The Annals of Statistics
1985, Vol. 13, No. 2, 526-533

BEST INVARIANT ESTIMATION OF A
DIRECTION PARAMETER!

By T. W. ANDERSON, CHARLES STEIN, AND ASAD ZAMAN
Stanford University, Stanford University, and Columbia University

Let X be an n X k random matrix whose coordinates are independently
normally distributed with common variance ¢2 and means given by EX = eu’
+ 6)\’, where e is the vector in R" having all coordinates equal to 1, § € R",
and u, A € R* with $%, A? = 1. The problem is to estimate A, say by
A, with loss function 1 — (A\’})? when u, 0, and o2 are unknown. It is shown
that the largest principal component of X’'X — (1/n)X’ee’X is the best
estimator invariant under rotations in R* and rotations in R" leaving e
invariant and is admissible.

.

1. Introduction. The classical problem of a linear functional relation con-
cerns a collection of bivariate observations whose expectations lie on a line. If
the “errors” are independent and have equal variances, the usual estimate of the
line is that line minimizing the sum of squared deviations of the points from the
line in the direction orthogonal to the fitted line (Adcock, 1878). Suppose the
observations (Y;, Z;) fori € 1, - - ., n are independently normally distributed with
means (n;, {;) and covariance matrix o2l and the means satisfy the linear relation

1) G=a+ Py for i€{L,---,n}

Then the usual estimate of («, 3), described earlier, is the maximum likelihood
estimate. In this paper we find some optimum properties of this, thought of as
an estimate of the angle v that the line makes with the first coordinate axis. Of
course, the slope 8 is the tangent of this angle. (Anderson, 1976, discusses this
estimator and some of its properties.)

The covariance matrix o2[ is invariant under two-dimensional rotations and
reflections, and this is also true of the angle between the estimated line and the
true line. The random vectors Y = (Y,, .-+, Y,)  and Z = (Z,, ---, Z,)' are
independently distributed, having spherically symmetric normal distributions
with means n = (91, - -+, 7,)" and { = ({1, -+ -, )’ related by ¢ = ae + 8y, where
e=(1, ---,1)’. The problem is also invariant under rn-dimensional rotations and
reflections leaving the vector e invariant. We shall show that the maximum
likelihood estimator of the angle » is the best estimator invariant under the
2-dimensional and n-dimensional orthogonal transformations described above
and deduce that it is admissible in the class of all estimators. The loss function
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is taken to be the square of the sine of the difference in angles. This loss function
increases with the difference in angles in [0, /2] and decreases in [7/2, ]; it is
reasonable because the line is not directed.

Our general treatment includes the case of n observations in a k-dimensional
space with the means on a line and the “errors” independent with equal variances.
The direction of the usual estimated line is the direction of the first principal
component (Pearson, 1901; Hotelling, 1933). This model is the case of factor
analysis where there is one factor and the error variances are equal; the direction
cosines of the line are the factor loadings. See Lawley (1953) for the derivation
of maximum likelihood estimates in this model.

Although the direction of the first principal component seems a natural
estimator of the direction of a line of means, the optimal properties developed in
the paper seem to be the first decision-theoretic results in the area of factor
analysis, linear functional relationships, and principal component analysis.
Nearly all known general properties of estimators are asymptotic. (See Anderson,
1984.) It is worth remarking that the admissibility of the best invariant estimators
is not a priori evident in this problem. As Berger (1976) has shown for the
location parameter problem, best invariant estimators may fail to be admissible
in the presence of too many nuisance parameters.

A similar result was obtained much earlier by Blackwell (1951). His Example
2 on page 397 can be interpreted as a k-dimensional (with k& = 4) location
parameter problem located on the lattice of points with integral coordinates,
where it is required to estimate a linear combination (with weights linearly
independent over the rationals) of the coordinates of the location parameter
vector. He showed that the best translation-invariant estimator is inadmissible.

2. The best invariant estimator of a direction. Let X be an n X k
random matrix whose coordinates are independently normally distributed with
common variance ¢ and means given by

(2) EX=eu +0XN,

where e is the vector in R"” having all coordinates equal to 1, # € R" and g,
A E Rk with |\ || = «/Z_)\f = 1. In this section u will be assumed known. Without
essential loss of generality we take u = 0. With 6, A, and ¢ unknown, we study
the problem of estimating A, say by X, with loss function L defined by

3) L((s, 6, A), ) = 1 — (\'A)2

This loss is the square of the sine of the angle between the line of means and the
estimated line. For the problem described in Section 1 the loss function is
(8 — B)%(1 + B»)~X(1 + #?)~". Since the loss remains unchanged when X is replaced
by —A the ambiguity in the identification of A does not matter. Qur aim is to
prove that the usual estimator of A, the (normalized) characteristic vector of X’ X
corresponding to the largest characteristic root, has certain optimal properties.
The problem is invariant under orthogonal transformations on the left and on
the right. More precisely, if X is distributed according to the parameters (o, 6, \)
and p is an n X n orthogonal matrix and q a k X k orthogonal matrix, then
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pXq’ is distributed according to the parameters (o, pf, g\). Also

) L((a, 6, M), A) = L((s, pf, g\), g}).

A (randomized) decision procedure for this problem is a measurable function 6
on R™* to the set of all probability measures in S*7!, the unit sphere in R*. The
interpretation is that, after observing X, the statistician takes a random action
whose conditional distribution given X is 6(X). This decision procedure ¢ is said

to be invariant under the group of transformations (p, q) introduced above if for
all such p, g and all n X k matrices x and all measurable B C S*™!

(5) 8(pxq’)(gB) = &(x)(B),

where gB denotes the set of all qf\ with \ € B. Let &, be the (invariant) decision
procedure defined by

(6) do(x) ()} = do(x){—vo(x)} = %,

where yo(x) and —yo(x) are the two possible choices of the characteristic vector
of x’x corresponding to the largest characteristic root.

THEOREM 1. The decision procedure &, is the best invariant decision procedure
for this problem in the sense that for any essentially different invariant procedure
8, and any o, 1 > 0 the risk of § is greater than that of & at (o, 6, \) for any 6, \
with || 6| = V8’8 = 7. Note that the risk of any invariant procedure depends only
ona,T.

ProOOF. From (5) with ¢ = I we see that for all orthogonal n X n matrices p,
d(px) = 6(x). However, when x(1)x1) = x{z%@ (With x, and x¢) n X k matrices)
there exists p such that x,) = px(). Thus, we can write

(7 o(x) = 6%(x'x),
and it follows from (5) that for all orthogonal k X k matrices ¢
(8) 6*(qx"xq")(gB) = 6*(x"x)(B).

In particular if, for given x, we choose a diagonal matrix # with diagonal elements
in decreasing order and an orthogonal matrix ¢ such that

9) x'x=q'/q,
we have, for all B,
(10) 6*(x'x)(B) = ¢(#)(¢B),

where we have written ¢(/) for 6*(#). Let ¢ be the & X k diagonal matrix, all of
whose diagonal elements are 1 except for the ith which is —1. For diagonal
matrices /

(11) qV'/q¥ =,.
Substitute x’x = # and ¢ = ¢ in (9) and (10) to obtain
(12) #(2)(B) = ¢(©)(¢"”(B)),
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that is, ¢(#) is invariant under reflections in the coordinate axes. Summarizing,

the invariant procedures 6 are those expressible in the form (7) with 6* satisfying

(10) (with g, #, and x related by (9)), and ¢(~) satisfying (12) for diagonal /.
Our aim now is to prove that the best choice ¢, of ¢ is given by

(13) do()feM} = ¢o()f—eM} = 14,

where e = (1, 0, - - -, 0)’. It suffices to prove that 6§ is the essentially unique
Bayes procedure against the invariant prior distribution

(14) Z(df)&(dN),

where 2 is the orthogonally invariant probability measure on the sphere
6]l = 7 in R"™ and ¢ the orthogonally invariant probability measure on the unit
sphere in R*. Without essential loss of generality we take ¢ = 1. The posterior
density of the parameters with respect to the prior disttibution (14) is given by

(15)  p(8,7,\| X) = exp[—Yotr (X —ON")" (X — 6X")]p(X) = exp(6’ X N)p*(X),

where p and p* represent functions whose precise form is of no relevance to the

argument.
One minus the posterior risk of the randomized decision rule ¢ related to ¢ by

(7)-(12) is proportional to

(16) I(¢) = f f f (N q’2)%exp(6’ XN)Z(d)£(dN)(#)(dz).

Let ¢t be an orthogonal matrix with first column proportional to X\. Changing
variables from 0 to tf and expanding the exponential into its Taylor series gives

=[] e g0 HEE san o

2; .
= %o [ | (;’]%),wa)][ | f (A’q’z)zIIXMIz’E(dAM(/)(dz)].

The odd terms drop out since #; has a symmetric distribution. Now note that
since ¢ is reflection-symmetric, [ z;z;¢(#)(dz) = [ (—z)z;¢(#)(dz), and hence z;
and z; are uncorrelated if ¢ # j. Therefore

17)

f f (Nq’2)*(N' X' XN E(dN)p(#)(d2)
(18) = f f (v"2)*(v' g X’ Xq'v) £(dv)$(#)(d2)

= Shn [ f z?,,¢</><dz>][ f VE(Th /hv%’.)fs(dv)],

where A = q’v. This is a weighted sum of the terms

(19) A, = f vZ4(Tko1 Zh03) E(dv).
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We shall show that A, is the largest among the A,, for all values of j and hence
we can maximize the weighted sum simultaneously for all j by choosing ¢ so that
[ 21¢(#)(dz) = 1. Since ¢, is the unique symmetric measure on the unit sphere
for which this is true, this will prove the theorem.

LEMMA 1. Let V= (V,, ---, V) be a random variable uniformly distributed
on the surface of the unit sphere in R*. Then

I'(k/2) T(ay + ) --- T(ap + %)
I'(%)* T'(k/2 + Z,_l a;) )

(20) E [1&, V¥ =

PrROOF. Let Y = (Y,, ---, Y;) be distributed according to N(0, I,). Then V
can be represented as V; = Y,/ NYll,i=1, ---,p.Let Z; = Y?/| Y |3 i =
-,p. Then Z,, - - ., Z;_, have the Dirichlet density

C(py + --- +pe) p

z c2l =1 -3 2,
pa I'(p:) ! k * '
forz;, =0, ---, 2, =20, with p, = ... = p, = Y. This follows from the fact that
Y2, ..., Y? are independent x -varlables with one degree of freedom. (See

Exercise 11, page 215, Rao (1973), for example; note that Rao’s constant should
be inverted.) Then we have

E H:‘Ll V?“i =K H:‘Q=1 Z?‘}
which is (20).0

Using the multinomial expansion we can write A,, as
j! . . _
An = B g e [ vz - otrgian

- 2 J! /jl . g I'(k/2) T(j; + %) --- T(r + L)L(jm + %42)
- Ji! k() T'(j + (B/2) + DI'(jn + %)

From this it follows that

N L (%k) P(js+%) - - - T(i + %)
21 A —Ay= —Im) T * j
(21) 1 LGi—J )h!”_h!/ " TR() T(j+%+1)

Since /, > /,,, each term with j; > j,, is positive and larger in absolute value
than the corresponding term with j; and j,, reversed. It follows that A; — A,, >
0, proving the theorem.

COROLLARY 1. The rule &, is admissible for every fixed T and o, and thus also
when 1 and o are not fixed.

3. The case of unknown pu. In order to obtain a result analogous to
Corollary 1 for the case where u in (2) is unknown, we shall need to apply a
simple decision-theoretic lemma. Before introducing this, let us look at an
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analogue of Theorem 1. With ¢ a & X k orthogonal matrix, p an n X n orthogonal
matrix such that pe = e and §{ € R*, we consider transformations (p, g, £)
operating on the sample space by

(22) (p, q, £)x = pxq’ + et’.

If X is distributed according to the parameter point (s, 6, A, p), then the
transformed random matrix pxq’ + ef’ is distributed according to (o, pf, gA,
gu + £). The condition for a decision function 6 to be invariant is now

(23) o(pxq’ + e£’)(B) = 6(x)(B)
rather than (5). Let 6, be the particular invariant decision procedure defined by
(24) 81(x) {1 ()} = 81(x){—yu(x)} = 4,

where ¥, (x) is the characteristic vector of x’x — (1/n)x’ee’x corresponding to the
largest characteristic root.

THEOREM 2. The decision procedure 6, is the best invariant decision procedure
for this problem in the sense that for any essentially different invariant procedure
6 and any o, 7 > 0 the risk of 6 is greater than that of 6, at (s, 0, A, u) for any 6, A,
u with

(25) |6 — (1/n)ee’d || = .
ProOF. The result is reduced to Theorem 1. Let
(26) = (e / ‘”‘)
Q(2)

be an n X n orthogonal matrix and let
(27) Y =aX.

Partition Y as

(Yo
(28) Y <Y<2)> ’
where Y(y) is the first row of Y. Then Y|y is distributed as X in Section 2 with n
replaced by n — 1 and 6 replaced by «(s) 6. Expressed in terms of Y, the invariant
decision procedures are exactly the invariant procedures depending only on Y.
Since 6, is related to Y| in the same way that 6, was related to X in Section 2,
the desired result follows.

Because the group of transformations considered here is not compact, the
admissibility of 8; does not follow as easily as the admissibility of 8, in Corollary
1. Instead, we shall need a decision-theoretic lemma which may be related to
Lemma 3.1 of Kiefer and Schwartz (1965). Although the lemma we shall need
has a simple proof, the statement is long and not easy to grasp. Thus a few

preliminary remarks may be helpful. The sample space is given explicitly as a
Cartesian product 7° X 7. In effect, condition (i) expresses the parameter space
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as a Cartesian product, but this is not expressed explicitly because it would
appear unnatural in the applications. Conditions (ii) and (iii) indicate the relation
between the two Cartesian product structures. A restriction is imposed on the
loss function in (29).

LEMMA 2. Let V and W be random variables (not necessarily real-valued,
taking values in sets 7" and %), jointly distributed according to P;, where { € Z*
is an unknown parameter point. Suppose there are sets 7*, #*, and functions «:
Z*¥—->7*and B: ¥ — 7* such that

(i) for every (a1, B1) € Z* X @™ there exists a unique ¢ € Z* such that
a($) = a; and B(§) = B,

(ii) the distribution of V is determined by a(¢), and
(iii) the conditional distribution of W given V is determined by (3().
Suppose also that, with an action space 7', the loss function L has the form
(29) L(, @) = L*(a($), a)

for ¢ € Z*. If 6, is a decision procedure depending on the sample point (V, W)
only through V, admissible among such procedures, then 6, is admissible among
all decision procedures.

PROOF BY CONTRADICTION. Suppose a decision procedure § is everywhere as
good as &, and strictly better at {;. We define a random variable W*, whose
conditional distribution given V (at every parameter point) is the same as the
conditional distribution of W given V at the parameter point {,. Let 6* be the
decision procedure defined by

(30) o*(V) =o(V, W*).

We shall see that 6* is strictly better than ;.
Identifying ¢ with («(¢), 8(¢)), which is legitimate because of condition (i), we
have

E. 0,500 L*(a($), 6%(V))
= Ep,p00 L*(a($), 6(V, W¥*))

= E 0,809 L*(a($), 8(V, W)) < Eyp), 869 L*(a($), 6:(V))

= E.p,80L*(a($), 6:(V)).

The first equality uses the definition (30) of 6* and the fact that the distribution
of V is determined by «(¢). The second equality uses the fact that at («(¢), 8(50)),
(V, W) has the same distribution as (V, W*). The final equality again uses the
fact that the distribution of V is determined by «(¢). Since the inequality in (31)
was assumed at the beginning of the proof to hold strictly at {, this shows that
6* is strictly better than 4,, completing the proof.

Now we can prove the analogue of Corollary 1 for the case of unknown u.

(31) i



INVARIANT ESTIMATION OF A DIRECTION 533

COROLLARY 2. The decision procedure 6, defined in Theorem 2 is admissible
for fixed o and 1 and thus also when o and 7 are not fixed.

ProoF. By Corollary 1 and the construction used in (27) and (28) for the
proof of Theorem 2, 8, is admissible among procedures depending only on Y.
Because « is orthogonal, a@ye = 0. If we identify the V, W, «, and 8 of Lemma 1
with Y(z), Y(l), EY(g) = 02), EX = a(2)0)\’, and

(32) EYq = vVnu' + (1/Vn)(e’0))\".

respectively, the conclusion follows.

Acknowledgement. The authors are indebted to a referee for pointing out
serious errors in Lemmas 1 and 2. .
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