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ROBUST SEQUENTIAL TESTING!

By PHAM XUAN QUANG?

University of California, Berkeley

This paper considers the asymptotic minimax property of the sequential
probability ratio test (SPRT) when the given distributions P., contain a small
amount of contamination. Let ., be the neighborhoods of P... Suppose that
P. and P, approach each other as ¢ | 0 and that 2., shrink at an appropriate
rate. We prove (under regularity assumptions) that the SPRT based on the
least favorable pair of distributions (Q*., @*) given by Huber (1965) is
asymptotically least favorable for expected sample size and is asymptotically
minimax, provided that the limiting maximum error probabilities do not
exceed Ya. .

1. Introduction. Let.# be the set of probability measures on the real line
R and let Py, P, be two distinct elements of .#. To discriminate between P, and
Py, we may either us the likelihood ratio test provided by the Neyman-Pearson
lemma, or Wald’s sequential probability ratio test. Let us describe these tests
and introduce notations. Let X, X, - -- be i.i.d. observations with distribution
Q. The testing problem is H(Q = P,) vs. K(Q = P;). Let p,, p; be the respective
densities of P,, P; with respect to some dominating measure. Put S, =
1 log[ p1 (Xi)/po(X;)]. For the first test, the sample size is fixed and we reject
H if S, is too large. For the second test, observations are sampled sequentially,
we assume that they are available in limitless quantity. Choose 2 numbers a, b
with a < 0 < b and define the decisive sample number

(1.1) N=infln=0:S,<aor S, = b}

with inf ¢ = 0. Wald (1947) proved that N is almost surely finite under both P,
and P;. The testing procedure is to stop at stage N and reject H if S, = b, and
accept H (hence reject K) if S, < a. We shall denote this test SPRT(q, b, Py, P,).
The error probabilities are « = Po(Sy = b) and 8 = P;(Sy < a). The average
sample numbers are E;N, j = 0, 1, where E; denotes expectation under P;. The
SPRT is optimum in the following sense. Consider any other testing procedure
with corresponding elements «’, 8’, EcN’, E; N’ then (cf. Lehmann, 1959, pages
104-110), it holds that

(1.2) a’<a and B’ == EN <EN’ and E,N < E,N’.
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Now suppose that P, and P, are not fully known, as often is the case in
practice. To formalize the situation, we introduce two small disjoint subsets %,
P, of # with Py € 2y, P, € &, and we pretend to know only that Q € %, U 2.
We are thus led to consider the composite testing problem H(Q € %) vs.
K(Q € 2,). Huber (1965, 1968, 1981) considered the following models for Pj,
Jj=0,1:

(1.3) P ={Q € #: Q= (1 — 2)P; + 2¢0H, H € &}
(14) ﬁj = {Q e aZ: d(Q, P_,) = 80}

where d is any of the following metrics: total variation, Kolmogorov, Levy,
Prokhorov. He solved the preceding problem by looking for a “least favorable
pair” (QF, QFf) in Py X 2, such that the likelihood ratio test of Q¥ vs. QF is
precisely the maximin test of %, vs. ;. See also Huber and Strassen (1973) and
Rieder (1977).

Huber (1965) also considered the SPRT(a, b, Q¥, QF) as a sequential candidate
for the same testing problem. He proved that (Q%, Q%) are least favorable for
errors, namely

sup{Q[Sy = b]: @ € P} = Q§[Sn = b]
sup{Q[Sy =< a]: Q € 2} = Qf[Sn =< al.

But he also gave an example where (QF, @F) are not least favorable for ASN,
i.e., at least one of the following fails:

(1.6) sup{EqN: Q € #} = EgN j =0, 1

(1.5)

where Eq denotes expectation under Q.

The main aim of this paper is to prove that (1.6) does hold asymptotically.
More precisely, we embed the testing problem H(Q € %) vs. K(Q € #,) in a
sequence of testing problems as follows. In (1.3) replace ¢, P,, Py, Q¥, QF, %o,
P, by k., P-,, P,, Q*,, QF, #_., &, where k > 0 is fixed and ¢ decreases to zero.

Assume that P_, and P, approach each other in a smooth way and consider the
sequence of testing problems

(1.7) HQe ».,) vs. K(Q€e =»,).

Huber-Carol (1970) treated (1.7) for the variational, fixed-sample size case.
Rieder (1978, 1981a, 1981b) worked with a more general model, and streamlined
the regularity conditions. See also Wang (1981). In this paper, we propose to
prove that (1.6) holds asymptotically (as ¢ — 0), whenever the limiting maximum
error probabilities do not exceed V2, and hence that the SPRT(a, b, Q*., Q) is
asymptotically minimax with respect to expected sample sizes.

2. Regularity assumptions. Let {P,: || < 6o}, 60 > 0, be a family of
probability measures. In order to simplify computations, we shall consider the
variational model (1.4) only. The variational metric on .# is d with d(Q, Q') =
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sup{| @' (B) — Q(B) |: all Borel B}. Put T = {e,: n =1, 2, - .-} with lim, _,.¢, =
0. Our working model is then
(2'1) gic = {Q: d(Q, P:tl:) = kc}

where ¢ € T. Here and in the sequel, plus signs go together, as do minus signs.
Denote E the expectation under Py, Eq the expectation under @, V the maximum
and A the minimum operators.

The regularity assumptions follow.

(2.2) P,<«< P, forall |0|=<6,. Put p;=dP,/dP,.

For each x € R, log ps(x) is at least twice continuously differentiable

(2.3) in 6. Let primes denote partial differentiation‘with respect to 6.
(2.4) 0< E|P§| < .

(2.5) E supgi<s,|Pi| <® and E supg <] (log ps)”| < co.
(2.6) E(pj)* > k.

REMARKS. Assumptions (2.2)-(2.5) are weaker than those given by Cramér
(1945, page 500). Exponential families: Py(dx) = exp[6x — b(6)]Po(dx) with b(0)
= b’(0) = 0, b”(0) = 1, are easily seen to satisfy (2.2)-(2.5). Rieder’s sleeker
conditions (Rieder, 1978, page 1081) do not seem to be easily amenable to the
treatments in Section 3.

3. The least favorable pair. We gather in this section‘some results of
Huber (1965, 1968, 1969) and prove some limits needed in the sequel. The least
favorable pair (Q%*., QF) exists; its densities g%, are given by Huber (1965, page
1757). Put
(3.1) Z, = log(q¥/q%.) = 2¢[y’ V (1/2¢ log p./p-.) N v”]

(3.2) S, = Y Z.(X5).
The truncation points v’ = v’(e), v” = v”(e) uniquely solve the following
equations

E[e* p_, — p.]* = ke(1 + €*7)
(3.3) " "
Ele™*"p, — p_.]" = ke(1 + e7>).
Moreover, from Lemma 2 of Huber (1965):
(3.4) Q(S,>1) = Q*(S,>1t) = Q¥(S.>1t) = Q"(S.> 1)

forall Q' € #_,, Q" € Zand t € R.

LEMMA 3.1.

(a) There exists ¢y such that v'(¢) <0 < 7.”(::) for all ¢ < ¢.
(b) The equation in ¢’: E(c’ — p4)* = k has a unique root which is negative.
The equation in ¢”: E(p§ — ¢”)* = k has a unique root which is positive.
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(c) Letc’, c” be defined as in (b), then lim,_oy’(¢) = ¢’ and lim,_oy"(¢) = ¢”.
(d) lim,0e™*Z, = 2(c’ V p§ A\ ¢”) pointwise.

PROOF. Part (a) comes from the fact that E(p, — p_.)* > 2ke = v'(e) <0 <
v”(e), Taylor expansion and dominated convergence.

The proof of (b) proceeds as in Huber (1965), Lemma 1. The proof of (c)
proceeds as in Rieder (1978, pages 1088-1089). Put B(6) = (log ps)”, then
(2¢) "log(p./p-.) = p§ + Yae[B(6,) — B(6,)] where |6,| < ¢ and | f;| < e. Hence
(d) is immediate.

LEMMA 3.2. Define \* = 2E(c¢’ V p§ A ¢”)* where ¢’, ¢” are as in Lemma
3.1. Then as ¢ — 0:

(a) e 2EZ,— 0.
(b) ¢ 2Ep.Z, — \* + 2k(c” — ¢’)
e 2Ep_,Z,— —\* — 2k(c” — ¢’).
(c) e_ZEQ:Zc — \*
€_2EQ‘_:Z€ — =A%
(d) e *vargZ, » 2 \*all Q€ #, U Z_,.
PRrROOF.
(a) Use Taylor expansion on (3.1) to get

C_ZEZ,: = Hl + H2

H, = e'IU; (vy" = p§) dPy + f/ (v" = po) dPo}

H2=ff[B(ol)—B<oz>1 dP,
4 Jy

where

I'={e*p_,—p.>0}, I"=1{e>"p.—p_. >0}
J=R—-(I'"UI"), |6;|<e and |6] <e.

Now apply Taylor expansions and dominated convergence to the following
equation (which follows from (3.3)):

E[e*'p-. — p.]" — kee*’ = E[e™"p. — p_.]" — kee ™"
to see that H; — 0. Since it is clear that H, — 0, part (a) is proved.
(b) Again Taylor expansion and dominated convergence leads us to
e *Ep,Z, — 2Ep;(c’ V p§ A ¢”).
Now take into account the equations in Lemma 3.1(b) to get (b).

(c) Let I’, I”,J be as above, let g¥ = dQF/dP,. It follows from the construction
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of ¢* in Huber (1965) that

J; (gF = p.) dPo = J; (p. — q¥) dPy = ke.

Hence

EqgZ. = Eq}Z, = 2¢y’ f q¥ dPy + 2¢v” f q¥ dP, + f(log 5”) q¥ dP,
I 1 J

—e,

= Ep.Z, + 2ke* (v’ — v").
Take (b) into account to see that ‘c) holds.

(d) Since p.. — p, = 1, Scheffé’s theorem implies d(P.., P;) — 0. Moreover
d(Q,P,) <keifQE £, d(Q, P_,) <keif Q € #_,, hence d(Q, Py) — 0 uniformly
in Q@ € 2, U 2_,. Refer to (3.1) and put for simplicity G, = (2¢) 2Z% then G, is
bounded (say by M) and G, — (¢’ V p§ A ¢”)%.We deduce that [ G, dP, — \*/2
by dominated convergence. Consider ¢ ?EqZ? = [ G. dQ = [ G. d(Q — P,) +
J G.dP,. We have the first integral on the right converging to zero, since

.fad@-m) fad@—mri

Thus (d) is proved.

= +

fad@—mr

=< 2Md(Q, Py).

4. Approximation by Brownian motion. We shall approximate the ran-
dom walk S, on e?-scale by a Brownian motion process with drift. For computa-
tional reasons, consider also the SPRT\(a, b, Q*,., QF) curtailed at some K > 0:

If N < K then either S, < a or S, = b. Accept H in the first case, reject H in
the second case. If N > K, stop sampling at stage [K] and do not decide, where
[K] denotes the largest integer not exceeding K.

Let C[0, ) and C[0, K] be the sets of all continuous functions on [0, ©) and
[0, K], respectively. For x € R* and w € C[0, ), define the following stopping
times:

7:(w) = Inf{t = 0: w(t) = x}

7(w) = Ta(w) = min{r,(w), 75(w)}
7¥(w) = min{r,(0), K}
7%(w) = min{r (w), K}.

Let A, R, C be the regions of acceptance, rejection and no-decision of the
SPRT with barriers a, b. They are subsets of C[0, «):

(4.1)

A={r<wand 7 =1,}
(4.2) R ={r<wand 7 =1}
C = {r = o},
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Let AX, RX, C¥ be the corresponding regions of the SPRT curtailed at K. For
example w € AX means 7*(w) < K and 7¥(w) = 7¥(w), or 7%(w) = K and
w(K) = a. Endow C[0, K] with the uniform topology and for E C C[0, K], denote
JE the boundary of E.

Let {W(t): 0 < t < =} be a standard Brownian motion process on some space
(Q, #, P), namely W(0) =0, and if 0 < t; < t, < --- < t, then W(t;), W(ts) —
W(t,), -+, W(tn) — W(tm—,) are mutually independent random variables which
are normally distributed with mean zero and respective variances ¢, t; — t,

-, tm — tm—1. Let X be a given real number. Put

(4.3) By (t) = (2A®)V2W(t) + At

where \* is given by lemma 3.2. Thus B, is a Brownian motion with variance
22* and drift A per unit time. We shall also consider B, as the Wiener measure
induced by {Bx(t): 0 =t < K} on C[0, K].

THEOREM 4.1. The mappings 7X, 7§, 7x are continuous a.e. [B,].

PROOF. The proof is inspired by Breslow (1969). Let U be the set of all
w € C[0, K] such that

(i) w(0) =0
(i) lim supsyoh w(t + h) — w(t)] = +o
(iii) lim infuoh ™ [w(t + h) — w(t)] = —.

Since Dvoretzky, Erdos, and Kakutani (1960) proved that P[W € U] =1, it
follows that P[B, € U] = 1.

In what follows, restrict attention to those w € U. Let w, € C[0, K]
and w, — w in the uniform norm, then it is required to prove that 7¥(w,) =
0, — 0 = ¥ (w).

In the case 0 < 6 < K, for all § satisfying 0 < 0 — § < 6 + 6 < K, there exists
ts, 0 < t; < 0 + & such that w(t;) < a. Since w(0) = 0, we have that w(§ — 6) = a’
> a. Since w, (t) — w(t) uniformly in ¢, we get for all large n:

wn(ts) <a and w,(t) >a all 0<st=46 -5

Hence § — 6 <6, <6 + ¢ and thus 6, — 6.

In the case 8 = K, either w(K) = a or w does not hit a on [0, K]. It remains to
consider the second case since {w = a} is By\-null. Now w, — w so0 w, does not hit
a on [0, K] for all large n, and for those n, 6, = K so we are done.

COROLLARY 4.1. AX R¥X and C¥ are By-continuity sets.

PrOOF. Consider dAX. Let w € dAX. So there exist {w,} C A¥ and {£,} C
(A%¥)¢ such that w, — w and £, — w. Suppose w does not hit a on [0, K], then w,
does not hit a on [0, K] for all large n, contradicting w, € A%

Since {w = a} is By-null, we may assume that 7&(w) < K. The argument
presented in theorem 4.1 implies that &, hits @ on [0, K] for all large n,
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contradicting £, & AX, unless perhaps w € C[0, K] — U. The proof for dR¥ is
similar. Finally remark that CX C 9AX U dRX.
Define X, as the polygonal line joining the points with successive coordinates

(4'4) (O’ 0)’ (829 Sl)’ MR (je2’ Sj)’ cee

then X, is a random element of C[0, «).

THEOREM 4.2. Let {Q.} be a sequence in #, U Z_, such that Eq Z, has a limit
in e2-scale, say

(4.5) lim, ,o(1/e*)Eq.Z, = X
then X, weakly converges to By on C[0, K] and
(4.6) Zr(X.) | Q] = Z[r(B)].

PROOF' PUt u= Echu 02 = VarQ,Zu gi = CO'_l[Zc(X,') - /‘l]’ g‘i = Z{:=1 £i~

Remark that | £| < 4e%¢7'[max(|c’ |, ¢”) + 1] for all small ¢, where ¢’, ¢” are
given by 3.1(b). As ¢ — 0, we have u/e? — X by (4.5) and ¢%/e2 — 2\* by Lemma
3.2(d).

Let Y. be the polygonal line joining the points

(47) (O, O)’ (82’ g‘l), Tty (jCZ’ fj) tt

then Y, is a random element of C[0, »). Also define the following random element
Y. of D[0, K] (cf. Billingsley, 1968, page 109):

(4.8) Yi(t) =

forje?<t<(j+1)e%j=0,1, ---,n, where nis defined by ne? < K < (n + 1)e%
Then Donsker’s theorem on D[0, K] (cf. Billingsley, 1968, page 137) immediately
applies and we get Y, = W, where W is an extension on D[0, K] of standard
Brownian motion on C[0, K]. It follows that Y, = W on C[0, K] since

Y () = Ye() | = maxigj<n| &

< 2¢%6 ' [max(|c’|, ¢”) + 1] > 0.
Notice that
X.(t) = e oY, (t) + e 2ut

hence X, = B, by Slutsky’s theorem.
For (4.6) to hold, we need to prove first that Z[7(X,)|Q.] is uniformly
integrable. According to Bickel and Yahav (1968), it suffices to prove the following

(4.9) SUPo<c=e, Q. (N > me™2) < 2p™

for some p € (0, 1) and all large m, since 0 < ¢2N — 7(X,) < ¢2 But (4.9) is a
straightforward application of Stein’s technique (1946).

Now (4.6) is a consequence of Theorem 4.1, Mann-Wald theorem and standard
truncation techniques.
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Put
_ ot -’ _
a(l }\e _1,+ b(_e,,, 1) X % 0
(4.10) g\ a,b) = (™ —e™)
|a| b/(2\%*) A=0

where a’ = Aa/A\* and b’ = Ab/\* then

COROLLARY 4.2. As ¢ — 0, assuming that (4.5) holds:

(a) Q.(Sy=<a)— (1 - e”’:)/(e"’: - e"b:)
(b) Q(Sy=b)—> (1 —e)/(e™® —e™)
(c) e?Eq.N —g(\, a, b).

PROOF. A straightforward truncation argument using Theorem 4.1 and Cor-
ollary 4.1 leads us to
Q.(Sny = a) — P[7(B\) = 7.(B))]
and the above limit has been computed by Anderson (1960, page 175), thus parts

(a) and (b) are proved. Next we get from Shepp (1967) that EW(r) = 0, where
7 = 7(B,) for short. Then using (4.3):

ME(7) = EB)\(7) = aP(7 = 15) + bP(1 = 7).

But P(r = T,) and P(r = T}) are the right sides of (a) and (b), respectively,
so (c) is proved for case A # 0. Freedman (1971, page 71), gave directly the result

for case A = 0.
According to (1.5), the maximum error probabilities of the SPRT(a, b,

*., QF) are

(4.11)

o, = supf{Q(Sy = b): Q € 2.}
B. = sup{Q(S, < a): Q@ € #}.

COROLLARY 4.3. The limiting maximum error probabilities of the SPRT (a, b,
*., QF) are given by

(a) a = lim,a, = (1 — e%)/(e® — €

(b) B =lim, . = (1 — e®)/(e™® — e™).

PrROOF. Huber (1965) proved that (3.4) holds when n is replaced by N. It
follows that o, = Q@*.(Sy = b) and 8. = Q¥ (Sy < a). Now it suffices to replace
by @* in Corollary 4.2(a), then use Lemma 3.2(c) to get 4.3(a). The argument for
4.3(b) is similar.

Note that «, 8 are the error probabilities of a Brownian SPRT (see Dvoretzky,
Kiefer and Wolfowitz, 1953).

5. Asymptotic minimaxity of the SPRT. At stage ¢, the SPRT(a, b,
*., @F) has decisive sample number N and maximum error probabilities given

—-€9
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by (4.11). Let o/, 8., N’ be the corresponding elements of a rival procedure for
testing (1.7). Say that condition (C) holds whenever the following two implica-
tions are satisfied:

(C1) A= A*=g(\ a,b) < g(\* aq, b)

(C2) A= -A*=g(\ a b) <g(—\*% qa,b).

In Section 6, we shall investigate the validity of (C). The main result of this
paper is:

THEOREM 5.1. Assume that (C) holds, then
(a) (Q%., QF) are asymptotically least favorable for expected sample sizes,

—-&y

namely:
(5.1) lim,_,o(sup{EqN: Q € £.}/Eq. N) = 1.
(b) The SPRT(a, b, Q*,, QF) is asymptotically minimax in the sense that

sup{EqN: @ € £}
sup{EqN’: Q € &,

(5.2) a/=a and B <6, imply lim sup,.o ] =1

Recall that + signs go together, as do — signs.
To prove Theorem 5.1, we need

LEMMA 5.1. As e countably decreases to zero, whatever the sequence {Q,} with
Q.€ Zor with Q. € £, the sequence {¢*Eq N} is bounded.
ProoOF. Consider the case Q, € &. It follows from (3.4) that
* = lim,,0¢ ?Eq:Z, < lim inf,_0e 2Eq Z..
So ‘8—2EQ‘N } is bounded from below by A*. Next since d(Q., &) < ke and
(1/2¢) | Z,| = v” — v’ according to (3.1) and Lemma 3.1(a), we have
2 1
e 2EqZ, = ¢* f Z,dP, + - f % Z.d(Q. — P,)
& &

<¢EpZ, + 2k(v" —v')
— AN* + 4k(c” — ¢’)
(cf. Lemma 3.2(b)). So {¢"?Eq N} is bounded from above by A\* + 4k(c” — ¢’).

PrOOF OF THEOREM 5.1. Limit attention to the cases of + signs in (5.1) and

(5.2). Recall that N depends on e.
(a) Let L be the left-hand side of (5.1) then L = 1 since Q¥ € . Consider for
a contradiction a subsequence {¢’} C T such that

1 <L = lim,_,(sups, EqN)/Eq. N
where sup.,, EqN = sup{EoN: Q € %}.
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Pick 6 > 0 such that L — 6 > 1. There exists ¢(8) such that, for all ¢’ < £(5):
(sup.,, E¢qN)/E@.N > L — 6.

Limit attention to these ¢’. For each integer m there exists ¢” = ¢’(m) such
that ¢” — 0 as m — o« and such that

¢"’Eq.N + 1/m > sup,,.e"?Eq.N > (L — 6)¢”?Eq.N.

According to Lemma 5.1, by passing to subsequences if necessary, we may
assume that (¢”) °E.Z.- has a limit, say \. It follows from the proof of Lemma
5.1 that A = A*. Corollary 4.2(c) applies and we get, as m — oo:

g\ a, b) = (L — 0)g(A*, a, b) > g(A*, a, b)

but this result contradicts condition (C1) and part (a) is proved.
(b) The optimality property of the SPRT(a, b, Q*,, Q*) leads to

al <« and ,BC, =6 = EQ:N = EQ:NI.

Hence
Ey:N =< sup,EqN’

(sup.,,EqN)/(sup,EqN’) < (sup,EqN)/Eq:N
Now part (b) of the theorem is a direct consequence of part (a).
6. Admissible choices of (a, 8). Theorem 5.1 hinges on the validity of -

condition (C). Corollary 4.3 shows that there exists a one-to-one correspondence
between {(a, b): a <0 < b} and {(o, 8): < 0,8>0, « + < 1}, and we get

a = —log(l — a)/B, b = log(l — B)/a.

Let us say that («, 3), or (a, b), is admissible whenever (C) holds. It turns out
that (—b, b) is admissible whatever b > 0, or equivalently, («, «) is admissible for
all o € (0, 1).

THEOREM 6.1. (a, B8) is admissible for all a, B8 satisfying 0 < a <%, 0< g8 <
Vo, + B<1.
ProOF. Putr=5b/|al,x=X|a|/A* and

_re"+e™—-(r+1)
hr(x) - x(ex _ e—rx)

and h.(0) = r/2, then (4.10) implies
g\, a, b) = (a*/\*)h.(x).

Hence condition (C) can be rephrased as follows:

for x#0

x=a= h(x) < h.(—a)

(6.1)
x<a= h(x) < h(a).
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The function h, is positive unimodal. This can be seen by investigating the
number of roots of the equation h,(x) = ¢ with unknown x and varying ¢. We
skip the details. Let x(r) be the value of x for which h.(x) attains its maximum.
An examination of (6.1) shows that the following procedure gives us an admissible
(a, b): (1) Choose r > 0, (2) Compute x(r), (3) Choose a < 0 satisfying |a| =
| x(r) |, and finally, (4) Compute b=r|a].

Since r = 1 implies that h, is even and hence x(r) = 0, the pair (=b, b) is
admissible for all & > 0. Now assume without loss of generality that |a| < b.
Thusr>1,x,>0and0<a<pB <% Putu(t)=(1-—e™)/(e'—e™™),then uis
strictly decreasing for 0 <t < o and u(|a|) = 8. Thus the critical inequality in
the above procedure |a| = | x(r) |, is equivalent to 8 < u[x(r)]. Thus Theorem
6.1 is proved if u[x(r)] = %, or equivalently, if e*” + e < 2. Algebraic
manipulations show that the last inequality is successively equivalent to each of
the following statements (a)—(e):

(a) Let t(r) be the unique root of the equation e’ + e™ = 2. Then x(r) < t(r).
(b) (a/ax) |x=l(r)hr(x) =0.

(c) Ult(r)] = 0 where (3/9x)h.(x) = U(x)/V(x), V(x) = x*(e* — e ™).

(d) Let t solve tr = —log(2 — e'), then T'(t) < 0 where

T@t) = (r + De[(r + 1)(e = 1) — (r — 1)] = 2(r — 1)(e* — 1).
(e) H(y) =0 for 0 <y <1 where
H(y) = y(log(1 + y)/(1 — ¥))* + (2y + log(1 + y)/(1 — y))log(1 — y?).

Now we prove (e), using series expansion of H in powers of y. We have directly
computed the first coefficients:

H(y) = Yooy — Yesy® + Y5 (1/2n)(c, — 1)y?*?

where
ch= 2o 1/1(20 — 1) + XA, 1/i(2n + 1 — 20).

We have, forn =5

1 1 " dx
oL §=.__.—_—+f—50.3967
Liz (2t — 1) Lizi (21— 1) 5 x(2x — 1)
s 1 <1 login(@n - 1) + 2.0513]
Sion+1-2) 2n+1 08 '

¢, < 0.9292

and so statement (e) is proved.
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