<w<a+e
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Then, for n > max[(2a + k + 2)/m, p], t defined by (2.12), and 7 = E(r,),
PB,— BEA) =v +aNYF@)[% — (v + I)m™' + 7] + aF(a)/m} + o(N7).

Note that Theorem 2 implies the inflation factor R, = 1 + r,/n + o(n™") must

satisfy

(3.3) F=(+1)/m—Y% — aF(a)/mF(a)

if the probability of coverage is to be at least v up to o(N7') terms. Note also

that for m = 2(v + 1) — 2aF'(a)/F(a), any positive r, suffices.
PRrROOF. A Taylor’s expansion of a, = F;(y) about F,(a) gives

(3.4) an = a — [Fa(a)]'[Fu(a) — F(a)] + o(Fn(a) — F(a)).

Thus by assumptions (i), (ii), and (iii) there exists «,, n = 1 such that (2.10)
holds. A Taylor’s expansion of F; about a, yields

(3.5) Fi(at/N) =~ + GHN™' + DH?N*

where G = a,F.(a;), H + N = at/a,, and D = Yea?F,(w,) for some w, between a,
and at/N. Let Iy be the indicator function of {t > N/2} and let Iy =1 — Iy
indicate the complimentary event. Assumptions (i), (ii), (2.10), a first-order
Taylor’s expansion of F, about a, and the triangle inequality show

(3.6) SUPn=ny2 | anFr(a,) — aF(a) | = o(N73).

Hence | G| is bounded and by Theorem 1 (ii) there exists a constant K > 0 so
that

3.7 E(GHIY) = KNP(t < N/2) = o(1)
for n > (2 + k)/m. Theorem 1(i) implies H?>N~' converges in distribution to
(2/m)x? and (3.6) implies
[G — aF(a)]*NIy = o(1)

uniformly in N. Herice by Schwartz’s inequality and Theorem 1

| E([G — aF(a)]HIy) |? <= E([G — aF(a)’NIN)E(H?N™) = o(1).
This and Theorem 1(iii) imply
" E(GHIy) = aF(@)E(HIy) + o(1)

= aF(@)[E(r) + %2 — (v + 1)/m] + o(1).

Assumptions (i) and (ii) imply D converges dominantly on {¢ > N/2} and hence
by Theorem 1(ii) and (iv)

(3.9) E(DH2N-'Iy) = a*£(a)/m + o(1).

Furthermore, there exists a constant C so that H> < CN? on {t < N/2}. Since
w; = min{atN~?, a,}, assumption (iv) and Theorem 1(ii) imply that for sufficiently

(3.8)



670 MARK FINSTER

large N
E(DH®NI}) = CNE(| D | I%)
(3.10) < CN*“"'E(max{a™"t™%, a;*N"*}I})
=< Ca™N**'P(t < N/2) = o(1)

provided n > (2a + k + 2)/m. Combining (3.1), (3.5), (3.7), (3.8), (3.9) and (3.10)
completes the proof.

To verify the assumptions of Theorem 2, the designs X;, X;, --- must be
examined further. The design structure can be specified by the design information
matrix per observation per unit variance, say _7, = n"'M,, for each n. See
Federov (1972) or Silvey (1980). In most situations the information _7, satisfies

(3.11) Fo=n"M,= 7 + n"'K, + o(n™?)

for some Z = _7’ > 0 and for matrices K,,, n = 1, belonging to some compact
set. Let 7, = _Z Then F, defined by (2.6) can be written

(3'12) Fn(w) = wk/2g0,n(w)7 n= Oy 17 29 e
where g;n(w) = gi(Pn, Zn, w) with

(3'13) gi(B’ C’ w) = L—U 2—i(2'BZ)i(21r)_k/2 I C | 1/2exp{_% (szCz)} dz,

i=0,1, ...

defined for symmetric & X k matrices B and C > 0. Here | C| denotes the
determinant of C and dz is Lebesgue measure on R*. Note that differentiation
with respect to w gives

(3.14) 8in = —Bi+1,n

which with (3.12) implies

(3.15) w!™2F o (w) = Yakgon — e

and

(3.16) wr*2E (w) = (k/2)(k/2 — 1)go,n — kwg1n + Wgon.

Thus, verification of the assumptions in Theorem 2 involves examination of
the g;,. Suppose the design structure satisfies (3.11). Then, for fixed i, g;,
converges to g;o uniformly on compact sets of w, and assumption (i) is satisfied
with F' = F, defined by (3.12) or (3.2). Similarly, assumption (iv) follows from
(3.16) with « =32 if k=1, a =% if kK = 3, and o = 0 for other k. To verify
assumption (iii) consider

(B.17)  gonla) — goo@) = | Zu| V2| o]V = | 7 |Vgon(a) + ag/n
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where
g = na”l(2m)M2| 7| V2 f exp{—1/2(az’ _#,z)} — exp{—1/2(az’_#z)} dz.
A—v

Considering the inner product of two matrices as the trace of their matrix
product, denoted tr, a Taylor’s expansion of | _#, | /2 about | _7 | gives

(3.18) | Z |2 = | 7|2 =2n)7| Z | V(7 K,) + o(n7Y).
A Taylor’s expansion of the integrand of g indicates
(3.19) &= —8(Ks, F a) +o0(1).

Thus (3.17), (3.18), (3.19) and (3.12) show assumption (iii) is satisfied, and,
together with.(3.4) and (3.15), indicate

(3.20) an = —h(K,)/h(7)
in (2.10), where h is the linear function
(3.21) h(K,) = v tr(I7'K,) — 2aV?*"'g1(K,, 7 a).

Verification of assumption (ii) is similar and the details are omitted.

Note that h(K,) is very easy to calculate for changing K, since it is linear.
Hence (3.20) gives a simple method for calculating «, and thus, by (2.10), for
determining a, directly from the design information _7, satisfying (3.11).

Summarizing the above, we have the following.

COROLLARY. If 7, = # + n"'K, + o(n™") for matrices K, belonging to a
compact set, and if a, = —h(K,)/h(_7), then the results of Theorem 2 are valid
for a, = a(1 + n7a,) + o(n™?), Fo(w) = w*%gon(w), F = Fy, and for n > max[y, p]
wherey=5+kifm=1,y=1+k/3if m=3,and y = (2 + k)/m for other m.

4. Illustrative examples. In this section we discuss various regression
examples having specific design strategies and given accuracy sets.

EXAMPLE 1. Suppose ¢ € R* and ¢’8 is to be estimated to accuracy (3, ¢), for
8 < 0 < ¢. The maximum probability estimator of ¢’8 is ¢’B, = ¢’B, + (¢ + 8)/2
where 8, is the-MLE of 8. Thus, if ® denotes the standard normal cumulative
distribution function, F,(n/c%) = P(® < ¢’B, — ¢'B < &) = 2®(c nV?stl/?) — 1
where s = (¢ — 8)/2[c’#Z%]¥? and &, = ¢’ #7'¢/c’ #,'c. Hence F,(w)
= F(w¢,) and F(w) = 2®(w'?s) — 1, so that a = 2?/s® and a,£{, = a where z =
®71((1 + v)/2). The procedure of Section 2 takes a pilot sample of size n = p and
then stops sampling as soon as n = ¢%a,R, where R, = 1 + n"'r,. The maximum
probability estimator is then used. Theorem 1 applies when 5 > 3/m and Theorem
2 applies when 7 = 6/m and r, satisfies (3.3).

Note that if the design information satisfies (3.11) then

nFZt= 7Y = 7 nF —nFZ) P+ (I - 7 HYnF —nF) 7!
=-77"K, 77+ 0(1)
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so that the «,, which determine the a, by (2.10), can be given by
(4.1) an = —¢' 7K, #c/c’ 7 e

When calculating a,, from _#Z, for many n, (4.1) is much easier to use than the
formula for £, above which involves inverting _7,.

For example, in one variable polynomial regression of degree d = k — 1,
suppose B8 = (Bo, B1, -+, Ba)’ determines the coefficients of the dth degree
polynomial ¥4 8:x‘, x € [—1, 1]. More specifically, the jth row of X; is given by
(1, x;, x%, - -+, x@) for x; € [-1, 1].

Suppose further that the leading coefficient 8, is to be accurately estimated.
If n is fixed, and if nm is a multiple of 2d, then an optimal design places
observations at the zeroes of (1 — x2)T%(x) where Ta(x) is the dth Chebyshev
polynomial of the first kind. More specifically, if {-1=mo<m < ... <74 =1}
are the roots, (1/2d)th of the observations are placed at each of x = 1 and x =
—1, and (1/d)th of the observations are taken from the remaining design points
fmzi1=1, --., d — 1}. See Karlin and Studden (1966) and Federov (1972) or
Silvey (1980). Suppose the observations are taken 2d at a time (i.e. m = 2d)
according to the above proportions. That is, suppose the second column of each
X; consists of the elements II = {mo, 71, 71, * - -, Tg-1, Ta—1, Ta}, Where each =;, for
j=1,...,d— 1, is listed twice but +1 and —1 are listed only once. Then the
sampling procedure always stops at an optimal design, .7 = _7, a, = 0, and the
(i, j)th coordinate of 7 is (2d)7* [2 2424 #i¥"% + 1 + (—1)™]. Furthermore
Theorem 1 and Theorem 2 apply with second-order confidence at least v if a, =
a = 2%/s% if r, = r > 0, if n > max[p, 6/m], and, according to (3.3), if either

(4.2) r=2v+22+3)/2m—-% or m=2v+22+3.

The same approach leads to similar results when accurately estimating any
other coordinate of 8, say f,, in which case the design points might be taken
from the roots of (1 — x?)Ty(x) if d — p is even or (1 — x%) Ty (x) if d — p is odd.

EXAMPLE 2. More generally, again consider polynomial regression as de-
scribed in Example 1, and suppose 8 is to be estimated to some fixed accuracy.
For example, if each coefficient is to be estimated to accuracy [—d, d], then
must be estimated to accuracy [—d, d]*. A rational discrete design measure, say
u, like the optimal designs mentioned above, distributes its mass on (i.e. takes
observations fiom) its finite support set, assigning a rational number to each
mass. Suppose « is the smallest positive integer for which « times each mass is

an integer. Let I = {r;: i =1, 2, - .-, «} be a listing of the support points of y,
with each support point listed as often as « times its mass, and set g(n) = nm
mod «x, n = 1, 2, ---. Then the information matrix _# corresponding to the

rational discrete design measure u has (i, j)th entry

(4.3) T = f 72 du(x) = 7t kg o R

Whenever a rational discrete design measure is implemented and « divides m,
the number of observations taken at one time, then 7, = _Z «, = 0 by (3.20),
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a, = a by (2.10), and Theorem 1 and the Corollary to Theorem 2 apply with
second-order confidence at least v if r, = r> 0 satisfies (3.3).

For arbitrary m, not necessarily a multiple of , a, can also be determined
from II. Suppose that, at the (n + 1)st stage, observations are taken at the design
points {myw): w=nm +1, - -+, (n + 1)m}. In other words, this set determines the
matrix X,.;, the ith entry of the second row being myum+;. Then the (i, j)th
entry of K,,, defined in (3.11), is given by
(4.4) —lg(n) + 1I; + T45 =, _

One can now calculate «, linearly from (3.20) and a, from (2.10), and the
conclusions of Theorem 1 and Theorem 2 are valid for r, > 0 satisfying (3.3).

Another example of a rational discrete design, practical because it allows for
continuous model checking, takes observations along the lattice determined by
the 2/ + 1 points Il = {+j/': j=0, 1, 2, ---, 7}, the positive integer # being a
design parameter. Here Il = {r,: w =1, .-+, 2/ + 1}, where 7, = w// —'1,
determines _7, and K, according to (4.3) and (4.4), and «, by (3.20).

Note also that a D-optimal design, which places an equal number of observa-
tions at the set of d + 1 zeros of (1 — x%)P,(x) where P, is the dth Legendre
polynomial, has a rational discrete design measure, as do other designs with
supports defined by roots of orthogonal polynomials.

ExXAMPLE 3. Gleser (1965) first investigated the asymptotic properties of a
spherical fixed-accuracy confidence set {3: | 8; — 8| < d}, for d > 0. Here the
corresponding accuracy set is A = {8: | 8| < d}. This confidence set is contained
in all the fixed-accuracy confidence sets for ¢’8 of Example 1 (¢ € R*), with
(6, ¢) = (=d, d) and | ¢ | = 1. However, unlike Example 1, this sampling procedure
uses a stopping rule ¢ that is independent of c. Hence, for arbitrary c satisfying
|c| =1, ¢’B, will estimate ¢’ to accuracy (—d, d). Theorem 1 and the Corollary
to Theorem 2 then extend Gleser’s results by giving the second-order asymptotics
corresponding to spherical accuracy.

ExXAMPLE 4. The classical ellipsoidal confidence set
Cn = {ﬁ° (.Bn - ﬁ),jn(ﬁn - .6) < d}

generates an approximate fixed-accuracy confidence set C, by following the
development of Section 2 with F, = F ~ d™'x}, a, = a = F™'(y), and with
t defined by (2.9). The assumptions of Theorem 2 then hold for a = 3% if
k=1, for a = % if k = 3, and for a = 0 otherwise. Here r, = r > 0 must exceed
(2m)~X(4 + 2v + ad — k) = ¥ for second-order coverage probability of at least ~.
The advantage of these ellipsoidal confidence sets is that the a,’s do not depend
on the matrices X;,i=1, 2, -- -, and hence Theorem 1 and Theorem 2 hold for
arbitrary and possibly random matrices X;. However, unless 7, = 7 Vn, the
ellipsoidal confidence set C; has approximate fixed accuracy only in that the
accuracy set converges to a fixed ellipsoid. Note that the ellipsoid C, is also
“fixed” in the sense that each axis length is bounded by d.

Acknowledgment. Thanks to the referees for a very careful reading.
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