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ROBUST TWO-SAMPLE PERMUTATION TESTS!

BY DIANE LAMBERT

Carnegie-Mellon University

A new two-sample randomization test is proposed for testing that the
joint distribution of two samples is invariant under permutations. The p-value
of the test has a finite sample minimaxity property over neighborhoods of
completely specified alternative distributions. Asymptotically, the test has
minimax Bahadur slope against the neighborhoods, which remain fixed as the
sample sizes increase. The proposed test also offers the best compromise
between robustness against departures from a model alternative and optimal-
ity at the model alternative in the sense that no other test with the same
gross-error-sensitivity has larger slope at the model. Some modifications of
the test are proposed for testing the nonparametric nuil hypothesis against
neighborhoods of models that have a shared nuisance location-scale parame-
ter. These nuisance-parameter-free versions of the test are justified for large
samples from exponential families, and an example of their use is given.

1. Introduction. Recently there has been renewed interest in permutation
tests, also known as randomization or rerandomization tests, as a practical tool
for data analysis. Tukey, Brillinger and Jones (1978), for example, encourage
their adoption for analyzing weather modification data. Green (1977) has de-
signed an algorithm for computing p-values of permutation tests. Edgington
(1980) presents detailed methodology and computer algorithms to enable wider
adoption of permutation tests. Gabriel and Hall (1983) give methods for basing
confidence intervals on permutation tests. Permutation methods have also re-
ceived attention under the guise of bootstraps that sample without replacement
rather than with replacement (Efron, 1982).

Permutation tests are attractive because the distribution of the observations
under the null hypothesis need not be specified to calculate the p-value, and yet
the permutation test may be optimal. A two-sample permutation test based on
the likelihood ratio of the alternative distributions for two independent random
samples is as powerful as any nonparametric test (Lehmann and Stein, 1949). It
is also asymptotically as powerful as the best parametric test, having relative
efficiency one (Hoeffding, 1952) and deficiency zero in many cases (Bickel and
van Zwet, 1978), even if the support of the permutation distribution is only
sampled rathet than completely enumerated (Vadiveloo, 1983). Moreover, under
weak regularity conditions, no other nonparametric p-value is asymptotically
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smaller than the likelihood permutation p-value under the alternative (Bahadur
et al., 1982).

This optimality at a specific alternative has motivated many authors to
recommend that the permutation test be based on the likelihood ratio for an
idealized alternative (Box and Andersen, 1955; Kempthorne, 1952; Oden and
Wedel, 1975). The recommendation is suspect, however, in light of recent
evidence that such a permutation test need not be nearly optimal at distributions
near to but not identical to the idealized alternative distributions. The extensive
simulations of Higgins and Keller (1979) and Keller (1979), for example, show
that the power of the two-sample permutation ¢-test for samples of sizes 10, 10
deteriorates under contaminated normal, Laplace and Cauchy alternatives.
Larger samples do not necessarily increase the robustness of a permutation test.
From an asymptotic perspective, the permutation test based on the likelihood
ratio lacks qualitative robustness (Lambert, 1982) and has unbounded, weak*-
discontinuous influence functions (Lambert, 1981).

Use of the permutation distribution of the test statistic rather than a para-
metric distribution is not responsible for the lack of test robustness. On the
contrary, the influence functions of a two-sample permutation test are always
bounded above, even if the influence functions of the corresponding parametric
test are unbounded from above and below (Lambert, 1981). Rather than dismiss
permutation tests, we should strengthen their tendency toward robustness by
choosing a robust test statistic. The major result of this paper is that there is a
robust permutation test that is both practical and optimal.

The robust permutation test (RPT) statistic is defined as a sum of censored
log-likelihood ratios in Section 2. Because of the censoring, the RPT is insensitive
to outliers. Evidence that the RPT resists other departures from the idealized
alternative distributions is presented in Sections 4 and 5. Each robustness
property is stated for the p-value of the RPT since a p-value rather than an
accept-reject decision often summarizes test results.

The RPT is inappropriate for testing for a shift in the presence of shared
location and scale nuisance parameters because its censoring points depend on
all the parameters of the idealized alternative distributions. In Section 3, RPT’s
with data-dependent censoring are proposed to accomodate location and scale
nuisance parameters in two-sample shift alternatives. For each test, censoring
points are first determined from the data, and then a RPT is carried out as if the
censoring points had not been determined from the data. Several kinds of data-
dependent censoring are discussed. One surprising consequence of censoring at
the order statistics of the combined samples (i.e., Winsorizing the combined
samples) is that data from the idealized alternative distributions tend to be more
heavily censored than data from the worst case alternative distributions.

One new test proposed in Section 3 for an alternative of the type that the df
of Y is shifted to the right of the df of X is as follows. Replace each observed X;
and Y; below &; = X4, by k: and replace each X; and Y; above k; = Y4, by ks,
and then carry out the usual permutation test based on averages. The censoring
fractions (;, B; may be related to alternatives defined as neighborhoods of
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idealized or model alternative distributions, and they are independent of location
and scale nuisance parameters shared by X and Y. With this type of censoring,
data from the model alternative distributions tend to be less heavily censored
than data from the worst case distributions.

The optimality of the RPT for the case of no nuisance parameters in the
alternative distributions is established in Sections 4 and 5. In this case, the RPT
exhibits a kind of finite sample minimaxity over neighborhoods of the idealized
distributions, and no other nonparametric p-value has larger minimum Bahadur
slope over the distributions in the alternative neighborhoods (Section 4). The
RPT also offers the best compromise between robustness and optimality at the
idealized alternative since no other test with the same gross-error-sensitivity has
larger slope at the idealized alternative (Section 5).

The large sample optimality of the RPT with .data-dependent censoring is
explored in Section 6 for exponential shift models with location-scale nuisance
parameters. The new test proposed in Section 3 is shown to be asymptotically
optimal against restricted fixed-width neighborhoods since no other nonpara-
metric test has a p-value with larger minimum slope over the restricted neigh-
borhoods. RPTs with censoring based on robust estimates of the nuisance
parameters, censoring based on order statistics of the combined samples, or upper
and lower censoring based on the unpooled samples as proposed in Section 3 are
shown to have maximin power over diminishing neighborhoods.

2. A robust two-sample permutation test. One approach to robustifying
a permutation test is to replace its test statistic with a more robust statistic. For
example, the difference of sample means can be replaced by the difference of
sample medians, as suggested by Randles and Wolfe (1979, page 348), or by the
difference of M-estimators, as suggested by Higgins and Keller (1979). An obvious
question is which robust test statistic is best?

A robust test is appropriate when the relevant alternative distributions cannot
be stated precisely but approximations or idealizations of these distributions can
be specified. The distributions that are considered possibly relevant when an
approximate model is specified determine which robust test statistic is best. The
relevant distributions are defined here by drawing the following analogy with the
one-sample robust testing framework developed by Huber (1965, 1968).

Take X = (Xi, ---, Xn) and Y = (Y3, - -+, Y,) to be two random samples and
let Z =(Z,, ---, Zy), N = m + n, be the ordered observations of the combined
samples. The null hypothesis of interest is Hy: the N observations (X, Y) are
exchangeable. Under all alternatives the N observations are assumed to be
independent. Under the idealized core alternative, X, - - -, X,, are iid with left-
continuous df Fy and Yy, .-, Y, are iid with left-continuous df G,. Take the
densities of F, and G, with respect to a measure » to be f, and g, and assume that
their log-likelihood ratio, #(2) = log(g¢(z)/fo(2)), is nondecreasing a.e.

As in Huber (1965, 1968), departures from the core df’s F,, G, are admitted
by introducing the following neighborhoods:

F = {F: (1 - Cl)Fo(t) - 61 = F(t) = (1 - Cl)Fo(t) + & + 51 for all t}
g = {G (1 - CQ)Go(t) - 62 = G(t) = (1 - 82)G0(t) + &9 + 62 fOl‘ all t}
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with ¢;, §; € [0, 1] sufficiently small that & and & are disjoint. The distributions
in .# are considered possibly relevant when F, is specified. The collection .
contains &;-contaminated versions of F, and df’s within Kolmogorov or Lévy
distance 6, of Fy. If Fy is stochastically smaller than G,, then % and £ may be
enlarged to include all F’s that are stochastically smaller than F;, and all G’s that
are stochastically larger than G,. Denote by #” the set of df’s of (X, Y) such
that X,, .-+, X, Y4, ---, Y, are independent, X; ~ F; € #i=1, --., m, and
Yi~G €E€gj=1,---,n Let $™ be the set of m-dimensional marginal df’s of
X associated with /#” and let £” be the analogous set for Y.

Huber (1968) showed that the least favorable df’s F,, G, for the one-sample
test of F™ vs. &™ have the following densities f,, g, with respect to ». With
w; = 5,/(1 - 8,') and LV, = (Ci + 5,)/(1 - 8,’), = 1, 2,

I(l — &1)(V2fo(2) + wi180(2))/(ve + wl‘ekl) /() <k
(2.1)  f,(2) = (1 — e)fo(2) k= /(2) <k,
1(1 — e))(wafo(2) + v180(2))/(v1e* + wy) 2) = kg
J(l — &) (V2fo(2) + w180(2))/ (V2™ + wy) /(2) <k
(2.2) g,(2) = (1 — &) g(2) k= /(2) <k,
[(1 — &) (wafo(2) + v180(2))/(v1 + woe™) /(2) Z ky

where the constants k; and k, are the unique solutions to

eMF/(Z) < ki) — Gol/(Z) < ki) = vy + wieh
2.3
( ) e_sz(){/(Z) > kz} - F(){/(Z) > kz} =0, + WQe_k2
and Fy{+} denotes the probability measure corresponding to the df Fy(*).

For an example, take F, to be the normal(—'%, 1) df and G, to be the
normal(%, 1) df and take ¢;, = ey = ¢, 6, =6, = 6. Then /(2) = 2z, ky =k, =k
and k is the unique solution, if any, to e *®(—k + .5) — ®(—k — 5) =
(e + 6 + 6e7®) /(1 — ¢) where & is the normal(0, 1) df. If there is no solution for
some choice of ¢, §, then % and £ are not disjoint for that choice of ¢, 5. If e = 0
then the maximum 6 for which % and & can be distinguished is .192, and if § =
0 then the maximum ¢ is .277. Table 1 gives the value of & for several e, 6 pairs.
A blank entry signifies that # and & are not disjoint for that choice of e, é.

Note that the log-likelihood ratio of g, to f, at z is a constant plus /,(z) =
med{k;, /(z), ko}. Huber’s one-sample maximin test of 7™ vs. £™ is based on the

TABLE 1

Censoring points of the RPT statistic for normal (—.5, 1), normal (.5, 1) df’s
N\e 0 .0001 .001 .01 .05 .10 .15 .20 .25
0 o 2.93 2.31 1.58 .95 62 40 23 .08
.0001 2.92 2.75 2.28 1.58 .95 62 .40 .23 .08
.001 2.28 2.26 2.09 1.54 94 .62 .40 .22 .07
.01 1.51 1.51 1.48 1.28 .84 .56 35 .18 .03

.05 .82 .82 .81 .75 .53 .32 .16 .01

.10 44 44 43 40 .25 .09

15 .18 18 17 .15 .03
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sum over the sample of /,, which is a censored version of the log-likelihood ratio
for the core df’s. The two-sample RPT is here defined to be based on the same
statistic. Namely, the RPT statistic is Tn(Y) = n™' ¥ /,(Y)), or, equivalently,
n?tY /(YY) —m* Y /(X). The RPT p-value L,y is evaluated by computing
Ty for each sample of size n that can be drawn without replacement from Z and
then calculating the proportion of the (§) values of T that are at least as large
as the observed Tw(Y).

The calculations for the RPT are no more onerous than the calculations for
any other permutation test based on a sum since all N observations are censored
at the same k; and k,. In particular, the RPT p-value can be evaluated using
Green’s algorithm. If the X’s were censored at different points than the Y’s, the
observations would have to be recensored with each partition of Z in order to
determine the support of the permutation distribution, and Green’s algorithm
would not apply. To reduce the “clumpiness” that might result in the permutation
distribution if the censoring points k; and k. are close together and N is small,
censored observations may be spread out a little near k; rather than piled at k..
Their original order could then be preserved.

3. A RPT with estimated location-scale. Often the core alternative
distributions share a nuisance location-scale parameter § = (u, o) and differ by
a shift parameter A > 0. Unfortunately, the RPT of Section 2 is inappropriate
for this case because it depends on the unknown 6. For example, when the core
df’s are normal(u + .50, ¢2) and normal(x — .50, ¢%) and &; = ¢, 6; = 6, the RPT
is based on Y med{u — Ko, Y;, u + Ko} where K is given in the example of
Section 2. When the core densities are proportional to exp(—.5067 |z —u + A|)
and exp(—.507'|z — u — A|), the log-likelihood ratio is med{—A, ¢ (z — u), A}
(plus a constant) and for &; = e, 6; = 6, the RPT is based on Y medj{u —
o min(K, A), Y, u + 0 min(K, A)} with K = —K; = K, defined by (2.3) for § =
(0, 1). For exponential scale core densities v exp(—yx) and 8 exp(—~dy), the
transformed data log(x) and log(y) have common location —log(y) = x and a
shift —log(8) = A, and a RPT for 6 is based on ¥ med{K; + u, log(Y;), K, + u}
with K;, K, defined by (2.3) for u = 0. Although the RPT depends on the nuisance
6 in these examples, the dependence has a simple form. The RPT statistic can
be written as a sum of censored observations and the nuisance parameter 6
affects only the censoring points k;(§) = u + K;o, i = 1, 2, K; being §-free.

Data-dépendent censoring for situations in which the nuisance parameter
affects only the censoring of the RPT is illustrated in this section and is justified
for large samples from exponential families in Section 6. Two types of data-
dependent censoring are considered. The first is to estimate 8 robustly and censor
the data at k;(§) = 4 + K;s where K; is appropriate for § = (0, 1). The second is
to censor the data at two order statistics, and thereby circumvent the difficulties
of estimating location and scale robustly for asymmetric distributions. With
either type of censoring, £ need not be a symmetric function of the N observations
(X, Y), but all N observations are censored only once at k& and then the RPT
p-value is calculated as if the censoring had not been determined from the data.

To fix the ideas, consider the following data taken from McIneath and Cohen
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(1970) as given by Box, Hunter and Hunter (1978, page 158). The data are the
specific airways resistances thirty minutes after administration of a bronchodi-
lating aerosol automatically (sample X) or by hand (sample Y).

X 11.60 11.60 13.65 17.22 8.25 6.20 41.50 6.96 8.40 9.00 5.18 3.00
Y 17.00 22.80 21.60 20.40 11.20 14.00 52.25 7.50 12.20 18.85 6.05 4.05

It seems likely that the data should be paired, but for purposes of illustration the
pairing will be ignored. A boxplot shows that 41.5 is an outlier in the X sample
and 52.25 is an outlier in the Y sample. For testing Hy: X and Y have the same
distribution against H;: Y is stochastically larger than X, MINITAB gives a
t-test p-value of .1286, a normal scores p-value of .1695, and a Wilcoxon p-value
of .0595. The p-value of the permutation test based on Y Y;is .1430.

To develop a RPT for this example, take the core alternative df’s to be Fy:
normal(g — .50, ¢2) and G,: normal(x + .50, 0?), and take the contamination
parameters to be ¢; = ¢; = §; = 8, = .002. The medians of the least favorable df’s
F,o and G, defined by equations (2.1)-(2.2) are then u — .31¢ and p + .31,
respectively. As would be expected, these medians are more nearly equal than
are the medians of the core df’s F, and G,.

The censoring points of the RPT based on F,y, G, are u + 1.86560. One way
to proceed is to estimate u and ¢ robustly. A difficulty is that many natural
estimates of u and ¢ depend on whether A is assumed to be zero as required by
H,, or to be .5 as specified by the core df’s, or to be .31 as suggested by the
medians of the least favorable df’s. When A is large, the RPT may have reasonable
power even if the censoring is incorrect. But, when A is small, the neighborhoods
F, and G, may be difficult to distinguish and the power of the RPT may be
sensitive to the censoring. This reasoning suggests taking A = 0 (Proposition 1
of Section 6 gives an asymptotic justification).

One choice of estimates for u and ¢ that is appropriate when A = 0 is the
MAD estimate defined by &, = (2/7)/*med | Z; — med(Z;) | and the M-estimate
i, defined by ¥ ¢(Z; — i,) = 0 with Y(u) = med{—1.55,, u, 1.55.}. For the data
above, 6, = 4.31, 4, = 12.01, and £ = (3.98, 20.05). Censoring all 24 observations
at 3.98 and 20.05 and basing a permutation test on the average of the censored
Y’s gives a p-value of .0407. A second possibility is to estimate ¢ and u sepa-
rately for each sample, pool the estimates according to g = .5u, + .54, and
¢ = (563 + .563)"/% and censor all 24 observations at g + 1.86565. For these
data, i = 12.44, ¢ = 3.51, k = (5.89, 18.98) and the p-value of the permutation
test based on the censored data is .0377.

Another possibility is to avoid estimating y and ¢ and instead choose two
order statistics of the combined samples Z for k. Unfortunately, with this choice
of &, data from the idealized df’s Fj, G, tends to be more heavily censored than
data from the worst case (least favorable) df’s F,y, G,¢. To see this, take m = n,
Fy symmetric about u — A, Gy(*) = Fy(* — 2A), &1 = ¢ > 0 and 6, =0, =0.
Then the RPT censors at u + Ko for some 0-free K. Suppose £; and &, are the
[NB + 1] and [N — Ng] order statistics of Z. Let 8 be the fraction of observations
that should be left-censored in the worst case, i.e., 8 = Q,¢(n — Ko) where Q.o =
S5(F,6 + G,) is the df of the observations of the combined samples. Note that
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Q.0 is symmetric about u. For this choice of 3, (2.1), (2.2) and (2.3) imply that
the probability an observation is between u — K¢ and u + Ko under the core df
5(Fy + Gy) exceeds 1 — 28. Hence, under the core df, the [IN8 + 1] order statistic
of Z tends to be larger than u — Ko and the [N — NB] order statistic of Z tends
to be smaller than u + Ko. Since under the worst case df’s these order statistics
of Z tend to p + Ko, censoring tends to be heavier when the data are not
contaminated (i.e., the data are from F,, G;) than when the data are most
contaminated (i.e., from F,,, G,). This behavior is intuitively unreasonable, and
Theorem 6 suggests that it is not optimal.

An examination of how outliers affect the permutation p-value suggests
another £ that does tend to censor most heavily at the least favorable distribu-
tions. First, right tail outliers in the X’s are more serious than left tail outliers
in the X’s for testing. Second, whether a particular X is too large, falsely
dominates the Y’s and should be right-censored depends on the values of the
Y’s. Third, the proportion of Y’s to be right-censored should be controlled since
larger Y’s provide stronger support for the alternative. Together these consider-
ations suggest right-censoring all N observations at the [nf;] ordered Y, denoted
Y(ns,- Similar arguments suggest left-censoring all N observations at the [mg; +
1] ordered X, denoted X +1, for some B; < B;. The censoring fractions 8, and
B2 should be appropriate for the worst case F,o, G4, i.e., take 81 = F o(p + K0)
and B, = G,,(u + K,0). Note that 8, 8, are independent of 6. Also, the censoring
is asymptotically heaviest under the least favorable df’s since F(u + Kio) =
F.i(u + Kyo) for all F € % and G(p + K;0) < G,o(pn + K,0) for all G € & where
%, & are the neighborhoods around F), G,. The RPT with censoring at Xims,+1)
and Y|, will be denoted RPT.

Applying the RPT in the example above gives 8; = G,(u + 1.865605) = .0839,
1 — Bo=.0839, by = Xpp = 5.18, by = Y1y = 22.80, and the RPT p-value is .0401.
Spreading the censored observations out to 5.17, 5.16 and 22.81, 22.82 again gives
a p-value of .0401.

4. Optimality of the RPT: the case of no nuisance parameters. When
the core df’s F, and G, are specified completely, the RPT is based on an average
of log-likelihood ratios bounded by fixed constants. Clearly, the RPT is robust
against outliers. In this section, we show that it is the best robust test against all
departures from the core df’s F, and Gy, that are represented by the neighbor-
hoods .7 and £.

Every similar (i.e., nonparametric) test of Hy: exchangeability has a discrete
p-value taking values in {i/(}):i=1, - - -, (§)} (Lehmann and Stein, 1949). Here,
as in Kempthorne and Folks (1971), a p-value is called optimal if it is stochasti-
cally smaller than any other p-value with the same or fewer achievable levels.
This definition makes comparisons with the RPT p-value L,y difficult, however,
because the achievable levels of L,y vary with the combined samples Z. When Z
requires more censoring, L,y has fewer achievable levels. Typically, discrete
p-values are made comparable by randomization so that each p-value assumes
all values between 0 and 1. Yet L, y would probably not be randomized in practice,
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and randomizing L,y seems to complicate rather than to simplify the finite
sample theory for the RPT. Therefore, rather than randomize L,y, we force
comparability with the RPT by randomizing all other p-values after observation
of Z, if necessary, so that they have the same achievable levels as L, y. For
example, suppose for a given Z that L,y has achievable levels {.4, 1.} and Ly has
achievable levels {.3, .6, 1.}. Then the Ly test statistic assumes values s;, s, 3
with s; being most contradictory of H,. If s, is recorded with probability ¥4 and
s is recorded with probability 34 whenever s; is recorded, then the expected
p-value of the redefined test has achievable levels {.4, 1.} and is comparable

Theorem 1 below establishes that the RPT is minimax in the following sense
for finite samples. No other p-value restricted to have the same achievable levels
as L,y can be stochastically smaller than L,y under Huber’s least favorable df’s
F,,G,, and L,y is stochastically larger under F,, G, than it is under any other
pair of df’s F, G in %, £. In this sense, the worst behavior of the RPT under %, &
is better than (or at least no worse than) the worst behavior of any other
nonparametric test of H, against %, Z.

Theorem 1 applies to the unconditional behavior of L, averaged over all the
combined samples Z. It would be stronger if its conclusion were valid for the
conditional distribution of L,y given each Z, and if the support of other non-
parametric p-values did not have to be modified. An asymptotic version of this
stronger result is given by Theorem 2.

THEOREM 1. The RPT p-value L,y is minimax for testing Hy: exchangeability
against H: ™, £" in the following sense. Let Ly be any other nonparametric
p-value and after observing Z choose a restriction L} of Ly to the support of L.
Then sup H{Ly = o} = sup H{L,n = o} for every a € [0, 1] where the supremum
is taken over H € #".

Proor. Conditional on Z the RPT, being based on the log-likelihood ratio
of F, and G,, is most powerful among similar tests of H, against the simple
alternative H,: X;, ---, X, ~iid F,, Yy, - -+, Y, ~ iid G, (Lehmann and Stein,
1949). Thus, given Z,

(4.1) HLnzalZ)sH,(LvzalZ)
where H, is the joint df of (X, Y) under H,, and it suffices to show that
(42) H{L,nza}=H{L,y=a} forevery HEZ#" andeverya.

For a € (0, 1], choose the integer N, satisfying N, — 1 < a(}) = N, and
denote by Ty = T(e) = - - - the (%) ordered sample means of samples of size n
taken without replacement from (4,(Z1), - - -, 4,(Zn)). Then L,y < a iff Tn(Y)
> TNy Equivalently, in terms of T} = m™ ¥ 7,(X,) and the (%) ordered sample
means T'(;) < T{y < --- of samples of size m taken without replacement from
(4(Z1), ---, /,(ZN)), the RPT p-value satisfies L,y < o iff TN(X) < T{nw-
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Therefore, it suffices to show that for H € #V,
(i) H(Tn(Y) > Tw,)) = H(Tn(Y) > Twvy)
(i) H(TMX) < Tin,y) = H (TM(X) < Tin,)-
The proof of (i) and (ii) relies on the least favorable character of F,, G,
described by Huber (1968). Namely, for any F € &, G € £ and any ¢,
(4.3) G/ (Z2) <t} =G/ (Z) <t} s F {/(2) <t} s F{/(Z) <t},

and the ordering remains true if < is replaced by < throughout.
The proof of (i) proceeds by considering X, alone, applying (4.3), and then
considering each of Xy, - - -, X, in turn. First,

H(Ty(Y) = Twy) = Ep,,...5,, ¢ F1(Tn(Y) = Tivy | Xoy -+, X, Y).

For fixed (x2, - - -, %m, Y), T(n,) is increasing in x; and T(Y) is constant in x;.
Therefore, by (4.3) for some k(Xs, - - -, X,,, Y), it holds that

FI{TN(_Y) = T(N,.)|X2, ""va9 X}
= Fi{/(X1) =2 k(Xz, -+, Xn, Y) | Xoy -+ -y Xy Y
= F {4,(Xy) =2 k(Xs, -+, X, Y) | X, -+, X, Y}

= F*{TN(X) = T(N“)) |X2$ Sty Xm) X}'
That is,
H(Tn(Y) = Tw,) < Ep, py,...5,,c 7 (TN(Y) = Twvy),

where .7 (A) is the indicator of the event A. The extension to (i) is straightforward.
The proof of (ii) is analogous with 7", Y’s, and G’s replacing T, X’s, and F’s. [

As N increases, all appropriate p-values approach zero under a fixed alterna-
tive. The exponential rate at which a p-value approaches zero under an alternative
is defined by Bahadur (1967, 1971) to be the slope of the test. That is, the slope
is the a.s.[F, G] limit, if it exists, of —N'log Ly where the permissible values
of N have, a partition m, n and m/N — X € (0, 1). (Bahadur’s slope is actually
twice the slope as defined here.) Typically, —N'log Ly is also asymptotically
normal(c(F, G), N"'6%(F, G)) under F, G (Lambert and Hall, 1982).

The slope c¢(F, G) of a permutation test based on n™* ¥ u(Y;) at alternative
df’s F, G is given in Lambert and Hall (1982). When X;, .-, X,, ~iid F, Y,
.-+, Y, ~iid G and u(Z) has finite absolute third moment for Z ~ F and
Z ~ @, the slope of the permutation test conditional on Z is

c(F, G)

(4.4) _ — —
==\ f log(\b7'e®*® + )\) dF(z) — X f log(Abe™%24® + X) dG(z)
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where X =1 — X\ and b; = b;(F, G), i = 1, 2, are the unique solutions to

\= f (1 + b1e 24@)~1 d(AF(2) + AG(2))
(4.5)

by f u(z) dG(z) = f u(2)(1 + be @)t d(NF(z) + NG(2)).

If u is the log-likelihood ratio of F and G, then b; = \/X and b, = 1. Although the
combined samples vector Z does not appear in the expression (4.4) for c¢(F, G),
the slope ¢(F, G) does describe the conditional limiting behavior of Ly given Z
(see Bahadur and Raghavachari (1970) for details). For that reason, c¢(F, G) is
sometimes called a conditional slope.

Theorem 2 states that the RPT is asymptotically optimal against #” since,
given almost any Z, the minimum rate under % % at which a nonparametric
p-value based on a sum approaches zero is never larger than the minimum rate
at which L,y approaches zero.

THEOREM 2. If m/N — X € (0, 1) as N — o, then the RPT maximizes the
minimum slope under the alternative X,, -+, X, ~uUd FE F Yy, --+, Y, ~ iid
G € & among all nonparametric tests having statistics of the form Y, u(Y,).

PrROOF. The two-sample permutation test based on the log-likelihood ratio
for F, G has the largest slope among all tests of Hy: exchangeability against the
simple alternative F, G (Bahadur and Raghavachari, 1970; Lambert and Hall,
1982). Therefore, the RPT has maximal slope against H,: F,, G, . The slope of
the RPT at F, G, denoted by c,(F, G), is given by (4.4), (4.5) with /, substituted
for wu.

Suppose for now that c,(F, G) cannot be increased by changing b, to A/X and
b, to 1. Then

¢, (F, G) = —\ f log(Xe’*® + \) dF(z) — X f log(Ae™+? + X) dG(z2).
The stochastic ordering in inequality (4.4) then implies that the right side is not
increased if F, G is replaced by F,, G,. With the substitution, the right side

becomes c,(F,, G,). Therefore, it only remains to show that c,(F, G) cannot be
increased by changing b; to A/X and b, to 1. To this end, let

d(s, t) = =\ f log(As™'e“+ + \) dF(z) — X f log(Ase™+® + X) dG(z).
Then

6% d(s, t) = As7! = f (s + ") d(\F(2) + NG(2))

a%d(s, t) =X f 7, (2) dG(2) — f Z,(2)(se™*@ + 1)71 d(AF(2) + NG(2))

and the pair of equations (4.5) imply that (3/ds)d(s, t) = (9/dt)d(s, t) = 0 at by,
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b.. Since d(b,, b,) > 0 and d(s, t) — —x as (s, t) — (0, £0) or (o, =), it follows
that d(s, t) is maximized by b;, b,.0

5. Optimality of the RPT at the model Fo, Go. Theorems 1 and 2
describe the optimality of the RPT for testing exchangeability against neighbor-
hoods of the core df’s F,, Gy. They do not disallow the possibility that some other
equally robust test dominates the RPT at F,, G,. Theorem 3 disallows this
possibility if test robustness is measured by the bounds on the influence functions
of the test; i.e., by gross-error-sensitivity (see Hampel, 1974).

Influence functions of unconditional and conditional p-values are defined and
interpreted in Lambert (1981). By analogy with Hampel’s influence functions of
estimators, the influence functions Q;(¢, F, G), i = 1, 2, of a two-sample test
under an alternative F, G are defined for the a.s. limit of —N'log Ly, i.e., for
the slope ¢(F, G). Specifically,

Ql(x’ F’ G) = limuo’l_llc((l - 71)F + 715::, G) - C(F, G)]
Q(y, F, G) = limyon~'[c(F, (1 — n)G + 13,) — c(F, G)],

if the limits exist, where 9, is the distribution supported on z. With X, -- ., X,
being called the first sample and Y;, -:-, Y, being called the second, the ith
sample influence function at z, F, G indicates how an observation of z in the ith
sample affects the p-value when the remaining X/’s and Y;’s are assumed to be
iid F and iid G and m/N ~ A. Bounded influence functions are associated with
(a) insensitivity to a few outliers or inliers, and continuous influence functions
are associated with (b) insensitivity to many small errors, such as those intro-
duced by rounding, and with (c) insensitivity to slight departures from the
assumed models F, G.
For a permutation test based on n™* ¥ u(Y3),

Qui(x, F, G) = =X log(1 + bi'e® ™) + f log(1 + bile®*®) dF(2)
(5.1)
Qua(y, F, G) = =X log(1 + bie ) + X f log(1 + bie™%?)) dG(z)

where b;, b, are the solutions to the pair of equations (4.5). These influence
functions are bounded above and continuous in x and y for any nondecreasing
continuous function u; they are bounded above and below and continuous in F
and G only if u is bounded and continuous. Therefore, a permutation test p-value
based on Y u(Y;) cannot be pulled arbitrarily close to zero, but it is not robust in
the sense of properties (a)-(c) unless u is bounded and continuous. Therefore,
rank tests with unbounded score functions are not robust, the log-likelihood ratio
permutation test is not necessarily robust, and the RPT is robust in the sense of
properties (a)-(c).

Theorem 3 states that the RPT is the optimal robust test of exchangeability
against F,, G, since no other permutation test with a test statistic of the form
n~' ¥ u(Y;) has both smaller gross-error-sensitivity and larger slope at Fy, Go.
Because the influence functions of all these permutation tests are bounded above,
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gross-error-sensitivity is here defined to be the lower bound on the influence
function. A similar concept of optimality at a model for robust unconditional
tests is defined in terms of the influence function of the test statistic and
asymptotic power of the test in Ronchetti (1982) and Rousseeuw (1982). For
unconditional tests, which depend on the data only through the test statistic, the
two approaches coincide.

THEOREM 3. Denote the slope and influence functions of the RPT by c,,
Q,1, and Q.. respectively. A permutation test based on a statistic Y, u(Y;) with
inf,Q.:(z, Fy, Go) = inf,Q,,(z, Fo, Go), for i = 1, 2, has slope c.(F,, Go) no larger
than C*(F(), G())

ProOF. Since all slopes and influence functions are evaluated at F,, Go, the
arguments F,, G, will be suppressed. Denote inf,{,,(2) by w;. First consider the
problem of choosing a function u to maximize the slope ¢, with no constraints
on the influence functions. Let c,,s,,5, be defined by (4.4) for arbitrary b, > 0, b,.
The argument used in the proof of Theorem 2 shows that c, (with by, b, defined
by (4.5)) satisfies

Cy = SUDp,,b,Cu,b,,by

= sup — f (X log(1 + b1'e®@)fy(2) + X log(1l + bie ?®)gy(2)) dv(2)

— Nlog A — X log X.

The maximum over u of ¢y, 5, is attained by choosing u(z) pointwise according
to uo(z) = bz'(/(2) + log(Xb;/)\)). All the permutation tests generated by
considering any b; > 0, —» < b, <  have the same slope, and sup,c, = ¢, for
any b; > 0, bs.

Now impose the constraints ,,(2) = w;, i = 1, 2. Then the slope ¢, is maximized
by choosing ug(2) as ue(z) = by (#(z) + log(Abo;/)\)) for any by, by whenever

Q(2) = =\ log(1 + Xe“@/XN) + A f log(1 + bglebe o) dFy(t) = w,

QuOQ(Z) = —X lOg(l + X’ (Z)/X) + X f lOg(l + b()le_bozuo(t)) dGo(t) = ws.

If the first constraint on €, is violated for some 2z’ then it is violated for every
larger z, and if it is satisfied for some z” then it is satisfied for every smaller z
since # is nondecreasing. A similar statement holds for the constraint on Q.
Hence, there are z; and 2, such that

uy(2) = b33 (£(2) + log(Nboi/N)) if 2z € (21, 22)
uo(z) € [uo(z1), uo(z2)] if otherwise.

Choose and fix z < z;. Then uy(z) equals uy(z;) if the integrand in c, is smaller
with uo(z) set equal to uy(z;) than it would be for uo(z) set equal to any other
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uo(z’), 2’ € (21, z,). Specifically, uy(z) = uy(z,) if
X log(1 + e “)go(z) + X log(1 + e” @) fy(2)
< Xlog(1 + e ) go(2) + A log(1 + e”“)fy(2),

or, equivalently, if

Xgo(2) 14 e~@ ,
<1 * >\fo(z)>log<1 + e‘””) = /(') + Z(z0).

The latter inequality is satisfied if z = 2;, since ¢, is maximized by choosing u(z,)
at z = z;. Since the left side is nondecreasing in z and the right is independent
of z, the inequality must be satisfied for every z < z;. That is, uy(z) = u(z,) for
2z < z,. Likewise, if z > 2, then uy(z) = uy(z,) if for every 2/ <z

No(2) 1+ '@ o
(1 + ngz))log(l " e”z')> < Az — Z(2').

Again, because z = z, satisfies this inequality, any z > 2, must also satisfy it, and
uo(2) = ug(z2) for z > z,. Therefore, uy(z) = byz(med{/(21), 7(2), #(2)} +
log(Xbo/N)). Since uy(2) is a censored log-likelihood ratio and the corresponding
permutation test has the same bounds on its influence functions as the RPT, the
permutation test based on uy(z) must be equivalent to the RPT.

6. Optimality of a RPT for shift with estimated location-scale. The
robust testing alternative can be generalized to include a shared nuisance param-
eter 6 € 0 as follows:

H: Xl""’Xm~iidF) Yl)"" Yn~iidG9 (F) G)EUG(%,%)EUG%
% = {F: (1 - 81)F(;(t) - 61 = F(t) = (1 - 81)F0(t) + & + 61 for all t}
g = {G (1 - CQ)G(;(t) - 52 = G(t) = (1 - 82)Gﬂ(t) + & + 52 for all t}

for ¢;, 6, independent of 6, i = 1, 2. The set of relevant joint df’s of (X, Y)
corresponding to a given 0 will be denoted 7% = (77", £7) with the understanding
that within samples the observations are identically distributed. Only location-
scale nuisance parameters 6 are considered here.

In many examples the RPT depends on 6 only through the censoring
k(#). Three such examples were given in Section 3. Many others can be con-
structed by considering location-scale exponential family core df’s for tests of
shift. That is, for nuisance parameter 6§ = (u, ¢) and shift A > 0, define F, =
P,_, and G, = P,, where P,, has density p,. satisfying p,.(z)/pso(z) =
a(f, A)exp(Ac~'t(x — pn)) for a f-free function t. The RPT statistic with this
choice of F;, G, is Y med{u + oK;, t(Y;), u + oKy} for a 6-free K depending on
¢, 0. Without loss of generality take ¢(x) = x. Denote the permutation test based
on Y, med{b,, Y;, bo} by RPT(b), and denote the censoring points (u + (¢/A)K;,
u+ (6/A)Ky) by k(). )

The asymptotic behavior of a RPT with data-dependent censoring k is inves-
tigated below. Throughout we assume m/N — X € (0, 1). First, the asymptotic
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power of the RPT(£) is investigated for several kinds of data-dependent censoring
in the robust testing framework of Huber-Carol (1970) and Rieder (1978, 1981).
In this framework the shift A approaches zero as N increases, forcing the
contamination parameters ¢, § also to approach zero to preserve disjointedness
of %, &. Conditions that ensure a RPT(£) has asymptotic maximin power
against such diminishing neighborhoods are given in Theorem 4. Asymptotic
maximin power is achieved when censoring is based on either i + ¢K for robust
i, o, or on two order statistics of Z, or on an order statistic of X and an order
statistic of Y as in the RPT.

Finally, the asymptotic behavior of the RPT(E) against fixed neighborhoods
is explored. A RPT(£) is said to have maximin slope if for each 0 no other test
has a larger minimum slope under %, %;. The optimality of the RPT in this
sense is established as follows. Conditions under which a RPT(£) has the same
slope under alternative df’s F, G as a permutation test with data-free censoring
k(F, G) are given in Theorem 5. Since E may have different limits under differ-
ent F, G, the permutation test with data-free censoring that is equivalent in
slope to the RPT(E) varies with F. , G. A condition on the equivalent censoring
E(F, G) that ensures the RPT(£) achieves its minimum slope over F,, G, at
Huber’s least favorable F,4, G, is then given in Theorem 6. In part, the condition
requires that if ¢/ < ¢ and 6/ < 6;, i = 1, 2, then data from F, G in the ¢’, §’
neighborhood should be no more heavily censored than data from an F, G outside
the (¢’, §’)-neighborhood but inside the (e, §)-neighborhood. Of all the tests
discussed in Section 3, to date only the RPT(k) has been shown to have the
latter property, and only 7 if the neighborhoods %, &, are somewhat restricted. An
exact statement for the RPT is given as Theorem 7.

6.1 Asymptotic power of a RPT(E). Rieder (1978) defines neighborhoods %y,
%, that are appropriate for studying the asymptotic power of robust tests. These
neighborhoods involve a shift Ay = N™2A, core df’s Foy = Py, _ay Gon = Py,ay,
and contamination parameters ;v = N ™%, §;y = N/25;,. Wang (1981) develops
a robust C(«) test for the parametric hypotheses Fy vs Zn 0 € 0 and shows that
the test has asymptotic maximin power under certain conditions on the estimator
of 6. A variant of his condition C, given as () in Theorem 4, guarantees that the
RPT(E) has asymptotic maximin power over Uy(Fn, ).

THEOREM 4. Suppose X, -+, X ~ iid Fyand Y, - -+, Y, ~ iid Gy for some
Fy € Fyn, Gy E Gy, 0 € 0. Also suppose for each 8,
given 17 >0 there exist e and N, such that fbr N=N,
Hu{N"? | by — kiv(0) | <€} =1 -7 i=1,2

where Hy is the joint df of (X, Y). Then the RPT(kx) has asymptotic maximin
power against the sequence {Uy(Fon, Zon)}-

(*)

PrROOF. Choose and fix § and df’s Fy € Fn, Gn € Zn. Denote the joint df of
(X, Y) under Fn, Gy by Hy. Note that kin(0) = u + Ciyo/An for some 0-free Cy,
and that C;y/Ay is uniformly bounded (Rieder, 1978). To simplify the notation,
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suppress 0. With u* = med{kiy, u, kon} and & = med{ky, u, Fon}, the RPT(ky)
statistic can be written as T% = (mn/N)**(n™* ¥ Y} — m™' ¥ X}¥)/S} where

% is the sample standard deviation of (X*, Y*) and the RPT(Ey) statistic can
be written as T = (mn/N)2(n™* ¥ Y — m™' Y X))/S, where Sy is the sample
standard deviation of the N values (X, Y). Because of (x) and the contiguity of
the distributions in {Fy, Znl,

MY F-mlIXH - YVi-mt Y X) = Op(N“/z) under {Hy}.

Therefore, following Hoeffding (1952, conditions A’, B and Theorem 6A), the
RPT(1§N) and the RPT(ky) have the same limiting power whenever R} =
max;N~V?|Z¥ — N7 Y, Z¥ | /S = 0p(1) under {Hy}. That R} = 0,(1) under {Hy}"
holds since Z¥ is bounded.

The limiting power of the RPT(ky) under {Fy, Gy} depends on the limiting
unconditional distribution of T'%/S%. Since supy | Z% | < o, as in Rieder (1978)
there is a ¢* > 0 such that for every choice of (F, Gn) € (%, EN), TH — Ty —
(un(Hy)/0*) is asymptotically normal(0, 1) for uny(Hy) = Eg,(T%). Therefore,
when the RPT(ky) has size «, for large N its power differs negligibly from
(P Ha) + pn/o*) (Hoeffding, 1952). Since infayrun(Hy) = p¥ occurs at the least
favorable (F,n, G,~) and since no other size « test has a power function with an
infimum over #" larger than ®(® («) + u}/c*) for large N (Rieder, 1978), the
asymptotic minimaxity of the RPT(ky) and the RPT(£) is now established. O

Many different Ey satisfy the sufficient condition (). For the case ¢ known,
Proposition 1 gives a set of conditions under which an M-estimator of location
satisfies (*). It is stated for i based on the combined samples; it also holds for
pooled M-estimates of u. Its proof, which proceeds along the lines of the proof of
Lemma 4 of Huber (1964), is omitted. Note that Proposition 1 implies that the
asymptotic power of the RPT is preserved when 6 is estimated as if Ay were zero,
as was done in Section 3.

PROPOSITION 1. Assume ¢ = 1. Define un by Y, ¥(Z; — in) = 0 for a mono-
tone increasing, bounded, uniformly continuous function Y. Define {(u, ) to be
[ ¥(z + u) dQ(2). Suppose {(0, Po) = 0 and 9{(u, Po)/du is strictly positive and
continuous in a neighborhood of zero where P, corresponds to 6 = (0, 1), A = 0.
Then the RPT(E) with censoring at ki = AN K + fin has asymptotic maximin
power against {Uy(Fon, %n)}.

Proposition 2 gives conditions which imply that the RPT has asymptotic
maximin power. The same conditions also imply that the RPT(k) with censoring
at order statistics of the combined samples is asymptotically maximin. The proof
of Proposition 2 is a minor modification of the proof of Lemma 1 in Jaeckel
(1971) and is omitted.

PROPOSITION 2. Restrict %y to df’s that have a density over the intervals
(Rin(0) — v, kin(0) + 7v), 1 =1, 2, for some v > 0. Further suppose that the density
is bounded below by a positive constant on these intervals. Denote the restricted
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Fan by Fin. Construct €5y analogously. Then the R/P’\I‘ has asymptotic maximin
power against {Uy(Fén, Zin)}.

6.2 The slope of a RPT(I§). Conditions under which a RPT(E) has the same
slope under an alternative F, G as a permutation test with data-free censoring
are given in Theorem 5.

THEOREM 5. Take X, ---, X, to be iid Qi and Y, - - -, Y, to be iid Qq, and
suppose m/N — X € (0, 1). Also suppose the following conditions are met.

(6.1) For each 0, Tn(0) = Tn(0; X, Y) converges a.s. (Qu, Q) to a data-free
T(6).

(6.2) For each 0 there is a neighborhood .% of T(6) and a continuous function
¢s on % satisfying —N""log Qu{Tn(0) = t|Z} — cs(t) = 0(1) a.s. (Qu, Qes) on S
where Qn{* | Z} denotes the permutation probability distribution.

(6.3) There is a data-free real-valued function j(+, *) such that | Tn(0;) —
Tn(0s) | < j(6, 62) and ](01, 02) 0(6, — 05).

(6.4) The estimator Oy = HN(X Y) converges to 0 a.s. (Q19, Qo).

Let Ly(fy) be the permutation p-value calculated Qy first evqluating b and then
determining the permutation distribution of Tn(0n) with 6y held fixed for all
partitions. Then for every 6, Lx(0xn) and Ly(6x) have slope co(T'(0)) at Q14, Qop.

ProOF. Theorem 7.2 of Bahadur (1971) implies that Ly(6) has slope c,(T'(8))
at Qy9, Q2 and that Ln(fy) has slope ¢,(7T'(0)) if (i) Tn(fn) — T(6) a.s. and (ii)
—N og QN{TN(éN) =t|Z} — co(t) > 0 a.s. for ¢ in a neighborhood of T'(9). Since
](0N, ) — 0as, (i) holds. To establish (ii), fix sequences x;, X, + - +; ¥1, Y2, - -
such that 6y — 0 and —N~'log Qn{Tn(68) = t|Z} — ci(t) on %. Note that
by (6. 3) QN{TN(ON) = tI_Z} QN{TN(O) = t — ](ﬂN, 0) IZ} Since HN is held
ﬁ)ied under permutations of Z and there is an N sufficiently large that
Jj(On, 8) < u, the right side is no larger than Qn{Tn(8) = t — n|Z}. Taking g
sufficiently small such that (7'(8) — 2y, T'(0) + gn) C 7% gives QN{TN(éN) =t|Z}
=< exp(—Ncy(t — n) + o(N)). Similarly, Qn{Tn(0n) = t| Z} = exp(—Ncy(t + 1) +
o(N)). Letting n — 0 completes the proof.

It is straightforward to show that the RPT statistic with censoring at k(6)
satisfies condition (6.3). If | k;(8) | < o, then Tn(f) has finite absolute third
moment and (6.2) is satisfied (Lambert and Hall, 1982). Consequently, if the
censoring points are not reevaluated for each partition of Z, then the RPT(k)
has the same slope as the RPT(k) when E—Ekas.

As discussed at the beginning of the section, the limit of £ may vary with the
underlying df’s F, G. Theorem 6 states that if censoring is asymptotically most
severe at the least favorable df’s F,y, G, and asymptotically correct at F,4, G0
in the sense that £ — k(6) under F.¢, G,o then the slope of the RPT(£) under .5, s
%, is minimized at F,,, G,o. Recall that in Section 3, the censoring proportions
of the RPT were based on F*a, G ,o. To simplify the notation in Theorem 6 and
its proof, the dependence on 6 is suppressed.
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THEOREM 6. Let F belong to an (e1, 61)-neighborhood of the core df Fy and let
G belong to an (e3, 63)-neighborhood of the core df Gy for some 0 < ¢! <¢;, 0 < 5/
< 6;, 1 =1, 2. Denote the censoring points of the optimal RPT for e, § (¢’, &', resp.)
by k (k',resp.). If E— kas. (F,,G,) and k — t a.s. (F, G) where ki < t; < ky and
ko < ty < k3, then the slope of the RPT(E) is no smaller under F, G than it is under
F.,G,.

PROOF. The RPT(£) under F,, G, has slope

X f log(X + Ae™>) dG,(2) — A f log(\ + Xe*) dF,(2) — X\ log A — X log X

where z, = med{k,, 2, k»}. The stochastic ordering (4.3) implies that this slope is
no larger than J(k;, k) — XA log A — X log A\ where

J(ty, ty) = =\ J:tz log(X + Xe™) dG(2) — A J:t? log(\ + Xe?) dF(z)
— X log(X + Xe™®)G(ty) — X log(\ + Ne®?)F(t,)
— X log(X + Ae™®)G(ty). — X\ log(\ + Xe“)F(t,).
Because
0J(ty, to) _ )\X(G-(-tl) — exp(t1)F(t1))
ot X exp(t) + A

and
aJ(t1, ts) _ AN (G(t;) — exp(t)F(ts))
oty X exp(ts) + A

it follows that J(t,, t;) is (i) nondecreasing at t, if G(t;) > exp(t:)F(t;) and (ii)
nonincreasing at ¢; if G(t;) < exp(t1)F(t1).

For any t,, G(ty) = (1 — €5)Go(ts) — 645 and F(ts) < (1 — e])Fy(ts) + 61 + ¢]. If
e] < &4 then F(ty) < (1 — e5)Fo(ts) + 81 + e5. Therefore, if (i) holds for ¢ = &3,
(i) also holds for e; < e5. When e{ = &3,

’

5/ _ 5/ + ’
2 ; €t2Fo(t2) . 8,1 e‘2 .
1—¢3 1—¢f

G(ty) — eF(t;)) = (1 — €§)<Go(t) -
Since for ky < t; < k4 there are §7 = 6/ and ¢/ = ¢/ (i =1, 2) such that
el + 67 64
1—ef 1-—¢4

—ty

e 2Go(ts) — Fo(ty) =

(see (2.1)), (i) does hold when &1 = e;. The proof of (ii) is similar. Finally, the
slope of the RPT(k) at F, G would be J(t,, t;) — X log A — X log X if the constants
b1, by determined by (4.5) were A/ X and 1. Since the solutions to (4.5) maximize
the slope as a function of b;, by, the slope of the RPT(k) at F, G is no smaller
than J(t;, t2) — A log A — X log X.0
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Although the RPT censors most heavily at F,y, G, asymptotically, Theorem
6 does not imply that the RPT has maximin slope over %, % because the
inequalities F~(8;) = k{(0) and G™Y(B:) < k4(8) may be violated for some F, G
in an (¢’, §’)-neighborhood of Fy, Gy;. (These inequalities seem unnecessarily
strong, but no weaker sufficient condition has been found.) The question of
whether the RPT has maximin slope over all of Uy(%, &) iﬁh\us unanswered. A
smaller, but nondiminishing neighborhood over which the RPT does have max-
imin slope is described in Theorem 7. Strong consistency of order statistics,
which is required in Theorem 7, is proved in Wellner (1977).

THEOREM 7. Set ki = Ximps1) and ky = Yius) with B = Fe(ki(9)), B2 =
G,o(ka(0)). If K — E(0) a.s. (F,¢, G,4) then the RPT has maximin slope against all
df’s F, G that satisfy the following three conditions:

(6.5) kE— (F7(81), G7(B2)) as. (F, G)
(6.6) F, G belong to an (¢’, §’)-neighborhood of Fy, G, for some ¢} < ¢;, 6! < 6;
(6.7) (1 — e{)Fy(ki(0)) + e1 + 01 < By and (1 — £3)Ge(k3(0)) — 65 = Bs.

If 6, = 62 = 0 and either &, = 0 or &3 = 0, then the RPT has maximin slope against
the df’s (F, G) € Uy(H, &) for which (6.5) holds.

REMARK. There always exist ¢/ < ¢; and 6/ < §; for which (6.7) holds. To see
this, note that dk;/de;, j = 1, 2, are nonnegative for i = 1 and nonpositive for i =
2, and that (1 — &;)F,(k1(6)) + &; + 6, is nondecreasing and (1 — &,)Gy(ko(8)) — 85
is nonincreasing in ¢;, e, 61, 0s.

PROOF OF THEOREM 7. Let¢’, §’ satisfy (6.7). Because of Theorems 4 and 5
it suffices to show F~(8;) = k{(#) and G *(B:) = k4(0) for (F, G) in an
(¢’, 8’)-neighborhood of (Fy, Gy). For such F, G, F(k{(8)) = (1 — ¢{)Fe(k{(0)) +
e1 + 61 < B, and similarly G(k$(6)) = B, as was to be shown. Finally, if ¢; = 6, =
52 = 0, then k, = © and G(ky(0)) = 1 = 3, for all proper G. Also, F7(81) < ki(8)
for all ¢4 < &, since k{(f) is decreasing in ¢1.0

In summary, many kinds of data-dependent censoring lead to a RPT(k) with
asymptotic maximum power. Yet the RPT may nevertheless be preferable. Its
advantages are asymptotic optimality over certain fixed neighborhoods, censoring
behavior that is intuitively reasonable, and simplicity. Any RPT(k) can be
inverted using Green’s algorithm to obtain a robust estimate of shift in the
presence of a shared nuisance location-scale parameter. The behavior of such
estimates is currently under investigation. Finally, there is a robust version of
the usual one-sample permutation test for symmetry about zero; this test can
also be inverted to estimate a location parameter.
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